Преглед изворни кода

Merge pull request #15 from ricet8ur/todoing

Todoing
ricet8ur пре 2 година
родитељ
комит
8185a33189
2 измењених фајлова са 66 додато и 69 уклоњено
  1. 47 46
      source/backend/calc.py
  2. 19 23
      source/frontend/front.py

+ 47 - 46
source/backend/calc.py

@@ -1,4 +1,4 @@
-from cmath import atan
+# from cmath import atan
 import numpy as np
 
 
@@ -14,12 +14,13 @@ def open_file(path):
             re.append(float(temp[1]))
             im.append(float(temp[2]))
     return freq, re, im
- 
+
+
 def prepare_data(freq, re, im, fl=None):
     """the function takes raw data and gives vectors of eq (8)"""
     # finding fl from the point with smallest magnitude if argument not provided
     if fl is None:
-        s = abs(np.array(re) + np.array(im)*1j)
+        s = abs(np.array(re) + np.array(im) * 1j)
         # frequency of loaded resonance
         fl = freq[list(abs(s)).index(min(abs(s)))]
 
@@ -39,6 +40,7 @@ def prepare_data(freq, re, im, fl=None):
     data = np.array([e1, e2, e3, gamma, p], dtype=np.cdouble)
     return data, fl
 
+
 def solution(data):
     """ takes projections of equation (8) on vectors e1, e2, e3 and solves the equations.
      It is also gives matrix of equation"""
@@ -68,27 +70,39 @@ def q_factor(a):
 def recalculation_of_data(data, a, c, d, error=False):
     """preparation data for the next iteration of solving system"""
     # data = np.array([e1, e2, e3, gamma, p], dtype=complex), t = e1, 1 = e2
-    eps = np.array(a[0]*data[0] + a[1]*data[1] - a[2]*data[0]*data[3] - data[3], dtype=complex)
+    eps = np.array(a[0] * data[0] + a[1] * data[1] - a[2] * data[0] * data[3] - data[3], dtype=complex)
     # eps is eq(7) line's errors
-    S2 = np.dot(abs(data[4]), abs(eps)*abs(eps))  # the weighted squared sum of errors
+    S2 = np.dot(abs(data[4]), abs(eps) * abs(eps))  # the weighted squared sum of errors
     sigma2A = []  # the square of standart deviation coefficients a
-    temp = c[0][0]*d[0][0] + c[1][1]*d[1][1] + c[2][2]*d[2][2]
+    temp = c[0][0] * d[0][0] + c[1][1] * d[1][1] + c[2][2] * d[2][2]
     for i in range(3):
         sigma2A.append(d[i][i] * S2 / temp)
     for i in range(len(data[4])):  # recalculation of weight coefficients P
-        data[4][i] = 1/(data[0][i]**2 * sigma2A[0] + sigma2A[1] + data[0][i]**2 * sigma2A[2] * (abs(data[3][i])**2))
+        data[4][i] = 1 / (
+                    data[0][i] ** 2 * sigma2A[0] + sigma2A[1] + data[0][i] ** 2 * sigma2A[2] * (abs(data[3][i]) ** 2))
     if error:
         return abs(np.array(sigma2A))
     else:
         return data
 
 
+def recalculating(data, a, c, d, n, printing=False):
+    for i in range(2, n):
+        data = recalculation_of_data(data, a, c, d)
+        a, c, d = solution(data)
+        Ql, diam, k, Q = q_factor(a)
+        sigma2A = recalculation_of_data(data, a, c, d, error=True)
+        sigmaQ0, sigmaQl = random_deviation(a, sigma2A, diam, k, Ql)
+        if printing:
+            print(f"Q = {Q} +- {sigmaQ0}, if i == {i}")
+
+
 def random_deviation(a, sigma2A, diam, k, Ql):
     """defines standart deviations of values"""
-    sigmaQl = sigma2A[2]**0.5
-    sigmaDiam = (sigma2A[0]/(abs(a[2])**2) + sigma2A[1] + abs(a[0]/a[2]/a[2])**2 * sigma2A[2])**0.5
-    sigmaK = 2*sigmaDiam/((2-diam)**2)
-    sigmaQ0 = ((1 + k)**2 * sigma2A[2] + Ql**2 * sigmaK**2)**0.5
+    sigmaQl = sigma2A[2] ** 0.5
+    sigmaDiam = (sigma2A[0] / (abs(a[2]) ** 2) + sigma2A[1] + abs(a[0] / a[2] / a[2]) ** 2 * sigma2A[2]) ** 0.5
+    sigmaK = 2 * sigmaDiam / ((2 - diam) ** 2)
+    sigmaQ0 = ((1 + k) ** 2 * sigma2A[2] + Ql ** 2 * sigmaK ** 2) ** 0.5
     return sigmaQ0, sigmaQl
 
