123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895 |
- //**********************************************************************************//
- // Copyright (C) 2009-2015 Ovidio Pena <ovidio@bytesfall.com> //
- // //
- // This file is part of scattnlay //
- // //
- // This program is free software: you can redistribute it and/or modify //
- // it under the terms of the GNU General Public License as published by //
- // the Free Software Foundation, either version 3 of the License, or //
- // (at your option) any later version. //
- // //
- // This program is distributed in the hope that it will be useful, //
- // but WITHOUT ANY WARRANTY; without even the implied warranty of //
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
- // GNU General Public License for more details. //
- // //
- // The only additional remark is that we expect that all publications //
- // describing work using this software, or all commercial products //
- // using it, cite the following reference: //
- // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
- // a multilayered sphere," Computer Physics Communications, //
- // vol. 180, Nov. 2009, pp. 2348-2354. //
- // //
- // You should have received a copy of the GNU General Public License //
- // along with this program. If not, see <http://www.gnu.org/licenses/>. //
- //**********************************************************************************//
- //**********************************************************************************//
- // This library implements the algorithm for a multilayered sphere described by: //
- // [1] W. Yang, "Improved recursive algorithm for light scattering by a //
- // multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720. //
- // //
- // You can find the description of all the used equations in: //
- // [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
- // a multilayered sphere," Computer Physics Communications, //
- // vol. 180, Nov. 2009, pp. 2348-2354. //
- // //
- // Hereinafter all equations numbers refer to [2] //
- //**********************************************************************************//
- #include <math.h>
- #include <stdlib.h>
- #include <stdio.h>
- #include "nmie.h"
- #define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
- // Calculate Nstop - equation (17)
- int Nstop(double xL) {
- int result;
- if (xL <= 8) {
- result = round(xL + 4*pow(xL, 1/3) + 1);
- } else if (xL <= 4200) {
- result = round(xL + 4.05*pow(xL, 1/3) + 2);
- } else {
- result = round(xL + 4*pow(xL, 1/3) + 2);
- }
- return result;
- }
- //**********************************************************************************//
- int Nmax(int L, int fl, int pl,
- std::vector<double> x,
- std::vector<std::complex<double> > m) {
- int i, result, ri, riM1;
- result = Nstop(x[L - 1]);
- for (i = fl; i < L; i++) {
- if (i > pl) {
- ri = round(std::abs(x[i]*m[i]));
- } else {
- ri = 0;
- }
- if (result < ri) {
- result = ri;
- }
- if ((i > fl) && ((i - 1) > pl)) {
- riM1 = round(std::abs(x[i - 1]* m[i]));
- } else {
- riM1 = 0;
- }
- if (result < riM1) {
- result = riM1;
- }
- }
- return result + 15;
- }
- //**********************************************************************************//
- <<<<<<< HEAD
- // This function calculates the spherical Bessel functions (jn and yn) for a given //
- // real value r. See pag. 87 B&H. //
- // //
- // Input parameters: //
- // r: Real argument to evaluate jn and yn //
- // n_max: Maximum number of terms to calculate jn and yn //
- // //
- // Output parameters: //
- // jn, yn: Spherical Bessel functions (double) //
- //**********************************************************************************//
- void sphericalBessel(double r, int n_max, std::vector<double> &j, std::vector<double> &y) {
- int n;
- if (n_max >= 1) {
- j[0] = sin(r)/r;
- y[0] = -cos(r)/r;
- }
- if (n_max >= 2) {
- j[1] = sin(r)/r/r - cos(r)/r;
- y[1] = -cos(r)/r/r - sin(r)/r;
- }
- for (n = 2; n < n_max; n++) {
- j[n] = double(n + n + 1)*j[n - 1]/r - j[n - 2];
- y[n] = double(n + n + 1)*y[n - 1]/r - h[n - 2];
- =======
- // This function calculates the spherical Bessel functions (jn and hn) for a given //
- // value of z. //
- // //
- // Input parameters: //
