nmie.cc 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895
  1. //**********************************************************************************//
  2. // Copyright (C) 2009-2015 Ovidio Pena <ovidio@bytesfall.com> //
  3. // //
  4. // This file is part of scattnlay //
  5. // //
  6. // This program is free software: you can redistribute it and/or modify //
  7. // it under the terms of the GNU General Public License as published by //
  8. // the Free Software Foundation, either version 3 of the License, or //
  9. // (at your option) any later version. //
  10. // //
  11. // This program is distributed in the hope that it will be useful, //
  12. // but WITHOUT ANY WARRANTY; without even the implied warranty of //
  13. // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
  14. // GNU General Public License for more details. //
  15. // //
  16. // The only additional remark is that we expect that all publications //
  17. // describing work using this software, or all commercial products //
  18. // using it, cite the following reference: //
  19. // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
  20. // a multilayered sphere," Computer Physics Communications, //
  21. // vol. 180, Nov. 2009, pp. 2348-2354. //
  22. // //
  23. // You should have received a copy of the GNU General Public License //
  24. // along with this program. If not, see <http://www.gnu.org/licenses/>. //
  25. //**********************************************************************************//
  26. //**********************************************************************************//
  27. // This library implements the algorithm for a multilayered sphere described by: //
  28. // [1] W. Yang, "Improved recursive algorithm for light scattering by a //
  29. // multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720. //
  30. // //
  31. // You can find the description of all the used equations in: //
  32. // [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
  33. // a multilayered sphere," Computer Physics Communications, //
  34. // vol. 180, Nov. 2009, pp. 2348-2354. //
  35. // //
  36. // Hereinafter all equations numbers refer to [2] //
  37. //**********************************************************************************//
  38. #include <math.h>
  39. #include <stdlib.h>
  40. #include <stdio.h>
  41. #include "nmie.h"
  42. #define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
  43. // Calculate Nstop - equation (17)
  44. int Nstop(double xL) {
  45. int result;
  46. if (xL <= 8) {
  47. result = round(xL + 4*pow(xL, 1/3) + 1);
  48. } else if (xL <= 4200) {
  49. result = round(xL + 4.05*pow(xL, 1/3) + 2);
  50. } else {
  51. result = round(xL + 4*pow(xL, 1/3) + 2);
  52. }
  53. return result;
  54. }
  55. //**********************************************************************************//
  56. int Nmax(int L, int fl, int pl,
  57. std::vector<double> x,
  58. std::vector<std::complex<double> > m) {
  59. int i, result, ri, riM1;
  60. result = Nstop(x[L - 1]);
  61. for (i = fl; i < L; i++) {
  62. if (i > pl) {
  63. ri = round(std::abs(x[i]*m[i]));
  64. } else {
  65. ri = 0;
  66. }
  67. if (result < ri) {
  68. result = ri;
  69. }
  70. if ((i > fl) && ((i - 1) > pl)) {
  71. riM1 = round(std::abs(x[i - 1]* m[i]));
  72. } else {
  73. riM1 = 0;
  74. }
  75. if (result < riM1) {
  76. result = riM1;
  77. }
  78. }
  79. return result + 15;
  80. }
  81. //**********************************************************************************//
  82. <<<<<<< HEAD
  83. // This function calculates the spherical Bessel functions (jn and yn) for a given //
  84. // real value r. See pag. 87 B&H. //
  85. // //
  86. // Input parameters: //
  87. // r: Real argument to evaluate jn and yn //
  88. // n_max: Maximum number of terms to calculate jn and yn //
  89. // //
  90. // Output parameters: //
  91. // jn, yn: Spherical Bessel functions (double) //
  92. //**********************************************************************************//
  93. void sphericalBessel(double r, int n_max, std::vector<double> &j, std::vector<double> &y) {
  94. int n;
  95. if (n_max >= 1) {
  96. j[0] = sin(r)/r;
  97. y[0] = -cos(r)/r;
  98. }
  99. if (n_max >= 2) {
  100. j[1] = sin(r)/r/r - cos(r)/r;
  101. y[1] = -cos(r)/r/r - sin(r)/r;
  102. }
  103. for (n = 2; n < n_max; n++) {
  104. j[n] = double(n + n + 1)*j[n - 1]/r - j[n - 2];
  105. y[n] = double(n + n + 1)*y[n - 1]/r - h[n - 2];
  106. =======
  107. // This function calculates the spherical Bessel functions (jn and hn) for a given //
