//**********************************************************************************// // Copyright (C) 2009-2015 Ovidio Pena // // // // This file is part of scattnlay // // // // This program is free software: you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation, either version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License for more details. // // // // The only additional remark is that we expect that all publications // // describing work using this software, or all commercial products // // using it, cite the following reference: // // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by // // a multilayered sphere," Computer Physics Communications, // // vol. 180, Nov. 2009, pp. 2348-2354. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // //**********************************************************************************// //**********************************************************************************// // This library implements the algorithm for a multilayered sphere described by: // // [1] W. Yang, "Improved recursive algorithm for light scattering by a // // multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720. // // // // You can find the description of all the used equations in: // // [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by // // a multilayered sphere," Computer Physics Communications, // // vol. 180, Nov. 2009, pp. 2348-2354. // // // // Hereinafter all equations numbers refer to [2] // //**********************************************************************************// #include #include #include #include "nmie.h" #define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5)) // Calculate Nstop - equation (17) int Nstop(double xL) { int result; if (xL <= 8) { result = round(xL + 4*pow(xL, 1/3) + 1); } else if (xL <= 4200) { result = round(xL + 4.05*pow(xL, 1/3) + 2); } else { result = round(xL + 4*pow(xL, 1/3) + 2); } return result; } //**********************************************************************************// int Nmax(int L, int fl, int pl, std::vector x, std::vector > m) { int i, result, ri, riM1; result = Nstop(x[L - 1]); for (i = fl; i < L; i++) { if (i > pl) { ri = round(std::abs(x[i]*m[i])); } else { ri = 0; } if (result < ri) { result = ri; } if ((i > fl) && ((i - 1) > pl)) { riM1 = round(std::abs(x[i - 1]* m[i])); } else { riM1 = 0; } if (result < riM1) { result = riM1; } } return result + 15; } //**********************************************************************************// <<<<<<< HEAD // This function calculates the spherical Bessel functions (jn and yn) for a given // // real value r. See pag. 87 B&H. // // // // Input parameters: // // r: Real argument to evaluate jn and yn // // n_max: Maximum number of terms to calculate jn and yn // // // // Output parameters: // // jn, yn: Spherical Bessel functions (double) // //**********************************************************************************// void sphericalBessel(double r, int n_max, std::vector &j, std::vector &y) { int n; if (n_max >= 1) { j[0] = sin(r)/r; y[0] = -cos(r)/r; } if (n_max >= 2) { j[1] = sin(r)/r/r - cos(r)/r; y[1] = -cos(r)/r/r - sin(r)/r; } for (n = 2; n < n_max; n++) { j[n] = double(n + n + 1)*j[n - 1]/r - j[n - 2]; y[n] = double(n + n + 1)*y[n - 1]/r - h[n - 2]; ======= // This function calculates the spherical Bessel functions (jn and hn) for a given // // value of z. // // // // Input parameters: // // z: Real argument to evaluate jn and hn // // n_max: Maximum number of terms to calculate jn and hn // // // // Output parameters: // // jn, hn: Spherical Bessel functions (complex) // //**********************************************************************************// void sphericalBessel(std::complex r, int n_max, std::vector > &j, std::vector > &h) { int n; j[0] = sin(r)/r; j[1] = sin(r)/r/r - cos(r)/r; h[0] = -cos(r)/r; h[1] = -cos(r)/r/r - sin(r)/r; for (n = 2; n < n_max; n++) { j[n] = double(n + n + 1)*j[n - 1]/r - j[n - 2]; h[n] = double(n + n + 1)*h[n - 1]/r - h[n - 2]; >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7 } } //**********************************************************************************// <<<<<<< HEAD // This function calculates the spherical Hankel functions (h1n and h2n) for a // // given real value r. See eqs. (4.13) and (4.14), pag. 87 B&H. // // // // Input parameters: // // r: Real argument to evaluate h1n and h2n // // n_max: Maximum number of terms to calculate h1n and h2n // // // // Output parameters: // // h1n, h2n: Spherical Hankel functions (complex) // //**********************************************************************************// void sphericalHankel(double r, int n_max, std::vector > &h1, std::vector > &h2) { ======= // This function calculates the spherical Bessel functions (jn and hn) for a given // // value of r. // // // // Input parameters: // // r: Real argument to evaluate jn and hn // // n_max: Maximum number of terms to calculate jn and hn // // // // Output parameters: // // jn, hn: Spherical Bessel functions (double) // //**********************************************************************************// void sphericalBessel(double r, int n_max, std::vector &j, std::vector &h) { >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7 int n; std::complex j, y; j.resize(n_max); h.resize(n_max); <<<<<<< HEAD sphericalBessel(r, n_max, j, y); for (n = 0; n < n_max; n++) { h1[n] = std::complex (j[n], y[n]); h2[n] = std::complex (j[n], -y[n]); ======= j[0] = sin(r)/r; j[1] = sin(r)/r/r - cos(r)/r; h[0] = -cos(r)/r; h[1] = -cos(r)/r/r - sin(r)/r; for (n = 2; n < n_max; n++) { j[n] = double(n + n + 1)*j[n - 1]/r - j[n - 2]; h[n] = double(n + n + 1)*h[n - 1]/r - h[n - 2]; >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7 } } // Calculate an - equation (5) std::complex calc_an(int n, double XL, std::complex Ha, std::complex mL, std::complex PsiXL, std::complex ZetaXL, std::complex PsiXLM1, std::complex ZetaXLM1) { std::complex Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1; std::complex Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1; return Num/Denom; } // Calculate bn - equation (6) std::complex calc_bn(int n, double XL, std::complex Hb, std::complex mL, std::complex PsiXL, std::complex ZetaXL, std::complex PsiXLM1, std::complex ZetaXLM1) { std::complex Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1; std::complex Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1; return Num/Denom; } // Calculates S1 - equation (25a) std::complex calc_S1(int n, std::complex an, std::complex bn, double Pi, double Tau) { return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n); } // Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau) std::complex calc_S2(int n, std::complex an, std::complex bn, double Pi, double Tau) { return calc_S1(n, an, bn, Tau, Pi); } //**********************************************************************************// // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a // // real argument (x). // // Equations (20a) - (21b) // // // // Input parameters: // // x: Real argument to evaluate Psi and Zeta // // n_max: Maximum number of terms to calculate Psi and Zeta // // // // Output parameters: // // Psi, Zeta: Riccati-Bessel functions // //**********************************************************************************// void calcPsiZeta(double x, int n_max, std::vector > D1, std::vector > D3, std::vector > &Psi, std::vector > &Zeta) { int n; //Upward recurrence for Psi and Zeta - equations (20a) - (21b) Psi[0] = std::complex(sin(x), 0); Zeta[0] = std::complex(sin(x), -cos(x)); for (n = 1; n <= n_max; n++) { Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]); Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]); } } //**********************************************************************************// // This function calculates the logarithmic derivatives of the Riccati-Bessel // // functions (D1 and D3) for a complex argument (z). // // Equations (16a), (16b) and (18a) - (18d) // // // // Input parameters: // // z: Complex argument to evaluate D1 and D3 // // n_max: Maximum number of terms to calculate D1 and D3 // // // // Output parameters: // // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions // //**********************************************************************************// void