- // z: Real argument to evaluate jn and hn //
- // n_max: Maximum number of terms to calculate jn and hn //
- // //
- // Output parameters: //
- // jn, hn: Spherical Bessel functions (complex) //
- //**********************************************************************************//
- void sphericalBessel(std::complex<double> r, int n_max, std::vector<std::complex<double> > &j, std::vector<std::complex<double> > &h) {
- int n;
- j[0] = sin(r)/r;
- j[1] = sin(r)/r/r - cos(r)/r;
- h[0] = -cos(r)/r;
- h[1] = -cos(r)/r/r - sin(r)/r;
- for (n = 2; n < n_max; n++) {
- j[n] = double(n + n + 1)*j[n - 1]/r - j[n - 2];
- h[n] = double(n + n + 1)*h[n - 1]/r - h[n - 2];
- >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
- }
- }
- //**********************************************************************************//
- <<<<<<< HEAD
- // This function calculates the spherical Hankel functions (h1n and h2n) for a //
- // given real value r. See eqs. (4.13) and (4.14), pag. 87 B&H. //
- // //
- // Input parameters: //
- // r: Real argument to evaluate h1n and h2n //
- // n_max: Maximum number of terms to calculate h1n and h2n //
- // //
- // Output parameters: //
- // h1n, h2n: Spherical Hankel functions (complex) //
- //**********************************************************************************//
- void sphericalHankel(double r, int n_max, std::vector<std::complex<double> > &h1, std::vector<std::complex<double> > &h2) {
- =======
- // This function calculates the spherical Bessel functions (jn and hn) for a given //
- // value of r. //
- // //
- // Input parameters: //
- // r: Real argument to evaluate jn and hn //
- // n_max: Maximum number of terms to calculate jn and hn //
- // //
- // Output parameters: //
- // jn, hn: Spherical Bessel functions (double) //
- //**********************************************************************************//
- void sphericalBessel(double r, int n_max, std::vector<double> &j, std::vector<double> &h) {
- >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
- int n;
- std::complex<double> j, y;
- j.resize(n_max);
- h.resize(n_max);
- <<<<<<< HEAD
- sphericalBessel(r, n_max, j, y);
- for (n = 0; n < n_max; n++) {
- h1[n] = std::complex<double> (j[n], y[n]);
- h2[n] = std::complex<double> (j[n], -y[n]);
- =======
- j[0] = sin(r)/r;
- j[1] = sin(r)/r/r - cos(r)/r;
- h[0] = -cos(r)/r;
- h[1] = -cos(r)/r/r - sin(r)/r;
- for (n = 2; n < n_max; n++) {
- j[n] = double(n + n + 1)*j[n - 1]/r - j[n - 2];
- h[n] = double(n + n + 1)*h[n - 1]/r - h[n - 2];
- >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
- }
- }
- // Calculate an - equation (5)
- std::complex<double> calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
- std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
- std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
- return Num/Denom;
- }
- // Calculate bn - equation (6)
- std::complex<double> calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
- std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
- std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
- return Num/Denom;
- }
- // Calculates S1 - equation (25a)
- std::complex<double> calc_S1(int n, std::complex<double> an, std::complex<double> bn,
- double Pi, double Tau) {
- return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
- }
- // Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
- std::complex<double> calc_S2(int n, std::complex<double> an, std::complex<double> bn,
- double Pi, double Tau) {
- return calc_S1(n, an, bn, Tau, Pi);
- }
- //**********************************************************************************//
- // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a //
- // real argument (x). //
- // Equations (20a) - (21b) //
- // //
- // Input parameters: //
- // x: Real argument to evaluate Psi and Zeta //
- // n_max: Maximum number of terms to calculate Psi and Zeta //
- // //
- // Output parameters: //
- // Psi, Zeta: Riccati-Bessel functions //
- //**********************************************************************************//
- void calcPsiZeta(double x, int n_max,
- std::vector<std::complex<double> > D1,
- std::vector<std::complex<double> > D3,
- std::vector<std::complex<double> > &Psi,
- std::vector<std::complex<double> > &Zeta) {