  108. // value of z. //
  109. // //
  110. // Input parameters: //
  111. // z: Real argument to evaluate jn and hn //
  112. // n_max: Maximum number of terms to calculate jn and hn //
  113. // //
  114. // Output parameters: //
  115. // jn, hn: Spherical Bessel functions (complex) //
  116. //**********************************************************************************//
  117. void sphericalBessel(std::complex<double> r, int n_max, std::vector<std::complex<double> > &j, std::vector<std::complex<double> > &h) {
  118. int n;
  119. j[0] = sin(r)/r;
  120. j[1] = sin(r)/r/r - cos(r)/r;
  121. h[0] = -cos(r)/r;
  122. h[1] = -cos(r)/r/r - sin(r)/r;
  123. for (n = 2; n < n_max; n++) {
  124. j[n] = double(n + n + 1)*j[n - 1]/r - j[n - 2];
  125. h[n] = double(n + n + 1)*h[n - 1]/r - h[n - 2];
  126. >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
  127. }
  128. }
  129. //**********************************************************************************//
  130. <<<<<<< HEAD
  131. // This function calculates the spherical Hankel functions (h1n and h2n) for a //
  132. // given real value r. See eqs. (4.13) and (4.14), pag. 87 B&H. //
  133. // //
  134. // Input parameters: //
  135. // r: Real argument to evaluate h1n and h2n //
  136. // n_max: Maximum number of terms to calculate h1n and h2n //
  137. // //
  138. // Output parameters: //
  139. // h1n, h2n: Spherical Hankel functions (complex) //
  140. //**********************************************************************************//
  141. void sphericalHankel(double r, int n_max, std::vector<std::complex<double> > &h1, std::vector<std::complex<double> > &h2) {
  142. =======
  143. // This function calculates the spherical Bessel functions (jn and hn) for a given //
  144. // value of r. //
  145. // //
  146. // Input parameters: //
  147. // r: Real argument to evaluate jn and hn //
  148. // n_max: Maximum number of terms to calculate jn and hn //
  149. // //
  150. // Output parameters: //
  151. // jn, hn: Spherical Bessel functions (double) //
  152. //**********************************************************************************//
  153. void sphericalBessel(double r, int n_max, std::vector<double> &j, std::vector<double> &h) {
  154. >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
  155. int n;
  156. std::complex<double> j, y;
  157. j.resize(n_max);
  158. h.resize(n_max);
  159. <<<<<<< HEAD
  160. sphericalBessel(r, n_max, j, y);
  161. for (n = 0; n < n_max; n++) {
  162. h1[n] = std::complex<double> (j[n], y[n]);
  163. h2[n] = std::complex<double> (j[n], -y[n]);
  164. =======
  165. j[0] = sin(r)/r;
  166. j[1] = sin(r)/r/r - cos(r)/r;
  167. h[0] = -cos(r)/r;
  168. h[1] = -cos(r)/r/r - sin(r)/r;
  169. for (n = 2; n < n_max; n++) {
  170. j[n] = double(n + n + 1)*j[n - 1]/r - j[n - 2];
  171. h[n] = double(n + n + 1)*h[n - 1]/r - h[n - 2];
  172. >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
  173. }
  174. }
  175. // Calculate an - equation (5)
  176. std::complex<double> calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
  177. std::complex<double> PsiXL, std::complex<double> ZetaXL,
  178. std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
  179. std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
  180. std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
  181. return Num/Denom;
  182. }
  183. // Calculate bn - equation (6)
  184. std::complex<double> calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
  185. std::complex<double> PsiXL, std::complex<double> ZetaXL,
  186. std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
  187. std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
  188. std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
  189. return Num/Denom;
  190. }
  191. // Calculates S1 - equation (25a)
  192. std::complex<double> calc_S1(int n, std::complex<double> an, std::complex<double> bn,
  193. double Pi, double Tau) {
  194. return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
  195. }
  196. // Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
  197. std::complex<double> calc_S2(int n, std::complex<double> an, std::complex<double> bn,
  198. double Pi, double Tau) {
  199. return calc_S1(n, an, bn, Tau, Pi);
  200. }
  201. //**********************************************************************************//
  202. // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a //
  203. // real argument (x). //
  204. // Equations (20a) - (21b) //
  205. // //
  206. // Input parameters: //
  207. // x: Real argument to evaluate Psi and Zeta //