calcD1D3(std::complex z, int n_max, std::vector > &D1, std::vector > &D3) { int n; std::vector > PsiZeta; PsiZeta.resize(n_max + 1); // Downward recurrence for D1 - equations (16a) and (16b) D1[n_max] = std::complex(0.0, 0.0); for (n = n_max; n > 0; n--) { D1[n - 1] = double(n)/z - 1.0/(D1[n] + double(n)/z); } // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d) PsiZeta[0] = 0.5*(1.0 - std::complex(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag())); D3[0] = std::complex(0.0, 1.0); for (n = 1; n <= n_max; n++) { PsiZeta[n] = PsiZeta[n - 1]*(double(n)/z - D1[n - 1])*(double(n)/z- D3[n - 1]); D3[n] = D1[n] + std::complex(0.0, 1.0)/PsiZeta[n]; } } //**********************************************************************************// // This function calculates Pi and Tau for all values of Theta. // // Equations (26a) - (26c) // // // // Input parameters: // // n_max: Maximum number of terms to calculate Pi and Tau // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // // // Output parameters: // // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) // //**********************************************************************************// void calcPiTau(int n_max, int nTheta, std::vector Theta, std::vector< std::vector > &Pi, std::vector< std::vector > &Tau) { int n, t; for (n = 0; n < n_max; n++) { //****************************************************// // Equations (26a) - (26c) // //****************************************************// for (t = 0; t < nTheta; t++) { if (n == 0) { // Initialize Pi and Tau Pi[n][t] = 1.0; Tau[n][t] = (n + 1)*cos(Theta[t]); } else { // Calculate the actual values Pi[n][t] = ((n == 1) ? ((n + n + 1)*cos(Theta[t])*Pi[n - 1][t]/n) : (((n + n + 1)*cos(Theta[t])*Pi[n - 1][t] - (n + 1)*Pi[n - 2][t])/n)); Tau[n][t] = (n + 1)*cos(Theta[t])*Pi[n][t] - (n + 2)*Pi[n - 1][t]; } } } } //**********************************************************************************// // This function calculates the scattering coefficients required to calculate // // both the near- and far-field parameters. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // n_max: Maximum number of multipolar expansion terms to be used for the // // calculations. Only used if you know what you are doing, otherwise set // // this parameter to -1 and the function will calculate it. // // // // Output parameters: // // an, bn: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int ScattCoeffs(int L, int pl, std::vector x, std::vector > m, int n_max, std::vector > &an, std::vector > &bn) { //************************************************************************// // Calculate the index of the first layer. It can be either 0 (default) // // or the index of the outermost PEC layer. In the latter case all layers // // below the PEC are discarded. // //************************************************************************// int fl = (pl > 0) ? pl : 0; if (n_max <= 0) { n_max = Nmax(L, fl, pl, x, m); } std::complex z1, z2; std::complex Num, Denom; std::complex G1, G2; std::complex Temp; int n, l; //**************************************************************************// // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which // // means that index = layer number - 1 or index = n - 1. The only exception // // are the arrays for representing D1, D3 and Q because they need a value // // for the index 0 (zero), hence it is important to consider this shift // // between different arrays. The change was done to optimize memory usage. // //**************************************************************************// // Allocate memory to the arrays std::vector > > D1_mlxl, D1_mlxlM1; D1_mlxl.resize(L); D1_mlxlM1.resize(L); std::vector > > D3_mlxl, D3_mlxlM1; D3_mlxl.resize(L); D3_mlxlM1.resize(L); std::vector > > Q; Q.resize(L); std::vector > > Ha, Hb; Ha.resize(L); Hb.resize(L); for (l = 0; l < L; l++) { D1_mlxl[l].resize(n_max + 1); D1_mlxlM1[l].resize(n_max + 1); D3_mlxl[l].resize(n_max + 1); D3_mlxlM1[l].resize(n_max + 1); Q[l].resize(n_max + 1); Ha[l].resize(n_max); Hb[l].resize(n_max); } an.resize(n_max); bn.resize(n_max); std::vector > D1XL, D3XL; D1XL.resize(n_max + 1); D3XL.resize(n_max + 