- int n;
- //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
- Psi[0] = std::complex<double>(sin(x), 0);
- Zeta[0] = std::complex<double>(sin(x), -cos(x));
- for (n = 1; n <= n_max; n++) {
- Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
- Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
- }
- }
- //**********************************************************************************//
- // This function calculates the logarithmic derivatives of the Riccati-Bessel //
- // functions (D1 and D3) for a complex argument (z). //
- // Equations (16a), (16b) and (18a) - (18d) //
- // //
- // Input parameters: //
- // z: Complex argument to evaluate D1 and D3 //
- // n_max: Maximum number of terms to calculate D1 and D3 //
- // //
- // Output parameters: //
- // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
- //**********************************************************************************//
- void calcD1D3(std::complex<double> z, int n_max,
- std::vector<std::complex<double> > &D1,
- std::vector<std::complex<double> > &D3) {
- int n;
- std::vector<std::complex<double> > PsiZeta;
- PsiZeta.resize(n_max + 1);
- // Downward recurrence for D1 - equations (16a) and (16b)
- D1[n_max] = std::complex<double>(0.0, 0.0);
- for (n = n_max; n > 0; n--) {
- D1[n - 1] = double(n)/z - 1.0/(D1[n] + double(n)/z);
- }
- // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
- PsiZeta[0] = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag()));
- D3[0] = std::complex<double>(0.0, 1.0);
- for (n = 1; n <= n_max; n++) {
- PsiZeta[n] = PsiZeta[n - 1]*(double(n)/z - D1[n - 1])*(double(n)/z- D3[n - 1]);
- D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta[n];
- }
- }
- //**********************************************************************************//
- // This function calculates Pi and Tau for all values of Theta. //
- // Equations (26a) - (26c) //
- // //
- // Input parameters: //
- // n_max: Maximum number of terms to calculate Pi and Tau //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // //
- // Output parameters: //
- // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
- //**********************************************************************************//
- void calcPiTau(int n_max, int nTheta, std::vector<double> Theta,
- std::vector< std::vector<double> > &Pi,
- std::vector< std::vector<double> > &Tau) {
- int n, t;
- for (n = 0; n < n_max; n++) {
- //****************************************************//
- // Equations (26a) - (26c) //
- //****************************************************//
- for (t = 0; t < nTheta; t++) {
- if (n == 0) {
- // Initialize Pi and Tau
- Pi[n][t] = 1.0;
- Tau[n][t] = (n + 1)*cos(Theta[t]);
- } else {
- // Calculate the actual values
- Pi[n][t] = ((n == 1) ? ((n + n + 1)*cos(Theta[t])*Pi[n - 1][t]/n)
- : (((n + n + 1)*cos(Theta[t])*Pi[n - 1][t] - (n + 1)*Pi[n - 2][t])/n));
- Tau[n][t] = (n + 1)*cos(Theta[t])*Pi[n][t] - (n + 2)*Pi[n - 1][t];
- }
- }
- }
- }
- //**********************************************************************************//
- // This function calculates the scattering coefficients required to calculate //
- // both the near- and far-field parameters. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send -1 //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // n_max: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only used if you know what you are doing, otherwise set //
- // this parameter to -1 and the function will calculate it. //
- // //
- // Output parameters: //
- // an, bn: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int n_max,
- std::vector<std::complex<double> > &an, std::vector<std::complex<double> > &bn) {
- //************************************************************************//
- // Calculate the index of the first layer. It can be either 0 (default) //
- // or the index of the outermost PEC layer. In the latter case all layers //
- // below the PEC are discarded. //
- //************************************************************************//
- int fl = (pl > 0) ? pl : 0;
- if (n_max <= 0) {
- n_max = Nmax(L, fl, pl, x, m);
- }
- std::complex<double> z1, z2;
- std::complex<double> Num, Denom;
- std::complex<double> G1, G2;