  208. // n_max: Maximum number of terms to calculate Psi and Zeta //
  209. // //
  210. // Output parameters: //
  211. // Psi, Zeta: Riccati-Bessel functions //
  212. //**********************************************************************************//
  213. void calcPsiZeta(double x, int n_max,
  214. std::vector<std::complex<double> > D1,
  215. std::vector<std::complex<double> > D3,
  216. std::vector<std::complex<double> > &Psi,
  217. std::vector<std::complex<double> > &Zeta) {
  218. int n;
  219. //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
  220. Psi[0] = std::complex<double>(sin(x), 0);
  221. Zeta[0] = std::complex<double>(sin(x), -cos(x));
  222. for (n = 1; n <= n_max; n++) {
  223. Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
  224. Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
  225. }
  226. }
  227. //**********************************************************************************//
  228. // This function calculates the logarithmic derivatives of the Riccati-Bessel //
  229. // functions (D1 and D3) for a complex argument (z). //
  230. // Equations (16a), (16b) and (18a) - (18d) //
  231. // //
  232. // Input parameters: //
  233. // z: Complex argument to evaluate D1 and D3 //
  234. // n_max: Maximum number of terms to calculate D1 and D3 //
  235. // //
  236. // Output parameters: //
  237. // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
  238. //**********************************************************************************//
  239. void calcD1D3(std::complex<double> z, int n_max,
  240. std::vector<std::complex<double> > &D1,
  241. std::vector<std::complex<double> > &D3) {
  242. int n;
  243. std::vector<std::complex<double> > PsiZeta;
  244. PsiZeta.resize(n_max + 1);
  245. // Downward recurrence for D1 - equations (16a) and (16b)
  246. D1[n_max] = std::complex<double>(0.0, 0.0);
  247. for (n = n_max; n > 0; n--) {
  248. D1[n - 1] = double(n)/z - 1.0/(D1[n] + double(n)/z);
  249. }
  250. // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
  251. PsiZeta[0] = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag()));
  252. D3[0] = std::complex<double>(0.0, 1.0);
  253. for (n = 1; n <= n_max; n++) {
  254. PsiZeta[n] = PsiZeta[n - 1]*(double(n)/z - D1[n - 1])*(double(n)/z- D3[n - 1]);
  255. D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta[n];
  256. }
  257. }
  258. //**********************************************************************************//
  259. // This function calculates Pi and Tau for all values of Theta. //
  260. // Equations (26a) - (26c) //
  261. // //
  262. // Input parameters: //
  263. // n_max: Maximum number of terms to calculate Pi and Tau //
  264. // nTheta: Number of scattering angles //
  265. // Theta: Array containing all the scattering angles where the scattering //
  266. // amplitudes will be calculated //
  267. // //
  268. // Output parameters: //
  269. // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
  270. //**********************************************************************************//
  271. void calcPiTau(int n_max, int nTheta, std::vector<double> Theta,
  272. std::vector< std::vector<double> > &Pi,
  273. std::vector< std::vector<double> > &Tau) {
  274. int n, t;
  275. for (n = 0; n < n_max; n++) {
  276. //****************************************************//
  277. // Equations (26a) - (26c) //
  278. //****************************************************//
  279. for (t = 0; t < nTheta; t++) {
  280. if (n == 0) {
  281. // Initialize Pi and Tau
  282. Pi[n][t] = 1.0;
  283. Tau[n][t] = (n + 1)*cos(Theta[t]);
  284. } else {
  285. // Calculate the actual values
  286. Pi[n][t] = ((n == 1) ? ((n + n + 1)*cos(Theta[t])*Pi[n - 1][t]/n)
  287. : (((n + n + 1)*cos(Theta[t])*Pi[n - 1][t] - (n + 1)*Pi[n - 2][t])/n));
  288. Tau[n][t] = (n + 1)*cos(Theta[t])*Pi[n][t] - (n + 2)*Pi[n - 1][t];
  289. }
  290. }
  291. }
  292. }
  293. //**********************************************************************************//
  294. // This function calculates the scattering coefficients required to calculate //
  295. // both the near- and far-field parameters. //
  296. // //
  297. // Input parameters: //
  298. // L: Number of layers //
  299. // pl: Index of PEC layer. If there is none just send -1 //
  300. // x: Array containing the size parameters of the layers [0..L-1] //
  301. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  302. // n_max: Maximum number of multipolar expansion terms to be used for the //
  303. // calculations. Only used if you know what you are doing, otherwise set //
