Ingen beskrivning

Ravi Hegde 9961b26ed9 mxmodel 6 år sedan
.ipynb_checkpoints 9961b26ed9 mxmodel 6 år sedan
.mypy_cache b2e2f34fad further dev 6 år sedan
__pycache__ 9961b26ed9 mxmodel 6 år sedan
datasets 9961b26ed9 mxmodel 6 år sedan
materials 1d7b8580a1 again 6 år sedan
models 25d68667cb commit with assisted DE 6 år sedan
results 65106a91a8 added rugate functions 6 år sedan
README e9a845a293 README created online with Bitbucket 6 år sedan
Untitled.ipynb a186f56b20 simple qx working code 6 år sedan
Untitled1.ipynb 474d2ae715 settled on 2 mat designs 6 år sedan
Untitled2.ipynb 474d2ae715 settled on 2 mat designs 6 år sedan
Untitled3.ipynb 9961b26ed9 mxmodel 6 år sedan
barplotting.ipynb b2e2f34fad further dev 6 år sedan
dataset_maker.ipynb 9961b26ed9 mxmodel 6 år sedan
de2.py 474d2ae715 settled on 2 mat designs 6 år sedan
de_conv.ipynb 65106a91a8 added rugate functions 6 år sedan
hypoptim.ipynb b2e2f34fad further dev 6 år sedan
hyptune.py 1e493c3bd5 further develp in conv scatter nets 6 år sedan
loss_defs.py b2e2f34fad further dev 6 år sedan
make_dataset.py 1d7b8580a1 again 6 år sedan
makeqx.py 474d2ae715 settled on 2 mat designs 6 år sedan
mtmm.pyx a186f56b20 simple qx working code 6 år sedan
mxmodel.ipynb 25d68667cb commit with assisted DE 6 år sedan
normalized.ipynb 474d2ae715 settled on 2 mat designs 6 år sedan
oldqx.py 9961b26ed9 mxmodel 6 år sedan
pygmoimp.ipynb 25d68667cb commit with assisted DE 6 år sedan
pymietest.ipynb 65106a91a8 added rugate functions 6 år sedan
qxnew.py 474d2ae715 settled on 2 mat designs 6 år sedan
qxplots.py a186f56b20 simple qx working code 6 år sedan
reinforcement.ipynb 474d2ae715 settled on 2 mat designs 6 år sedan
ru2.ipynb 9961b26ed9 mxmodel 6 år sedan
rugate_d.ipynb 474d2ae715 settled on 2 mat designs 6 år sedan
scatternet.ipynb 9961b26ed9 mxmodel 6 år sedan
scipydiffe.ipynb 65106a91a8 added rugate functions 6 år sedan
scnets.py 9961b26ed9 mxmodel 6 år sedan
setup.py a186f56b20 simple qx working code 6 år sedan
siti_fully-0000.params 9961b26ed9 mxmodel 6 år sedan
siti_fully-symbol.json 9961b26ed9 mxmodel 6 år sedan
smooth_x.ipynb 65106a91a8 added rugate functions 6 år sedan
snlay.py b2e2f34fad further dev 6 år sedan
stack_testing.ipynb 9961b26ed9 mxmodel 6 år sedan

README

https://bitbucket.org/rshegde/deepmie-deep-learning-electromagnetic-scattering

Abstract
===============================================================
We propose the use of Deep Convolutional Neural Networks (DCNN)
in concert with Differential Evolution for solving inverse problems in
electromagnetics. We show that networks built using innovations like
convolutional layers, batch normalization, parametric REctified Linear Unit
(ReLU) and residual blocks achieve comparable performance to previously
reported dense fully-connected networks but achieve drastic reduction in
parameter weights and training epoch lengths. The proposed lightweight CNNs
are used in concert with Differential Evolution global optimization to achieve
8x speedup in convergence time. Systematic hyperparameter grid searches are
reported to permit faster model discovery for application to other problems.

See the following arxiv paper for details


Requirements
================================================================
1) CUDA capable GPU
2) Python 3.5
3) Numpy, Matplotlib, Pandas, Scipy, Scikitlearn
4) Cudatooklit 9.0, CuDNN 7.1
5) Mxnet-GPU, Mxnet-cumkl
6) Keras, Keras-mxnet
7) Scattnlay -- needed if you want to generate other datasets
8) Jupyter notebook
9) ipyparallel for calling multiple runs at the same time

Getting started
==================================
Most of the code is placed in Jupyter notebooks for interactivity.
PyMIEtest.ipynb -- familiarizes you with generating datasets
Scatternets.ipynb -- allows building and visualizing models
hypoptim.ipynb -- hyperparameter grid search using scikit CV grid search
scipydiffe -- differential evolution using compiled models.