- std::complex<double> Temp;
- int n, l;
- //**************************************************************************//
- // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
- // means that index = layer number - 1 or index = n - 1. The only exception //
- // are the arrays for representing D1, D3 and Q because they need a value //
- // for the index 0 (zero), hence it is important to consider this shift //
- // between different arrays. The change was done to optimize memory usage. //
- //**************************************************************************//
- // Allocate memory to the arrays
- std::vector<std::vector<std::complex<double> > > D1_mlxl, D1_mlxlM1;
- D1_mlxl.resize(L);
- D1_mlxlM1.resize(L);
- std::vector<std::vector<std::complex<double> > > D3_mlxl, D3_mlxlM1;
- D3_mlxl.resize(L);
- D3_mlxlM1.resize(L);
- std::vector<std::vector<std::complex<double> > > Q;
- Q.resize(L);
- std::vector<std::vector<std::complex<double> > > Ha, Hb;
- Ha.resize(L);
- Hb.resize(L);
- for (l = 0; l < L; l++) {
- D1_mlxl[l].resize(n_max + 1);
- D1_mlxlM1[l].resize(n_max + 1);
- D3_mlxl[l].resize(n_max + 1);
- D3_mlxlM1[l].resize(n_max + 1);
- Q[l].resize(n_max + 1);
- Ha[l].resize(n_max);
- Hb[l].resize(n_max);
- }
- an.resize(n_max);
- bn.resize(n_max);
- std::vector<std::complex<double> > D1XL, D3XL;
- D1XL.resize(n_max + 1);
- D3XL.resize(n_max + 1);
- std::vector<std::complex<double> > PsiXL, ZetaXL;
- PsiXL.resize(n_max + 1);
- ZetaXL.resize(n_max + 1);
- //*************************************************//
- // Calculate D1 and D3 for z1 in the first layer //
- //*************************************************//
- if (fl == pl) { // PEC layer
- for (n = 0; n <= n_max; n++) {
- D1_mlxl[fl][n] = std::complex<double>(0.0, -1.0);
- D3_mlxl[fl][n] = std::complex<double>(0.0, 1.0);
- }
- } else { // Regular layer
- z1 = x[fl]* m[fl];
- // Calculate D1 and D3
- calcD1D3(z1, n_max, D1_mlxl[fl], D3_mlxl[fl]);
- }
- //******************************************************************//
- // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
- //******************************************************************//
- for (n = 0; n < n_max; n++) {
- Ha[fl][n] = D1_mlxl[fl][n + 1];
- Hb[fl][n] = D1_mlxl[fl][n + 1];
- }
- //*****************************************************//
- // Iteration from the second layer to the last one (L) //
- //*****************************************************//
- for (l = fl + 1; l < L; l++) {
- //************************************************************//
- //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L //
- //************************************************************//
- z1 = x[l]*m[l];
- z2 = x[l - 1]*m[l];
- //Calculate D1 and D3 for z1
- calcD1D3(z1, n_max, D1_mlxl[l], D3_mlxl[l]);
- //Calculate D1 and D3 for z2
- calcD1D3(z2, n_max, D1_mlxlM1[l], D3_mlxlM1[l]);
- //*********************************************//
- //Calculate Q, Ha and Hb in the layers fl+1..L //
- //*********************************************//
- // Upward recurrence for Q - equations (19a) and (19b)
- Num = exp(-2.0*(z1.imag() - z2.imag()))*std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
- Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
- Q[l][0] = Num/Denom;
- for (n = 1; n <= n_max; n++) {
- Num = (z1*D1_mlxl[l][n] + double(n))*(double(n) - z1*D3_mlxl[l][n - 1]);
- Denom = (z2*D1_mlxlM1[l][n] + double(n))*(double(n) - z2*D3_mlxlM1[l][n - 1]);
- Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1])*Num)/Denom;
- }
- // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
- for (n = 1; n <= n_max; n++) {
- //Ha
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
- G1 = -D1_mlxlM1[l][n];
- G2 = -D3_mlxlM1[l][n];
- } else {
- G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[l][n]);
- G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[l][n]);
- }
- Temp = Q[l][n]*G1;
- Num = (G2*D1_mlxl[l][n]) - (Temp*D3_mlxl[l][n]);
- Denom = G2 - Temp;
- Ha[l][n - 1] = Num/Denom;
- //Hb
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
- G1 = Hb[l - 1][n - 1];
- G2 = Hb[l - 1][n - 1];
- } else {
- G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[l][n]);
- G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[l][n]);