  304. // this parameter to -1 and the function will calculate it. //
  305. // //
  306. // Output parameters: //
  307. // an, bn: Complex scattering amplitudes //
  308. // //
  309. // Return value: //
  310. // Number of multipolar expansion terms used for the calculations //
  311. //**********************************************************************************//
  312. int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int n_max,
  313. std::vector<std::complex<double> > &an, std::vector<std::complex<double> > &bn) {
  314. //************************************************************************//
  315. // Calculate the index of the first layer. It can be either 0 (default) //
  316. // or the index of the outermost PEC layer. In the latter case all layers //
  317. // below the PEC are discarded. //
  318. //************************************************************************//
  319. int fl = (pl > 0) ? pl : 0;
  320. if (n_max <= 0) {
  321. n_max = Nmax(L, fl, pl, x, m);
  322. }
  323. std::complex<double> z1, z2;
  324. std::complex<double> Num, Denom;
  325. std::complex<double> G1, G2;
  326. std::complex<double> Temp;
  327. int n, l;
  328. //**************************************************************************//
  329. // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
  330. // means that index = layer number - 1 or index = n - 1. The only exception //
  331. // are the arrays for representing D1, D3 and Q because they need a value //
  332. // for the index 0 (zero), hence it is important to consider this shift //
  333. // between different arrays. The change was done to optimize memory usage. //
  334. //**************************************************************************//
  335. // Allocate memory to the arrays
  336. std::vector<std::vector<std::complex<double> > > D1_mlxl, D1_mlxlM1;
  337. D1_mlxl.resize(L);
  338. D1_mlxlM1.resize(L);
  339. std::vector<std::vector<std::complex<double> > > D3_mlxl, D3_mlxlM1;
  340. D3_mlxl.resize(L);
  341. D3_mlxlM1.resize(L);
  342. std::vector<std::vector<std::complex<double> > > Q;
  343. Q.resize(L);
  344. std::vector<std::vector<std::complex<double> > > Ha, Hb;
  345. Ha.resize(L);
  346. Hb.resize(L);
  347. for (l = 0; l < L; l++) {
  348. D1_mlxl[l].resize(n_max + 1);
  349. D1_mlxlM1[l].resize(n_max + 1);
  350. D3_mlxl[l].resize(n_max + 1);
  351. D3_mlxlM1[l].resize(n_max + 1);
  352. Q[l].resize(n_max + 1);
  353. Ha[l].resize(n_max);
  354. Hb[l].resize(n_max);
  355. }
  356. an.resize(n_max);
  357. bn.resize(n_max);
  358. std::vector<std::complex<double> > D1XL, D3XL;
  359. D1XL.resize(n_max + 1);
  360. D3XL.resize(n_max + 1);
  361. std::vector<std::complex<double> > PsiXL, ZetaXL;
  362. PsiXL.resize(n_max + 1);
  363. ZetaXL.resize(n_max + 1);
  364. //*************************************************//
  365. // Calculate D1 and D3 for z1 in the first layer //
  366. //*************************************************//
  367. if (fl == pl) { // PEC layer
  368. for (n = 0; n <= n_max; n++) {
  369. D1_mlxl[fl][n] = std::complex<double>(0.0, -1.0);
  370. D3_mlxl[fl][n] = std::complex<double>(0.0, 1.0);
  371. }
  372. } else { // Regular layer
  373. z1 = x[fl]* m[fl];
  374. // Calculate D1 and D3
  375. calcD1D3(z1, n_max, D1_mlxl[fl], D3_mlxl[fl]);
  376. }
  377. //******************************************************************//
  378. // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
  379. //******************************************************************//
  380. for (n = 0; n < n_max; n++) {
  381. Ha[fl][n] = D1_mlxl[fl][n + 1];
  382. Hb[fl][n] = D1_mlxl[fl][n + 1];
  383. }
  384. //*****************************************************//
  385. // Iteration from the second layer to the last one (L) //
  386. //*****************************************************//
  387. for (l = fl + 1; l < L; l++) {
  388. //************************************************************//
  389. //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L //
  390. //************************************************************//
  391. z1 = x[l]*m[l];
  392. z2 = x[l - 1]*m[l];
  393. //Calculate D1 and D3 for z1
  394. calcD1D3(z1, n_max, D1_mlxl[l], D3_mlxl[l]);
  395. //Calculate D1 and D3 for z2
  396. calcD1D3(z2, n_max, D1_mlxlM1[l], D3_mlxlM1[l]);
  397. //*********************************************//
  398. //Calculate Q, Ha and Hb in the layers fl+1..L //
  399. //*********************************************//
  400. // Upward recurrence for Q - equations (19a) and (19b)