 
@@ -96,13 +110,7 @@ def apply(filename):
     freq, re, im = open_file(filename)
     data = prepare_data(freq, re, im)
     a, c, d = solution(data)
-    for i in range(2, 10):
-        data = recalculation_of_data(data, a, c, d)
-        a, c, d = solution(data)
-        Ql, diam, k, Q = q_factor(a)
-        sigma2A = recalculation_of_data(data, a, c, d, error=True)
-        sigmaQ0, sigmaQl = random_deviation(a, sigma2A, diam, k, Ql)
-        print(f"Q = {Q} +- {sigmaQ0}, if i == {i}")
+    recalculating(data, a, c, d, 10, printing=True)
 
 
 def fl_fitting(freq, re, im):
@@ -110,42 +118,35 @@ def fl_fitting(freq, re, im):
 
     data, fl = prepare_data(freq, re, im)
     a, c, d = solution(data)
-
+    Ql, Q, sigmaQ0, sigmaQl = None, None, None, None
     # Repeated curve fitting
     # 1.189 of Qfactor Matlab 
     # fl2 = 0
     # g_d=0
     # g_c=0
     for x in range(0, 3):
-        g_c = (np.conj(a[2])*a[1]-a[0])/(np.conj(a[2])-a[2])
-        g_d = a[0]/a[2]
-        g_2 = 2*g_c-g_d
-        dt = (a[1]-g_2)/(g_2*a[2]-a[0])
-        fl2 = fl*(1 + np.real(dt)/2)
+        g_c = (np.conj(a[2]) * a[1] - a[0]) / (np.conj(a[2]) - a[2])
+        g_d = a[0] / a[2]
+        g_2 = 2 * g_c - g_d
+        dt = (a[1] - g_2) / (g_2 * a[2] - a[0])
+        fl2 = fl * (1 + np.real(dt) / 2)
         data, fl = prepare_data(freq, re, im, fl2)
         a, c, d = solution(data)
-
-    for i in range(2, 20):
-        data = recalculation_of_data(data, a, c, d)
-        a, c, d = solution(data)
-
-        Ql, diam, k, Q = q_factor(a)
-        sigma2A = recalculation_of_data(data, a, c, d, error=True)
-        sigmaQ0, sigmaQl = random_deviation(a, sigma2A, diam, k, Ql)
+    recalculating(data, a, c, d, 20)
 
     # taking into account coupling losses on page 69 of Qfactor Matlab
     # to get results similar to example program 
-    if False:
-        phi1=np.arctan(np.double(g_d.imag/g_d.real)) # 1.239
-        phi2=np.arctan(np.double((g_c.imag-g_d.imag)/(g_c.real-g_d.real)))
-        phi=-phi1+phi2
-        d_s=(1-np.abs(g_d)**2)/(1-np.abs(g_d)*np.cos(phi))
-        diam = abs(a[1] - a[0] / a[2])
-        qk=1/(d_s/diam-1)
-
-        sigma2A = recalculation_of_data(data, a, c, d, error=True)
-        sigmaQ0 = random_deviation(a, sigma2A, diam, k, Ql)
-        Q = Ql * (1 + qk)  # Q-factor = result
-        print(f"Q0 = {Q} +- {sigmaQ0}")
-    
-    return Q,sigmaQ0, Ql, sigmaQl,a
+    # if False:
+    #     phi1=np.arctan(np.double(g_d.imag/g_d.real)) # 1.239
+    #     phi2=np.arctan(np.double((g_c.imag-g_d.imag)/(g_c.real-g_d.real)))
+    #     phi=-phi1+phi2
+    #     d_s=(1-np.abs(g_d)**2)/(1-np.abs(g_d)*np.cos(phi))
+    #     diam = abs(a[1] - a[0] / a[2])
+    #     qk=1/(d_s/diam-1)
+    #
+    #     sigma2A = recalculation_of_data(data, a, c, d, error=True)
+    #     sigmaQ0 = random_deviation(a, sigma2A, diam, k, Ql)
+    #     Q = Ql * (1 + qk)  # Q-factor = result
+    #     print(f"Q0 = {Q} +- {sigmaQ0}")
+
+    return Q, sigmaQ0, Ql, sigmaQl, a

+ 19 - 23
source/frontend/front.py

@@ -1,4 +1,7 @@
 import math
+import streamlit as st
+import matplotlib.pyplot as plt
+import numpy as np
 