- }
- Temp = Q[l][n]*G1;
- Num = (G2*D1_mlxl[l][n]) - (Temp* D3_mlxl[l][n]);
- Denom = (G2- Temp);
- Hb[l][n - 1] = (Num/ Denom);
- }
- }
- //**************************************//
- //Calculate D1, D3, Psi and Zeta for XL //
- //**************************************//
- // Calculate D1XL and D3XL
- calcD1D3(x[L - 1], n_max, D1XL, D3XL);
- // Calculate PsiXL and ZetaXL
- calcPsiZeta(x[L - 1], n_max, D1XL, D3XL, PsiXL, ZetaXL);
- //*********************************************************************//
- // Finally, we calculate the scattering coefficients (an and bn) and //
- // the angular functions (Pi and Tau). Note that for these arrays the //
- // first layer is 0 (zero), in future versions all arrays will follow //
- // this convention to save memory. (13 Nov, 2014) //
- //*********************************************************************//
- for (n = 0; n < n_max; n++) {
- //********************************************************************//
- //Expressions for calculating an and bn coefficients are not valid if //
- //there is only one PEC layer (ie, for a simple PEC sphere). //
- //********************************************************************//
- if (pl < (L - 1)) {
- an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- } else {
- an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
- }
- }
- return n_max;
- }
- //**********************************************************************************//
- // This function calculates the actual scattering parameters and amplitudes //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send -1 //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // n_max: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only used if you know what you are doing, otherwise set //
- // this parameter to -1 and the function will calculate it //
- // //
- // Output parameters: //
- // Qext: Efficiency factor for extinction //
- // Qsca: Efficiency factor for scattering //
- // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
- // Qbk: Efficiency factor for backscattering //
- // Qpr: Efficiency factor for the radiation pressure //
- // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
- // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
- // S1, S2: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
- int nTheta, std::vector<double> Theta, int n_max,
- double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
- std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
- int i, n, t;
- std::vector<std::complex<double> > an, bn;
- std::complex<double> Qbktmp;
- // Calculate scattering coefficients
- n_max = ScattCoeffs(L, pl, x, m, n_max, an, bn);
- std::vector< std::vector<double> > Pi;
- Pi.resize(n_max);
- std::vector< std::vector<double> > Tau;
- Tau.resize(n_max);
- for (n = 0; n < n_max; n++) {
- Pi[n].resize(nTheta);
- Tau[n].resize(nTheta);
- }
- calcPiTau(n_max, nTheta, Theta, Pi, Tau);
- double x2 = x[L - 1]*x[L - 1];
- // Initialize the scattering parameters
- *Qext = 0;
- *Qsca = 0;
- *Qabs = 0;
- *Qbk = 0;
- Qbktmp = std::complex<double>(0.0, 0.0);
- *Qpr = 0;
- *g = 0;
- *Albedo = 0;
- // Initialize the scattering amplitudes
- for (t = 0; t < nTheta; t++) {
- S1[t] = std::complex<double>(0.0, 0.0);
- S2[t] = std::complex<double>(0.0, 0.0);
- }
- // By using downward recurrence we avoid loss of precision due to float rounding errors
- // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
- // http://en.wikipedia.org/wiki/Loss_of_significance
- for (i = n_max - 2; i >= 0; i--) {
- n = i + 1;
- // Equation (27)
- *Qext += (n + n + 1)*(an[i].real() + bn[i].real());
- // Equation (28)
- *Qsca += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag() + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag());
- // Equation (29)
- // We must check carefully this equation. If we remove the typecast to double then the result changes. Which is the correct one??? Ovidio (2014/12/10)
- *Qpr += ((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real());
- // Equation (33)
- Qbktmp = Qbktmp + (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]);
- //****************************************************//
- // Calculate the scattering amplitudes (S1 and S2) //
- // Equations (25a) - (25b) //
