Nav apraksta

Ravi Hegde 9961b26ed9 mxmodel 6 gadi atpakaļ
.ipynb_checkpoints 9961b26ed9 mxmodel 6 gadi atpakaļ
.mypy_cache b2e2f34fad further dev 6 gadi atpakaļ
__pycache__ 9961b26ed9 mxmodel 6 gadi atpakaļ
datasets 9961b26ed9 mxmodel 6 gadi atpakaļ
materials 1d7b8580a1 again 6 gadi atpakaļ
models 25d68667cb commit with assisted DE 6 gadi atpakaļ
results 65106a91a8 added rugate functions 6 gadi atpakaļ
README e9a845a293 README created online with Bitbucket 6 gadi atpakaļ
Untitled.ipynb a186f56b20 simple qx working code 6 gadi atpakaļ
Untitled1.ipynb 474d2ae715 settled on 2 mat designs 6 gadi atpakaļ
Untitled2.ipynb 474d2ae715 settled on 2 mat designs 6 gadi atpakaļ
Untitled3.ipynb 9961b26ed9 mxmodel 6 gadi atpakaļ
barplotting.ipynb b2e2f34fad further dev 6 gadi atpakaļ
dataset_maker.ipynb 9961b26ed9 mxmodel 6 gadi atpakaļ
de2.py 474d2ae715 settled on 2 mat designs 6 gadi atpakaļ
de_conv.ipynb 65106a91a8 added rugate functions 6 gadi atpakaļ
hypoptim.ipynb b2e2f34fad further dev 6 gadi atpakaļ
hyptune.py 1e493c3bd5 further develp in conv scatter nets 6 gadi atpakaļ
loss_defs.py b2e2f34fad further dev 6 gadi atpakaļ
make_dataset.py 1d7b8580a1 again 6 gadi atpakaļ
makeqx.py 474d2ae715 settled on 2 mat designs 6 gadi atpakaļ
mtmm.pyx a186f56b20 simple qx working code 6 gadi atpakaļ
mxmodel.ipynb 25d68667cb commit with assisted DE 6 gadi atpakaļ
normalized.ipynb 474d2ae715 settled on 2 mat designs 6 gadi atpakaļ
oldqx.py 9961b26ed9 mxmodel 6 gadi atpakaļ
pygmoimp.ipynb 25d68667cb commit with assisted DE 6 gadi atpakaļ
pymietest.ipynb 65106a91a8 added rugate functions 6 gadi atpakaļ
qxnew.py 474d2ae715 settled on 2 mat designs 6 gadi atpakaļ
qxplots.py a186f56b20 simple qx working code 6 gadi atpakaļ
reinforcement.ipynb 474d2ae715 settled on 2 mat designs 6 gadi atpakaļ
ru2.ipynb 9961b26ed9 mxmodel 6 gadi atpakaļ
rugate_d.ipynb 474d2ae715 settled on 2 mat designs 6 gadi atpakaļ
scatternet.ipynb 9961b26ed9 mxmodel 6 gadi atpakaļ
scipydiffe.ipynb 65106a91a8 added rugate functions 6 gadi atpakaļ
scnets.py 9961b26ed9 mxmodel 6 gadi atpakaļ
setup.py a186f56b20 simple qx working code 6 gadi atpakaļ
siti_fully-0000.params 9961b26ed9 mxmodel 6 gadi atpakaļ
siti_fully-symbol.json 9961b26ed9 mxmodel 6 gadi atpakaļ
smooth_x.ipynb 65106a91a8 added rugate functions 6 gadi atpakaļ
snlay.py b2e2f34fad further dev 6 gadi atpakaļ
stack_testing.ipynb 9961b26ed9 mxmodel 6 gadi atpakaļ

README

https://bitbucket.org/rshegde/deepmie-deep-learning-electromagnetic-scattering

Abstract
===============================================================
We propose the use of Deep Convolutional Neural Networks (DCNN)
in concert with Differential Evolution for solving inverse problems in
electromagnetics. We show that networks built using innovations like
convolutional layers, batch normalization, parametric REctified Linear Unit
(ReLU) and residual blocks achieve comparable performance to previously
reported dense fully-connected networks but achieve drastic reduction in
parameter weights and training epoch lengths. The proposed lightweight CNNs
are used in concert with Differential Evolution global optimization to achieve
8x speedup in convergence time. Systematic hyperparameter grid searches are
reported to permit faster model discovery for application to other problems.

See the following arxiv paper for details


Requirements
================================================================
1) CUDA capable GPU
2) Python 3.5
3) Numpy, Matplotlib, Pandas, Scipy, Scikitlearn
4) Cudatooklit 9.0, CuDNN 7.1
5) Mxnet-GPU, Mxnet-cumkl
6) Keras, Keras-mxnet
7) Scattnlay -- needed if you want to generate other datasets
8) Jupyter notebook
9) ipyparallel for calling multiple runs at the same time

Getting started
==================================
Most of the code is placed in Jupyter notebooks for interactivity.
PyMIEtest.ipynb -- familiarizes you with generating datasets
Scatternets.ipynb -- allows building and visualizing models
hypoptim.ipynb -- hyperparameter grid search using scikit CV grid search
scipydiffe -- differential evolution using compiled models.