설명 없음

Ravi Hegde 9961b26ed9 mxmodel 6 년 전
.ipynb_checkpoints 9961b26ed9 mxmodel 6 년 전
.mypy_cache b2e2f34fad further dev 6 년 전
__pycache__ 9961b26ed9 mxmodel 6 년 전
datasets 9961b26ed9 mxmodel 6 년 전
materials 1d7b8580a1 again 6 년 전
models 25d68667cb commit with assisted DE 6 년 전
results 65106a91a8 added rugate functions 6 년 전
README e9a845a293 README created online with Bitbucket 6 년 전
Untitled.ipynb a186f56b20 simple qx working code 6 년 전
Untitled1.ipynb 474d2ae715 settled on 2 mat designs 6 년 전
Untitled2.ipynb 474d2ae715 settled on 2 mat designs 6 년 전
Untitled3.ipynb 9961b26ed9 mxmodel 6 년 전
barplotting.ipynb b2e2f34fad further dev 6 년 전
dataset_maker.ipynb 9961b26ed9 mxmodel 6 년 전
de2.py 474d2ae715 settled on 2 mat designs 6 년 전
de_conv.ipynb 65106a91a8 added rugate functions 6 년 전
hypoptim.ipynb b2e2f34fad further dev 6 년 전
hyptune.py 1e493c3bd5 further develp in conv scatter nets 6 년 전
loss_defs.py b2e2f34fad further dev 6 년 전
make_dataset.py 1d7b8580a1 again 6 년 전
makeqx.py 474d2ae715 settled on 2 mat designs 6 년 전
mtmm.pyx a186f56b20 simple qx working code 6 년 전
mxmodel.ipynb 25d68667cb commit with assisted DE 6 년 전
normalized.ipynb 474d2ae715 settled on 2 mat designs 6 년 전
oldqx.py 9961b26ed9 mxmodel 6 년 전
pygmoimp.ipynb 25d68667cb commit with assisted DE 6 년 전
pymietest.ipynb 65106a91a8 added rugate functions 6 년 전
qxnew.py 474d2ae715 settled on 2 mat designs 6 년 전
qxplots.py a186f56b20 simple qx working code 6 년 전
reinforcement.ipynb 474d2ae715 settled on 2 mat designs 6 년 전
ru2.ipynb 9961b26ed9 mxmodel 6 년 전
rugate_d.ipynb 474d2ae715 settled on 2 mat designs 6 년 전
scatternet.ipynb 9961b26ed9 mxmodel 6 년 전
scipydiffe.ipynb 65106a91a8 added rugate functions 6 년 전
scnets.py 9961b26ed9 mxmodel 6 년 전
setup.py a186f56b20 simple qx working code 6 년 전
siti_fully-0000.params 9961b26ed9 mxmodel 6 년 전
siti_fully-symbol.json 9961b26ed9 mxmodel 6 년 전
smooth_x.ipynb 65106a91a8 added rugate functions 6 년 전
snlay.py b2e2f34fad further dev 6 년 전
stack_testing.ipynb 9961b26ed9 mxmodel 6 년 전

README

https://bitbucket.org/rshegde/deepmie-deep-learning-electromagnetic-scattering

Abstract
===============================================================
We propose the use of Deep Convolutional Neural Networks (DCNN)
in concert with Differential Evolution for solving inverse problems in
electromagnetics. We show that networks built using innovations like
convolutional layers, batch normalization, parametric REctified Linear Unit
(ReLU) and residual blocks achieve comparable performance to previously
reported dense fully-connected networks but achieve drastic reduction in
parameter weights and training epoch lengths. The proposed lightweight CNNs
are used in concert with Differential Evolution global optimization to achieve
8x speedup in convergence time. Systematic hyperparameter grid searches are
reported to permit faster model discovery for application to other problems.

See the following arxiv paper for details


Requirements
================================================================
1) CUDA capable GPU
2) Python 3.5
3) Numpy, Matplotlib, Pandas, Scipy, Scikitlearn
4) Cudatooklit 9.0, CuDNN 7.1
5) Mxnet-GPU, Mxnet-cumkl
6) Keras, Keras-mxnet
7) Scattnlay -- needed if you want to generate other datasets
8) Jupyter notebook
9) ipyparallel for calling multiple runs at the same time

Getting started
==================================
Most of the code is placed in Jupyter notebooks for interactivity.
PyMIEtest.ipynb -- familiarizes you with generating datasets
Scatternets.ipynb -- allows building and visualizing models
hypoptim.ipynb -- hyperparameter grid search using scikit CV grid search
scipydiffe -- differential evolution using compiled models.