- //****************************************************//
- for (t = 0; t < nTheta; t++) {
- S1[t] += calc_S1(n, an[i], bn[i], Pi[i][t], Tau[i][t]);
- S2[t] += calc_S2(n, an[i], bn[i], Pi[i][t], Tau[i][t]);
- }
- }
- *Qext = 2*(*Qext)/x2; // Equation (27)
- *Qsca = 2*(*Qsca)/x2; // Equation (28)
- *Qpr = *Qext - 4*(*Qpr)/x2; // Equation (29)
- *Qabs = *Qext - *Qsca; // Equation (30)
- *Albedo = *Qsca / *Qext; // Equation (31)
- *g = (*Qext - *Qpr) / *Qsca; // Equation (32)
- *Qbk = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
- return n_max;
- }
- //**********************************************************************************//
- // This function is just a wrapper to call the full 'nMie' function with fewer //
- // parameters, it is here mainly for compatibility with older versions of the //
- // program. Also, you can use it if you neither have a PEC layer nor want to define //
- // any limit for the maximum number of terms. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // //
- // Output parameters: //
- // Qext: Efficiency factor for extinction //
- // Qsca: Efficiency factor for scattering //
- // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
- // Qbk: Efficiency factor for backscattering //
- // Qpr: Efficiency factor for the radiation pressure //
- // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
- // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
- // S1, S2: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
- int nTheta, std::vector<double> Theta,
- double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
- std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
- return nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
- }
- //**********************************************************************************//
- // This function is just a wrapper to call the full 'nMie' function with fewer //
- // parameters, it is useful if you want to include a PEC layer but not a limit //
- // for the maximum number of terms. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send -1 //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // //
- // Output parameters: //
- // Qext: Efficiency factor for extinction //
- // Qsca: Efficiency factor for scattering //
- // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
- // Qbk: Efficiency factor for backscattering //
- // Qpr: Efficiency factor for the radiation pressure //
- // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
- // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
- // S1, S2: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
- int nTheta, std::vector<double> Theta,
- double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
- std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
- return nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
- }
- //**********************************************************************************//
- // This function is just a wrapper to call the full 'nMie' function with fewer //
- // parameters, it is useful if you want to include a limit for the maximum number //
- // of terms but not a PEC layer. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // n_max: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only used if you know what you are doing, otherwise set //
- // this parameter to -1 and the function will calculate it //
- // //
- // Output parameters: //
- // Qext: Efficiency factor for extinction //
- // Qsca: Efficiency factor for scattering //
- // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
- // Qbk: Efficiency factor for backscattering //
- // Qpr: Efficiency factor for the radiation pressure //
- // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
- // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
- // S1, S2: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
- int nTheta, std::vector<double> Theta, int n_max,
- double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
- std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2) {
- return nMie(L, -1, x, m, nTheta, Theta, n_max, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
- }
- //**********************************************************************************//