 XLIM = [-1.1, 1.1]
 YLIM = [-1.1, 1.1]
@@ -13,15 +16,9 @@ def round_up(x, n=7):
 
 def circle(ax, x, y, radius, color='#1946BA'):
     from matplotlib.patches import Ellipse
-    circle = Ellipse((x, y), radius * 2, radius * 2, clip_on=False,
-                     zorder=2, linewidth=2, edgecolor=color, facecolor=(0, 0, 0, .0125))
-    ax.add_artist(circle)
-
-
-import streamlit as st
-import matplotlib.pyplot as plt
-import numpy as np
-import math
+    drawn_circle = Ellipse((x, y), radius * 2, radius * 2, clip_on=False,
+                           zorder=2, linewidth=2, edgecolor=color, facecolor=(0, 0, 0, .0125))
+    ax.add_artist(drawn_circle)
 
 
 def plot_data(r, i, g):
@@ -40,7 +37,7 @@ def plot_data(r, i, g):
     plt.xlabel(r'$Re(\Gamma)$', color='gray', fontsize=16, fontname="Cambria")
     plt.ylabel('$Im(\Gamma)$', color='gray', fontsize=16, fontname="Cambria")
     plt.title('Smith chart', fontsize=24, fontname="Cambria")
-    # cirlce approximation
+    # circle approximation
     radius = abs(g[1] - g[0] / g[2]) / 2
     x = ((g[1] + g[0] / g[2]) / 2).real
     y = ((g[1] + g[0] / g[2]) / 2).imag
@@ -59,8 +56,8 @@ def plot_data(r, i, g):
 def plot_ref_from_f(r, i, f):
     fig = plt.figure(figsize=(10, 10))
     abs_S = list(math.sqrt(r[n] ** 2 + i[n] ** 2) for n in range(len(r)))
-    xlim = [min(f)-abs(max(f)-min(f))*0.1, max(f)+abs(max(f)-min(f))*0.1]
-    ylim = [min(abs_S)-abs(max(abs_S)-min(abs_S))*0.5, max(abs_S)+abs(max(abs_S)-min(abs_S))*0.5]
+    xlim = [min(f) - abs(max(f) - min(f)) * 0.1, max(f) + abs(max(f) - min(f)) * 0.1]
+    ylim = [min(abs_S) - abs(max(abs_S) - min(abs_S)) * 0.5, max(abs_S) + abs(max(abs_S) - min(abs_S)) * 0.5]
     ax = fig.add_subplot()
     ax.set_xlim(xlim)
     ax.set_ylim(ylim)
@@ -81,11 +78,12 @@ def run(calc_function):
 
     col1, col2 = st.columns(2)
 
-    select_data_format = col1.selectbox('Choose data format from a list',['Frequency, Re(S11), Im(S11)','Frequency, Re(Zin), Im(Zin)'])
+    select_data_format = col1.selectbox('Choose data format from a list',
+                                        ['Frequency, Re(S11), Im(S11)', 'Frequency, Re(Zin), Im(Zin)'])
 
-    select_separator = col2.selectbox('Choose separator',['" "' ,'","','";"'])
+    select_separator = col2.selectbox('Choose separator', ['" "', '","', '";"'])
     select_coupling_losses = st.checkbox('Apply corrections for coupling losses (lossy coupling)')
-    
+
     def is_float(element) -> bool:
         try:
             float(element)
@@ -103,19 +101,18 @@ def run(calc_function):
         if select_data_format == 'Frequency, Re(S11), Im(S11)':
             for x in range(len(data)):
                 # print(select_separator)
-                select_separator=select_separator.replace('\"','')
-                if select_separator==" ":
+                select_separator = select_separator.replace('\"', '')
+                if select_separator == " ":
                     tru = data[x].split()
                 else:
-                    data[x]=data[x].replace(select_separator,' ')
+                    data[x] = data[x].replace(select_separator, ' ')
                     tru = data[x].split()
 
-
-                if len(tru)!=3:
+                if len(tru) != 3:
                     return f, r, i, 'Bad line in your file. №:' + str(x)
                 a, b, c = (y for y in tru)
                 if not ((is_float(a)) or (is_float(b)) or (is_float(c))):
-                    return f, r, i, 'Bad data. Your data isnt numerical type. Number of bad line:' + str(x)
+                    return f, r, i, 'Bad data. Your data isn\'t numerical type. Number of bad line:' + str(x)
                 f.append(float(a))  # frequency
                 r.append(float(b))  # Re of S11
                 i.append(float(c))  # Im of S11
@@ -123,7 +120,6 @@ def run(calc_function):
             return f, r, i, 'Bad data format'
         return f, r, i, 'very nice'
 
-
     validator_status = 'nice'
     # calculate
     circle_params = []
@@ -145,4 +141,4 @@ def run(calc_function):
         f, r, i, validator_status = unpack_data(data)
         if validator_status == 'very nice':
             plot_data(r, i, circle_params)
-            plot_ref_from_f(r, i, f)        
+            plot_ref_from_f(r, i, f)