Açıklama Yok

Ravi Hegde 9961b26ed9 mxmodel 6 yıl önce
.ipynb_checkpoints 9961b26ed9 mxmodel 6 yıl önce
.mypy_cache b2e2f34fad further dev 6 yıl önce
__pycache__ 9961b26ed9 mxmodel 6 yıl önce
datasets 9961b26ed9 mxmodel 6 yıl önce
materials 1d7b8580a1 again 6 yıl önce
models 25d68667cb commit with assisted DE 6 yıl önce
results 65106a91a8 added rugate functions 6 yıl önce
README e9a845a293 README created online with Bitbucket 6 yıl önce
Untitled.ipynb a186f56b20 simple qx working code 6 yıl önce
Untitled1.ipynb 474d2ae715 settled on 2 mat designs 6 yıl önce
Untitled2.ipynb 474d2ae715 settled on 2 mat designs 6 yıl önce
Untitled3.ipynb 9961b26ed9 mxmodel 6 yıl önce
barplotting.ipynb b2e2f34fad further dev 6 yıl önce
dataset_maker.ipynb 9961b26ed9 mxmodel 6 yıl önce
de2.py 474d2ae715 settled on 2 mat designs 6 yıl önce
de_conv.ipynb 65106a91a8 added rugate functions 6 yıl önce
hypoptim.ipynb b2e2f34fad further dev 6 yıl önce
hyptune.py 1e493c3bd5 further develp in conv scatter nets 6 yıl önce
loss_defs.py b2e2f34fad further dev 6 yıl önce
make_dataset.py 1d7b8580a1 again 6 yıl önce
makeqx.py 474d2ae715 settled on 2 mat designs 6 yıl önce
mtmm.pyx a186f56b20 simple qx working code 6 yıl önce
mxmodel.ipynb 25d68667cb commit with assisted DE 6 yıl önce
normalized.ipynb 474d2ae715 settled on 2 mat designs 6 yıl önce
oldqx.py 9961b26ed9 mxmodel 6 yıl önce
pygmoimp.ipynb 25d68667cb commit with assisted DE 6 yıl önce
pymietest.ipynb 65106a91a8 added rugate functions 6 yıl önce
qxnew.py 474d2ae715 settled on 2 mat designs 6 yıl önce
qxplots.py a186f56b20 simple qx working code 6 yıl önce
reinforcement.ipynb 474d2ae715 settled on 2 mat designs 6 yıl önce
ru2.ipynb 9961b26ed9 mxmodel 6 yıl önce
rugate_d.ipynb 474d2ae715 settled on 2 mat designs 6 yıl önce
scatternet.ipynb 9961b26ed9 mxmodel 6 yıl önce
scipydiffe.ipynb 65106a91a8 added rugate functions 6 yıl önce
scnets.py 9961b26ed9 mxmodel 6 yıl önce
setup.py a186f56b20 simple qx working code 6 yıl önce
siti_fully-0000.params 9961b26ed9 mxmodel 6 yıl önce
siti_fully-symbol.json 9961b26ed9 mxmodel 6 yıl önce
smooth_x.ipynb 65106a91a8 added rugate functions 6 yıl önce
snlay.py b2e2f34fad further dev 6 yıl önce
stack_testing.ipynb 9961b26ed9 mxmodel 6 yıl önce

README

https://bitbucket.org/rshegde/deepmie-deep-learning-electromagnetic-scattering

Abstract
===============================================================
We propose the use of Deep Convolutional Neural Networks (DCNN)
in concert with Differential Evolution for solving inverse problems in
electromagnetics. We show that networks built using innovations like
convolutional layers, batch normalization, parametric REctified Linear Unit
(ReLU) and residual blocks achieve comparable performance to previously
reported dense fully-connected networks but achieve drastic reduction in
parameter weights and training epoch lengths. The proposed lightweight CNNs
are used in concert with Differential Evolution global optimization to achieve
8x speedup in convergence time. Systematic hyperparameter grid searches are
reported to permit faster model discovery for application to other problems.

See the following arxiv paper for details


Requirements
================================================================
1) CUDA capable GPU
2) Python 3.5
3) Numpy, Matplotlib, Pandas, Scipy, Scikitlearn
4) Cudatooklit 9.0, CuDNN 7.1
5) Mxnet-GPU, Mxnet-cumkl
6) Keras, Keras-mxnet
7) Scattnlay -- needed if you want to generate other datasets
8) Jupyter notebook
9) ipyparallel for calling multiple runs at the same time

Getting started
==================================
Most of the code is placed in Jupyter notebooks for interactivity.
PyMIEtest.ipynb -- familiarizes you with generating datasets
Scatternets.ipynb -- allows building and visualizing models
hypoptim.ipynb -- hyperparameter grid search using scikit CV grid search
scipydiffe -- differential evolution using compiled models.