123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- import numpy as np
- def open_file(path):
- """depends on the format of file we open"""
- freq, re, im = [], [], []
- with open(path) as f:
- for line in f:
- temp = line[:-1].split(' ')
- for i in range(3):
- temp[i] = temp[i].replace(" ", "")
- freq.append(float(temp[0]))
- re.append(float(temp[1]))
- im.append(float(temp[2]))
- return freq, re, im
- def prepare_data(freq, re, im):
- """the function takes raw data and gives vectors of eq (8)"""
- fl = freq[re.index(max(re))]
- # fl is the frequency of loaded resonance
- f0 = fl
- # f0 is the frequency of unloaded resonance
- e1, e2, e3, gamma, p = [], [], [], [], []
- for i in range(0, len(freq)):
- # filling vectors
- t = 2 * (freq[i] - fl) / f0
- g = re[i] + im[i] * 1j
- e1.append(t)
- e2.append(1)
- e3.append(-t * g)
- gamma.append(g)
- p.append(1 / (1 + t ** 2 * (1 + re[i] ** 2 + im[i] ** 2)))
- data = np.array([e1, e2, e3, gamma, p], dtype=complex)
- return data
- def solution(data):
- """ takes projections of equation (8) on vectors e1, e2, e3 and solves the equations.
- It is also gives matrix of equation"""
- c = [] # matrix of the system
- b = [] # matrix extension
- for i in range(3):
- c1 = np.vdot(data[i], data[4] * data[0])
- c2 = np.vdot(data[i], data[4] * data[1])
- c3 = np.vdot(data[i], data[4] * data[2])
- c.append([c1, c2, c3])
- b.append(np.vdot(data[i], data[4] * data[3]))
- a = np.linalg.solve(c, b)
- c = np.array(c)
- d = np.linalg.inv(c) # inverse of matrix c
- return a, c, d
- def q_factor(a):
- """calculation of result"""
- Ql = a[2].imag # Q-factor of loaded resonator
- diam = abs(a[1] - a[0] / a[2]) # diameter of circle
- k = 1 / (2 / diam - 1)
- Q = Ql * (1 + k) # Q-factor = result
- return Ql, diam, k, Q
- def recalculation_of_data(data, a, c, d, error=False):
- """preparation data for the next iteration of solving system"""
- # data = np.array([e1, e2, e3, gamma, p], dtype=complex), t = e1, 1 = e2
- eps = np.array(a[0]*data[0] + a[1]*data[1] - a[2]*data[0]*data[3] - data[3], dtype=complex)
- # eps is eq(7) line's errors
- S2 = np.dot(abs(data[4]), abs(eps)*abs(eps)) # the weighted squared sum of errors
- sigma2A = [] # the square of standart deviation coefficients a
- temp = c[0][0]*d[0][0] + c[1][1]*d[1][1] + c[2][2]*d[2][2]
- for i in range(3):
- sigma2A.append(d[i][i] * S2 / temp)
- for i in range(len(data[4])): # recalculation of weight coefficients P
- data[4][i] = 1/(data[0][i]**2 * sigma2A[0] + sigma2A[1] + data[0][i]**2 * sigma2A[2] * (abs(data[3][i])**2))
- if error:
- return abs(np.array(sigma2A))
- else:
- return data
- def random_deviation(a, sigma2A, diam, k, Ql):
- """defines standart deviations of values"""
- sigmaQl = sigma2A[2]**0.5
- sigmaDiam = (sigma2A[0]/(abs(a[2])**2) + sigma2A[1] + abs(a[0]/a[2]/a[2])**2 * sigma2A[2])**0.5
- sigmaK = 2*sigmaDiam/((2-diam)**2)
- sigmaQ0 = ((1 + k)**2 * sigma2A[2] + Ql**2 * sigmaK**2)**0.5
- return sigmaQ0
- def apply(filename):
- freq, re, im = open_file(filename)
- data = prepare_data(freq, re, im)
- a, c, d = solution(data)
- for i in range(2, 10):
- data = recalculation_of_data(data, a, c, d)
- a, c, d = solution(data)
- Ql, diam, k, Q = q_factor(a)
- sigma2A = recalculation_of_data(data, a, c, d, error=True)
- sigmaQ0 = random_deviation(a, sigma2A, diam, k, Ql)
- print(f"Q = {Q} +- {sigmaQ0}, if i == {i}".format(Q, sigmaQ0, i))
|