|
@@ -36,7 +36,8 @@ def prepare_data(freq, re, im):
|
|
|
|
|
|
|
|
|
def solution(data):
|
|
|
- """ takes projections of equation (8) on vectors e1, e2, e3 and solves the equations"""
|
|
|
+ """ takes projections of equation (8) on vectors e1, e2, e3 and solves the equations.
|
|
|
+ It is also gives matrix of equation"""
|
|
|
c = [] # matrix of the system
|
|
|
b = [] # matrix extension
|
|
|
for i in range(3):
|
|
@@ -46,23 +47,56 @@ def solution(data):
|
|
|
c.append([c1, c2, c3])
|
|
|
b.append(np.vdot(data[i], data[4] * data[3]))
|
|
|
a = np.linalg.solve(c, b)
|
|
|
- return a
|
|
|
+ c = np.array(c)
|
|
|
+ d = np.linalg.inv(c) # inverse of matrix c
|
|
|
+ return a, c, d
|
|
|
|
|
|
|
|
|
def q_factor(a):
|
|
|
"""calculation of result"""
|
|
|
Ql = a[2].imag # Q-factor of loaded resonator
|
|
|
- d = abs(a[1] - a[0] / a[2]) # diameter of circle
|
|
|
- k = 1 / (2 / d - 1)
|
|
|
+ diam = abs(a[1] - a[0] / a[2]) # diameter of circle
|
|
|
+ k = 1 / (2 / diam - 1)
|
|
|
Q = Ql * (1 + k) # Q-factor = result
|
|
|
- return Q
|
|
|
+ return Ql, diam, k, Q
|
|
|
|
|
|
|
|
|
-def calculate(path):
|
|
|
- """applies all functions"""
|
|
|
- freq, re, im = open_file(path)
|
|
|
+def recalculation_of_data(data, a, c, d, error=False):
|
|
|
+ """preparation data for the next iteration of solving system"""
|
|
|
+ # data = np.array([e1, e2, e3, gamma, p], dtype=complex), t = e1, 1 = e2
|
|
|
+ eps = np.array(a[0]*data[0] + a[1]*data[1] - a[2]*data[0]*data[3] - data[3], dtype=complex)
|
|
|
+ # eps is eq(7) line's errors
|
|
|
+ S2 = np.dot(abs(data[4]), abs(eps)*abs(eps)) # the weighted squared sum of errors
|
|
|
+ sigma2A = [] # the square of standart deviation coefficients a
|
|
|
+ temp = c[0][0]*d[0][0] + c[1][1]*d[1][1] + c[2][2]*d[2][2]
|
|
|
+ for i in range(3):
|
|
|
+ sigma2A.append(d[i][i] * S2 / temp)
|
|
|
+ for i in range(len(data[4])): # recalculation of weight coefficients P
|
|
|
+ data[4][i] = 1/(data[0][i]**2 * sigma2A[0] + sigma2A[1] + data[0][i]**2 * sigma2A[2] * (abs(data[3][i])**2))
|
|
|
+ if error:
|
|
|
+ return abs(np.array(sigma2A))
|
|
|
+ else:
|
|
|
+ return data
|
|
|
+
|
|
|
+
|
|
|
+def random_deviation(a, sigma2A, diam, k, Ql):
|
|
|
+ """defines standart deviations of values"""
|
|
|
+ sigmaQl = sigma2A[2]**0.5
|
|
|
+ sigmaDiam = (sigma2A[0]/(abs(a[2])**2) + sigma2A[1] + abs(a[0]/a[2]/a[2])**2 * sigma2A[2])**0.5
|
|
|
+ sigmaK = 2*sigmaDiam/((2-diam)**2)
|
|
|
+ sigmaQ0 = ((1 + k)**2 * sigma2A[2] + Ql**2 * sigmaK**2)**0.5
|
|
|
+ return sigmaQ0
|
|
|
+
|
|
|
+
|
|
|
+def apply(filename):
|
|
|
+ freq, re, im = open_file(filename)
|
|
|
data = prepare_data(freq, re, im)
|
|
|
- a = solution(data)
|
|
|
- Q = q_factor(a)
|
|
|
- return Q
|
|
|
+ a, c, d = solution(data)
|
|
|
+ for i in range(2, 10):
|
|
|
+ data = recalculation_of_data(data, a, c, d)
|
|
|
+ a, c, d = solution(data)
|
|
|
+ Ql, diam, k, Q = q_factor(a)
|
|
|
+ sigma2A = recalculation_of_data(data, a, c, d, error=True)
|
|
|
+ sigmaQ0 = random_deviation(a, sigma2A, diam, k, Ql)
|
|
|
+ print(f"Q = {Q} +- {sigmaQ0}, if i == {i}".format(Q, sigmaQ0, i))
|
|
|
|