calc.py 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102
  1. import numpy as np
  2. def open_file(path):
  3. """depends on the format of file we open"""
  4. freq, re, im = [], [], []
  5. with open(path) as f:
  6. for line in f:
  7. temp = line[:-1].split(' ')
  8. for i in range(3):
  9. temp[i] = temp[i].replace(" ", "")
  10. freq.append(float(temp[0]))
  11. re.append(float(temp[1]))
  12. im.append(float(temp[2]))
  13. return freq, re, im
  14. def prepare_data(freq, re, im):
  15. """the function takes raw data and gives vectors of eq (8)"""
  16. fl = freq[re.index(max(re))]
  17. # fl is the frequency of loaded resonance
  18. f0 = fl
  19. # f0 is the frequency of unloaded resonance
  20. e1, e2, e3, gamma, p = [], [], [], [], []
  21. for i in range(0, len(freq)):
  22. # filling vectors
  23. t = 2 * (freq[i] - fl) / f0
  24. g = re[i] + im[i] * 1j
  25. e1.append(t)
  26. e2.append(1)
  27. e3.append(-t * g)
  28. gamma.append(g)
  29. p.append(1 / (1 + t ** 2 * (1 + re[i] ** 2 + im[i] ** 2)))
  30. data = np.array([e1, e2, e3, gamma, p], dtype=complex)
  31. return data
  32. def solution(data):
  33. """ takes projections of equation (8) on vectors e1, e2, e3 and solves the equations.
  34. It is also gives matrix of equation"""
  35. c = [] # matrix of the system
  36. b = [] # matrix extension
  37. for i in range(3):
  38. c1 = np.vdot(data[i], data[4] * data[0])
  39. c2 = np.vdot(data[i], data[4] * data[1])
  40. c3 = np.vdot(data[i], data[4] * data[2])
  41. c.append([c1, c2, c3])
  42. b.append(np.vdot(data[i], data[4] * data[3]))
  43. a = np.linalg.solve(c, b)
  44. c = np.array(c)
  45. d = np.linalg.inv(c) # inverse of matrix c
  46. return a, c, d
  47. def q_factor(a):
  48. """calculation of result"""
  49. Ql = a[2].imag # Q-factor of loaded resonator
  50. diam = abs(a[1] - a[0] / a[2]) # diameter of circle
  51. k = 1 / (2 / diam - 1)
  52. Q = Ql * (1 + k) # Q-factor = result
  53. return Ql, diam, k, Q
  54. def recalculation_of_data(data, a, c, d, error=False):
  55. """preparation data for the next iteration of solving system"""
  56. # data = np.array([e1, e2, e3, gamma, p], dtype=complex), t = e1, 1 = e2
  57. eps = np.array(a[0]*data[0] + a[1]*data[1] - a[2]*data[0]*data[3] - data[3], dtype=complex)
  58. # eps is eq(7) line's errors
  59. S2 = np.dot(abs(data[4]), abs(eps)*abs(eps)) # the weighted squared sum of errors
  60. sigma2A = [] # the square of standart deviation coefficients a
  61. temp = c[0][0]*d[0][0] + c[1][1]*d[1][1] + c[2][2]*d[2][2]
  62. for i in range(3):
  63. sigma2A.append(d[i][i] * S2 / temp)
  64. for i in range(len(data[4])): # recalculation of weight coefficients P
  65. data[4][i] = 1/(data[0][i]**2 * sigma2A[0] + sigma2A[1] + data[0][i]**2 * sigma2A[2] * (abs(data[3][i])**2))
  66. if error:
  67. return abs(np.array(sigma2A))
  68. else:
  69. return data
  70. def random_deviation(a, sigma2A, diam, k, Ql):
  71. """defines standart deviations of values"""
  72. sigmaQl = sigma2A[2]**0.5
  73. sigmaDiam = (sigma2A[0]/(abs(a[2])**2) + sigma2A[1] + abs(a[0]/a[2]/a[2])**2 * sigma2A[2])**0.5
  74. sigmaK = 2*sigmaDiam/((2-diam)**2)
  75. sigmaQ0 = ((1 + k)**2 * sigma2A[2] + Ql**2 * sigmaK**2)**0.5
  76. return sigmaQ0
  77. def apply(filename):
  78. freq, re, im = open_file(filename)
  79. data = prepare_data(freq, re, im)
  80. a, c, d = solution(data)
  81. for i in range(2, 10):
  82. data = recalculation_of_data(data, a, c, d)
  83. a, c, d = solution(data)
  84. Ql, diam, k, Q = q_factor(a)
  85. sigma2A = recalculation_of_data(data, a, c, d, error=True)
  86. sigmaQ0 = random_deviation(a, sigma2A, diam, k, Ql)
  87. print(f"Q = {Q} +- {sigmaQ0}, if i == {i}".format(Q, sigmaQ0, i))