  401. Num = exp(-2.0*(z1.imag() - z2.imag()))*std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
  402. Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
  403. Q[l][0] = Num/Denom;
  404. for (n = 1; n <= n_max; n++) {
  405. Num = (z1*D1_mlxl[l][n] + double(n))*(double(n) - z1*D3_mlxl[l][n - 1]);
  406. Denom = (z2*D1_mlxlM1[l][n] + double(n))*(double(n) - z2*D3_mlxlM1[l][n - 1]);
  407. Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1])*Num)/Denom;
  408. }
  409. // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
  410. for (n = 1; n <= n_max; n++) {
  411. //Ha
  412. if ((l - 1) == pl) { // The layer below the current one is a PEC layer
  413. G1 = -D1_mlxlM1[l][n];
  414. G2 = -D3_mlxlM1[l][n];
  415. } else {
  416. G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[l][n]);
  417. G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[l][n]);
  418. }
  419. Temp = Q[l][n]*G1;
  420. Num = (G2*D1_mlxl[l][n]) - (Temp*D3_mlxl[l][n]);
  421. Denom = G2 - Temp;
  422. Ha[l][n - 1] = Num/Denom;
  423. //Hb
  424. if ((l - 1) == pl) { // The layer below the current one is a PEC layer
  425. G1 = Hb[l - 1][n - 1];
  426. G2 = Hb[l - 1][n - 1];
  427. } else {
  428. G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[l][n]);
  429. G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[l][n]);
  430. }
  431. Temp = Q[l][n]*G1;
  432. Num = (G2*D1_mlxl[l][n]) - (Temp* D3_mlxl[l][n]);
  433. Denom = (G2- Temp);
  434. Hb[l][n - 1] = (Num/ Denom);
  435. }
  436. }
  437. //**************************************//
  438. //Calculate D1, D3, Psi and Zeta for XL //
  439. //**************************************//
  440. // Calculate D1XL and D3XL
  441. calcD1D3(x[L - 1], n_max, D1XL, D3XL);
  442. // Calculate PsiXL and ZetaXL
  443. calcPsiZeta(x[L - 1], n_max, D1XL, D3XL, PsiXL, ZetaXL);
  444. //*********************************************************************//
  445. // Finally, we calculate the scattering coefficients (an and bn) and //
  446. // the angular functions (Pi and Tau). Note that for these arrays the //
  447. // first layer is 0 (zero), in future versions all arrays will follow //
  448. // this convention to save memory. (13 Nov, 2014) //
  449. //*********************************************************************//
  450. for (n = 0; n < n_max; n++) {
  451. //********************************************************************//
  452. //Expressions for calculating an and bn coefficients are not valid if //
  453. //there is only one PEC layer (ie, for a simple PEC sphere). //
  454. //********************************************************************//
  455. if (pl < (L - 1)) {
  456. an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
  457. bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
  458. } else {
  459. an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
  460. bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
  461. }
  462. }
  463. return n_max;
  464. }
  465. //**********************************************************************************//
  466. // This function calculates the actual scattering parameters and amplitudes //
  467. // //
  468. // Input parameters: //
  469. // L: Number of layers //
  470. // pl: Index of PEC layer. If there is none just send -1 //
  471. // x: Array containing the size parameters of the layers [0..L-1] //
  472. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  473. // nTheta: Number of scattering angles //
  474. // Theta: Array containing all the scattering angles where the scattering //
  475. // amplitudes will be calculated //
  476. // n_max: Maximum number of multipolar expansion terms to be used for the //
  477. // calculations. Only used if you know what you are doing, otherwise set //
  478. // this parameter to -1 and the function will calculate it //
  479. // //
  480. // Output parameters: //
  481. // Qext: Efficiency factor for extinction //
  482. // Qsca: Efficiency factor for scattering //
  483. // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
  484. // Qbk: Efficiency factor for backscattering //
  485. // Qpr: Efficiency factor for the radiation pressure //
  486. // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
  487. // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
  488. // S1, S2: Complex scattering amplitudes //
  489. // //
  490. // Return value: //
  491. // Number of multipolar expansion terms used for the calculations //
  492. //**********************************************************************************//