- // This function calculates complex electric and magnetic field in the surroundings //
- // and inside (TODO) the particle. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send 0 (zero) //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // n_max: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only used if you know what you are doing, otherwise set //
- // this parameter to 0 (zero) and the function will calculate it. //
- // nCoords: Number of coordinate points //
- // Coords: Array containing all coordinates where the complex electric and //
- // magnetic fields will be calculated //
- // //
- // Output parameters: //
- // E, H: Complex electric and magnetic field at the provided coordinates //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- int nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int n_max,
- int nCoords, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp,
- std::vector<std::complex<double> > &E, std::vector<std::complex<double> > &H) {
- <<<<<<< HEAD
- =======
- int i, n, c;
- /* double **Pi, **Tau;
- complex *an, *bn;
- double *Rho = (double *) malloc(nCoords*sizeof(double));
- double *Phi = (double *) malloc(nCoords*sizeof(double));
- double *Theta = (double *) malloc(nCoords*sizeof(double));
- >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
- int i, n, c;
- std::vector<std::complex<double> > an, bn;
- <<<<<<< HEAD
- // Calculate scattering coefficients
- =======
- >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
- n_max = ScattCoeffs(L, pl, x, m, n_max, an, bn);
- std::vector< std::vector<double> > Pi, Tau;
- Pi.resize(n_max);
- Tau.resize(n_max);
- for (n = 0; n < n_max; n++) {
- Pi[n].resize(nCoords);
- Tau[n].resize(nCoords);
- }
- std::vector<double> Rho, Phi, Theta;
- Rho.resize(nCoords);
- Phi.resize(nCoords);
- Theta.resize(nCoords);
- for (c = 0; c < nCoords; c++) {
- <<<<<<< HEAD
- // Convert to spherical coordinates
- Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
- if (Rho < 1e-3) {
- Rho = 1e-3;
- }
- Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
- Theta = acos(Xp[c]/Rho[c]);
- }
- =======
- E[c] = C_ZERO;
- H[c] = C_ZERO;
- }*/
- >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
- calcPiTau(n_max, nCoords, Theta, Pi, Tau);
- <<<<<<< HEAD
- std::vector<double > j, y;
- std::vector<std::complex<double> > h1, h2;
- j.resize(n_max);
- y.resize(n_max);
- h1.resize(n_max);
- h2.resize(n_max);
- for (c = 0; c < nCoords; c++) {
- //*******************************************************//
- // external scattering field = incident + scattered //
- // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
- // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
- //*******************************************************//
- // Calculate spherical Bessel and Hankel functions
- sphericalBessel(Rho, n_max, j, y);
- sphericalHankel(Rho, n_max, h1, h2);
- // Initialize the fields
- E[c] = std::complex<double>(0.0, 0.0);
- H[c] = std::complex<double>(0.0, 0.0);
- // Firstly the easiest case, we want the field outside the particle
- if (Rho >= x[L - 1]) {
-
- }
- =======
- // Firstly the easiest case, we want the field outside the particle
- // if (Rho[c] >= x[L - 1]) {
- // }
- for (i = 1; i < (n_max - 1); i++) {
- // n = i - 1;
- /* // Equation (27)
- *Qext = *Qext + (double)(n + n + 1)*(an[i].r + bn[i].r);
- // Equation (28)
- *Qsca = *Qsca + (double)(n + n + 1)*(an[i].r*an[i].r + an[i].i*an[i].i + bn[i].r*bn[i].r + bn[i].i*bn[i].i);
- // Equation (29)
- *Qpr = *Qpr + ((n*(n + 2)/(n + 1))*((Cadd(Cmul(an[i], std::conj(an[n])), Cmul(bn[i], std::conj(bn[n])))).r) + ((double)(n + n + 1)/(n*(n + 1)))*(Cmul(an[i], std::conj(bn[i])).r));
- // Equation (33)
- Qbktmp = Cadd(Qbktmp, RCmul((double)((n + n + 1)*(1 - 2*(n % 2))), Csub(an[i], bn[i])));
- */
- //****************************************************//
- // Calculate the scattering amplitudes (S1 and S2) //
- // Equations (25a) - (25b) //
- //****************************************************//
- /* for (t = 0; t < nTheta; t++) {
- S1[t] = Cadd(S1[t], calc_S1(n, an[i], bn[i], Pi[i][t], Tau[i][t]));
- S2[t] = Cadd(S2[t], calc_S2(n, an[i], bn[i], Pi[i][t], Tau[i][t]));
- }*/
- >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7
- }
- return n_max;
- }
|