暫無描述

Ravi Hegde 9961b26ed9 mxmodel 6 年之前
.ipynb_checkpoints 9961b26ed9 mxmodel 6 年之前
.mypy_cache b2e2f34fad further dev 6 年之前
__pycache__ 9961b26ed9 mxmodel 6 年之前
datasets 9961b26ed9 mxmodel 6 年之前
materials 1d7b8580a1 again 6 年之前
models 25d68667cb commit with assisted DE 6 年之前
results 65106a91a8 added rugate functions 6 年之前
README e9a845a293 README created online with Bitbucket 6 年之前
Untitled.ipynb a186f56b20 simple qx working code 6 年之前
Untitled1.ipynb 474d2ae715 settled on 2 mat designs 6 年之前
Untitled2.ipynb 474d2ae715 settled on 2 mat designs 6 年之前
Untitled3.ipynb 9961b26ed9 mxmodel 6 年之前
barplotting.ipynb b2e2f34fad further dev 6 年之前
dataset_maker.ipynb 9961b26ed9 mxmodel 6 年之前
de2.py 474d2ae715 settled on 2 mat designs 6 年之前
de_conv.ipynb 65106a91a8 added rugate functions 6 年之前
hypoptim.ipynb b2e2f34fad further dev 6 年之前
hyptune.py 1e493c3bd5 further develp in conv scatter nets 6 年之前
loss_defs.py b2e2f34fad further dev 6 年之前
make_dataset.py 1d7b8580a1 again 6 年之前
makeqx.py 474d2ae715 settled on 2 mat designs 6 年之前
mtmm.pyx a186f56b20 simple qx working code 6 年之前
mxmodel.ipynb 25d68667cb commit with assisted DE 6 年之前
normalized.ipynb 474d2ae715 settled on 2 mat designs 6 年之前
oldqx.py 9961b26ed9 mxmodel 6 年之前
pygmoimp.ipynb 25d68667cb commit with assisted DE 6 年之前
pymietest.ipynb 65106a91a8 added rugate functions 6 年之前
qxnew.py 474d2ae715 settled on 2 mat designs 6 年之前
qxplots.py a186f56b20 simple qx working code 6 年之前
reinforcement.ipynb 474d2ae715 settled on 2 mat designs 6 年之前
ru2.ipynb 9961b26ed9 mxmodel 6 年之前
rugate_d.ipynb 474d2ae715 settled on 2 mat designs 6 年之前
scatternet.ipynb 9961b26ed9 mxmodel 6 年之前
scipydiffe.ipynb 65106a91a8 added rugate functions 6 年之前
scnets.py 9961b26ed9 mxmodel 6 年之前
setup.py a186f56b20 simple qx working code 6 年之前
siti_fully-0000.params 9961b26ed9 mxmodel 6 年之前
siti_fully-symbol.json 9961b26ed9 mxmodel 6 年之前
smooth_x.ipynb 65106a91a8 added rugate functions 6 年之前
snlay.py b2e2f34fad further dev 6 年之前
stack_testing.ipynb 9961b26ed9 mxmodel 6 年之前

README

https://bitbucket.org/rshegde/deepmie-deep-learning-electromagnetic-scattering

Abstract
===============================================================
We propose the use of Deep Convolutional Neural Networks (DCNN)
in concert with Differential Evolution for solving inverse problems in
electromagnetics. We show that networks built using innovations like
convolutional layers, batch normalization, parametric REctified Linear Unit
(ReLU) and residual blocks achieve comparable performance to previously
reported dense fully-connected networks but achieve drastic reduction in
parameter weights and training epoch lengths. The proposed lightweight CNNs
are used in concert with Differential Evolution global optimization to achieve
8x speedup in convergence time. Systematic hyperparameter grid searches are
reported to permit faster model discovery for application to other problems.

See the following arxiv paper for details


Requirements
================================================================
1) CUDA capable GPU
2) Python 3.5
3) Numpy, Matplotlib, Pandas, Scipy, Scikitlearn
4) Cudatooklit 9.0, CuDNN 7.1
5) Mxnet-GPU, Mxnet-cumkl
6) Keras, Keras-mxnet
7) Scattnlay -- needed if you want to generate other datasets
8) Jupyter notebook
9) ipyparallel for calling multiple runs at the same time

Getting started
==================================
Most of the code is placed in Jupyter notebooks for interactivity.
PyMIEtest.ipynb -- familiarizes you with generating datasets
Scatternets.ipynb -- allows building and visualizing models
hypoptim.ipynb -- hyperparameter grid search using scikit CV grid search
scipydiffe -- differential evolution using compiled models.