  493. int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
  494. int nTheta, std::vector<double> Theta, int n_max,
  495. double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
  496. std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
  497. int i, n, t;
  498. std::vector<std::complex<double> > an, bn;
  499. std::complex<double> Qbktmp;
  500. // Calculate scattering coefficients
  501. n_max = ScattCoeffs(L, pl, x, m, n_max, an, bn);
  502. std::vector< std::vector<double> > Pi;
  503. Pi.resize(n_max);
  504. std::vector< std::vector<double> > Tau;
  505. Tau.resize(n_max);
  506. for (n = 0; n < n_max; n++) {
  507. Pi[n].resize(nTheta);
  508. Tau[n].resize(nTheta);
  509. }
  510. calcPiTau(n_max, nTheta, Theta, Pi, Tau);
  511. double x2 = x[L - 1]*x[L - 1];
  512. // Initialize the scattering parameters
  513. *Qext = 0;
  514. *Qsca = 0;
  515. *Qabs = 0;
  516. *Qbk = 0;
  517. Qbktmp = std::complex<double>(0.0, 0.0);
  518. *Qpr = 0;
  519. *g = 0;
  520. *Albedo = 0;
  521. // Initialize the scattering amplitudes
  522. for (t = 0; t < nTheta; t++) {
  523. S1[t] = std::complex<double>(0.0, 0.0);
  524. S2[t] = std::complex<double>(0.0, 0.0);
  525. }
  526. // By using downward recurrence we avoid loss of precision due to float rounding errors
  527. // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
  528. // http://en.wikipedia.org/wiki/Loss_of_significance
  529. for (i = n_max - 2; i >= 0; i--) {
  530. n = i + 1;
  531. // Equation (27)
  532. *Qext += (n + n + 1)*(an[i].real() + bn[i].real());
  533. // Equation (28)
  534. *Qsca += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag() + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag());
  535. // Equation (29)
  536. // We must check carefully this equation. If we remove the typecast to double then the result changes. Which is the correct one??? Ovidio (2014/12/10)
  537. *Qpr += ((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real());
  538. // Equation (33)
  539. Qbktmp = Qbktmp + (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]);
  540. //****************************************************//
  541. // Calculate the scattering amplitudes (S1 and S2) //
  542. // Equations (25a) - (25b) //
  543. //****************************************************//
  544. for (t = 0; t < nTheta; t++) {
  545. S1[t] += calc_S1(n, an[i], bn[i], Pi[i][t], Tau[i][t]);
  546. S2[t] += calc_S2(n, an[i], bn[i], Pi[i][t], Tau[i][t]);
  547. }
  548. }
  549. *Qext = 2*(*Qext)/x2; // Equation (27)
  550. *Qsca = 2*(*Qsca)/x2; // Equation (28)
  551. *Qpr = *Qext - 4*(*Qpr)/x2; // Equation (29)
  552. *Qabs = *Qext - *Qsca; // Equation (30)
  553. *Albedo = *Qsca / *Qext; // Equation (31)
  554. *g = (*Qext - *Qpr) / *Qsca; // Equation (32)
  555. *Qbk = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
  556. return n_max;
  557. }
  558. //**********************************************************************************//
  559. // This function is just a wrapper to call the full 'nMie' function with fewer //
  560. // parameters, it is here mainly for compatibility with older versions of the //
  561. // program. Also, you can use it if you neither have a PEC layer nor want to define //
  562. // any limit for the maximum number of terms. //
  563. // //
  564. // Input parameters: //
  565. // L: Number of layers //
  566. // x: Array containing the size parameters of the layers [0..L-1] //
  567. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  568. // nTheta: Number of scattering angles //
  569. // Theta: Array containing all the scattering angles where the scattering //
  570. // amplitudes will be calculated //
  571. // //
  572. // Output parameters: //
  573. // Qext: Efficiency factor for extinction //
  574. // Qsca: Efficiency factor for scattering //
  575. // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
  576. // Qbk: Efficiency factor for backscattering //
  577. // Qpr: Efficiency factor for the radiation pressure //
  578. // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
  579. // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
  580. // S1, S2: Complex scattering amplitudes //
  581. // //
  582. // Return value: //
  583. // Number of multipolar expansion terms used for the calculations //
  584. //**********************************************************************************//
  585. int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
  586. int nTheta, std::vector<double> Theta,
  587. double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
  588. std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
  589. return nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
  590. }
  591. //**********************************************************************************//
  592. // This function is just a wrapper to call the full 'nMie' function with fewer //
  593. // parameters, it is useful if you want to include a PEC layer but not a limit //
  594. // for the maximum number of terms. //
  595. // //
  596. // Input parameters: //
  597. // L: Number of layers //
  598. // pl: Index of PEC layer. If there is none just send -1 //
  599. // x: Array containing the size parameters of the layers [0..L-1] //
  600. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  601. // nTheta: Number of scattering angles //
  602. // Theta: Array containing all the scattering angles where the scattering //
  603. // amplitudes will be calculated //
  604. // //
  605. // Output parameters: //
  606. // Qext: Efficiency factor for extinction //
  607. // Qsca: Efficiency factor for scattering //
  608. // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
  609. // Qbk: Efficiency factor for backscattering //
  610. // Qpr: Efficiency factor for the radiation pressure //
  611. // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
  612. // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
  613. // S1, S2: Complex scattering amplitudes //
  614. // //
  615. // Return value: //
  616. // Number of multipolar expansion terms used for the calculations //
  617. //**********************************************************************************//
  618. int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
  619. int nTheta, std::vector<double> Theta,
  620. double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
  621. std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
  622. return nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
  623. }
  624. //**********************************************************************************//
  625. // This function is just a wrapper to call the full 'nMie' function with fewer //
  626. // parameters, it is useful if you want to include a limit for the maximum number //
  627. // of terms but not a PEC layer. //
  628. // //
  629. // Input parameters: //
  630. // L: Number of layers //
  631. // x: Array containing the size parameters of the layers [0..L-1] //
  632. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  633. // nTheta: Number of scattering angles //
  634. // Theta: Array containing all the scattering angles where the scattering //
  635. // amplitudes will be calculated //
  636. // n_max: Maximum number of multipolar expansion terms to be used for the //
  637. // calculations. Only used if you know what you are doing, otherwise set //
  638. // this parameter to -1 and the function will calculate it //
  639. // //
  640. // Output parameters: //
  641. // Qext: Efficiency factor for extinction //
  642. // Qsca: Efficiency factor for scattering //
  643. // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
  644. // Qbk: Efficiency factor for backscattering //
  645. // Qpr: Efficiency factor for the radiation pressure //
  646. // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
  647. // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
  648. // S1, S2: Complex scattering amplitudes //
  649. // //
  650. // Return value: //
  651. // Number of multipolar expansion terms used for the calculations //
  652. //**********************************************************************************//
  653. int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
  654. int nTheta, std::vector<double> Theta, int n_max,
  655. double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
  656. std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
  657. return nMie(L, -1, x, m, nTheta, Theta, n_max, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
  658. }
  659. //**********************************************************************************//
  660. // This function calculates complex electric and magnetic field in the surroundings //
  661. // and inside (TODO) the particle. //
  662. // //
  663. // Input parameters: //
  664. // L: Number of layers //
  665. // pl: Index of PEC layer. If there is none just send 0 (zero) //
  666. // x: Array containing the size parameters of the layers [0..L-1] //
  667. // m: Array containing the relative refractive indexes of the layers [0..L-1] //
  668. // n_max: Maximum number of multipolar expansion terms to be used for the //
  669. // calculations. Only used if you know what you are doing, otherwise set //
  670. // this parameter to 0 (zero) and the function will calculate it. //
  671. // nCoords: Number of coordinate points //
  672. // Coords: Array containing all coordinates where the complex electric and //
  673. // magnetic fields will be calculated //
  674. // //
  675. // Output parameters: //
  676. // E, H: Complex electric and magnetic field at the provided coordinates //
  677. // //
  678. // Return value: //
  679. // Number of multipolar expansion terms used for the calculations //
  680. //**********************************************************************************//
  681. int nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int n_max,
  682. int nCoords, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp,
  683. std::vector<std::complex<double> > &E, std::vector<std::complex<double> > &H) {
  684. <<<<<<< HEAD
  685. =======
  686. int i, n, c;
  687. /* double **Pi, **Tau;
  688. complex *an, *bn;
  689. double *Rho = (double *) malloc(nCoords*sizeof(double));
  690. double *Phi = (double *) malloc(nCoords*sizeof(double));
  691. double *Theta = (double *) malloc(nCoords*sizeof(double));
  692. >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
  693. int i, n, c;
  694. std::vector<std::complex<double> > an, bn;
  695. <<<<<<< HEAD
  696. // Calculate scattering coefficients
  697. =======
  698. >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
  699. n_max = ScattCoeffs(L, pl, x, m, n_max, an, bn);
  700. std::vector< std::vector<double> > Pi, Tau;
  701. Pi.resize(n_max);
  702. Tau.resize(n_max);
  703. for (n = 0; n < n_max; n++) {
  704. Pi[n].resize(nCoords);
  705. Tau[n].resize(nCoords);
  706. }
  707. std::vector<double> Rho, Phi, Theta;
  708. Rho.resize(nCoords);
  709. Phi.resize(nCoords);
  710. Theta.resize(nCoords);
  711. for (c = 0; c < nCoords; c++) {
  712. <<<<<<< HEAD
  713. // Convert to spherical coordinates
  714. Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
  715. if (Rho < 1e-3) {
  716. Rho = 1e-3;
  717. }
  718. Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
  719. Theta = acos(Xp[c]/Rho[c]);
  720. }
  721. =======
  722. E[c] = C_ZERO;
  723. H[c] = C_ZERO;
  724. }*/
  725. >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
  726. calcPiTau(n_max, nCoords, Theta, Pi, Tau);
  727. <<<<<<< HEAD
  728. std::vector<double > j, y;
  729. std::vector<std::complex<double> > h1, h2;
  730. j.resize(n_max);
  731. y.resize(n_max);
  732. h1.resize(n_max);
  733. h2.resize(n_max);
  734. for (c = 0; c < nCoords; c++) {
  735. //*******************************************************//
  736. // external scattering field = incident + scattered //
  737. // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
  738. // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
  739. //*******************************************************//
  740. // Calculate spherical Bessel and Hankel functions
  741. sphericalBessel(Rho, n_max, j, y);
  742. sphericalHankel(Rho, n_max, h1, h2);
  743. // Initialize the fields
  744. E[c] = std::complex<double>(0.0, 0.0);
  745. H[c] = std::complex<double>(0.0, 0.0);
  746. // Firstly the easiest case, we want the field outside the particle
  747. if (Rho >= x[L - 1]) {
  748. }
  749. =======
  750. // Firstly the easiest case, we want the field outside the particle
  751. // if (Rho[c] >= x[L - 1]) {
  752. // }
  753. for (i = 1; i < (n_max - 1); i++) {
  754. // n = i - 1;
  755. /* // Equation (27)
  756. *Qext = *Qext + (double)(n + n + 1)*(an[i].r + bn[i].r);
  757. // Equation (28)
  758. *Qsca = *Qsca + (double)(n + n + 1)*(an[i].r*an[i].r + an[i].i*an[i].i + bn[i].r*bn[i].r + bn[i].i*bn[i].i);
  759. // Equation (29)
  760. *Qpr = *Qpr + ((n*(n + 2)/(n + 1))*((Cadd(Cmul(an[i], std::conj(an[n])), Cmul(bn[i], std::conj(bn[n])))).r) + ((double)(n + n + 1)/(n*(n + 1)))*(Cmul(an[i], std::conj(bn[i])).r));
  761. // Equation (33)
  762. Qbktmp = Cadd(Qbktmp, RCmul((double)((n + n + 1)*(1 - 2*(n % 2))), Csub(an[i], bn[i])));
  763. */
  764. //****************************************************//
  765. // Calculate the scattering amplitudes (S1 and S2) //
  766. // Equations (25a) - (25b) //
  767. //****************************************************//
  768. /* for (t = 0; t < nTheta; t++) {
  769. S1[t] = Cadd(S1[t], calc_S1(n, an[i], bn[i], Pi[i][t], Tau[i][t]));
  770. S2[t] = Cadd(S2[t], calc_S2(n, an[i], bn[i], Pi[i][t], Tau[i][t]));
  771. }*/
  772. >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
  773. }
  774. return n_max;
  775. }