1); std::vector > PsiXL, ZetaXL; PsiXL.resize(n_max + 1); ZetaXL.resize(n_max + 1); //*************************************************// // Calculate D1 and D3 for z1 in the first layer // //*************************************************// if (fl == pl) { // PEC layer for (n = 0; n <= n_max; n++) { D1_mlxl[fl][n] = std::complex(0.0, -1.0); D3_mlxl[fl][n] = std::complex(0.0, 1.0); } } else { // Regular layer z1 = x[fl]* m[fl]; // Calculate D1 and D3 calcD1D3(z1, n_max, D1_mlxl[fl], D3_mlxl[fl]); } //******************************************************************// // Calculate Ha and Hb in the first layer - equations (7a) and (8a) // //******************************************************************// for (n = 0; n < n_max; n++) { Ha[fl][n] = D1_mlxl[fl][n + 1]; Hb[fl][n] = D1_mlxl[fl][n + 1]; } //*****************************************************// // Iteration from the second layer to the last one (L) // //*****************************************************// for (l = fl + 1; l < L; l++) { //************************************************************// //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L // //************************************************************// z1 = x[l]*m[l]; z2 = x[l - 1]*m[l]; //Calculate D1 and D3 for z1 calcD1D3(z1, n_max, D1_mlxl[l], D3_mlxl[l]); //Calculate D1 and D3 for z2 calcD1D3(z2, n_max, D1_mlxlM1[l], D3_mlxlM1[l]); //*********************************************// //Calculate Q, Ha and Hb in the layers fl+1..L // //*********************************************// // Upward recurrence for Q - equations (19a) and (19b) Num = exp(-2.0*(z1.imag() - z2.imag()))*std::complex(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real())); Denom = std::complex(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real())); Q[l][0] = Num/Denom; for (n = 1; n <= n_max; n++) { Num = (z1*D1_mlxl[l][n] + double(n))*(double(n) - z1*D3_mlxl[l][n - 1]); Denom = (z2*D1_mlxlM1[l][n] + double(n))*(double(n) - z2*D3_mlxlM1[l][n - 1]); Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1])*Num)/Denom; } // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15) for (n = 1; n <= n_max; n++) { //Ha if ((l - 1) == pl) { // The layer below the current one is a PEC layer G1 = -D1_mlxlM1[l][n]; G2 = -D3_mlxlM1[l][n]; } else { G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[l][n]); G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[l][n]); } Temp = Q[l][n]*G1; Num = (G2*D1_mlxl[l][n]) - (Temp*D3_mlxl[l][n]); Denom = G2 - Temp; Ha[l][n - 1] = Num/Denom; //Hb if ((l - 1) == pl) { // The layer below the current one is a PEC layer G1 = Hb[l - 1][n - 1]; G2 = Hb[l - 1][n - 1]; } else { G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[l][n]); G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[l][n]); } Temp = Q[l][n]*G1; Num = (G2*D1_mlxl[l][n]) - (Temp* D3_mlxl[l][n]); Denom = (G2- Temp); Hb[l][n - 1] = (Num/ Denom); } } //**************************************// //Calculate D1, D3, Psi and Zeta for XL // //**************************************// // Calculate D1XL and D3XL calcD1D3(x[L - 1], n_max, D1XL, D3XL); // Calculate PsiXL and ZetaXL calcPsiZeta(x[L - 1], n_max, D1XL, D3XL, PsiXL, ZetaXL); //*********************************************************************// // Finally, we calculate the scattering coefficients (an and bn) and // // the angular functions (Pi and Tau). Note that for these arrays the // // first layer is 0 (zero), in future versions all arrays will follow // // this convention to save memory. (13 Nov, 2014) // //*********************************************************************// for (n = 0; n < n_max; n++) { //********************************************************************// //Expressions for calculating an and bn coefficients are not valid if // //there is only one PEC layer (ie, for a simple PEC sphere). // //********************************************************************// if (pl < (L - 1)) { an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); } else { an[n] = calc_an(n + 1, x[L - 1], std::complex(0.0, 0.0), std::complex(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); bn[n] = PsiXL[n + 1]/ZetaXL[n + 1]; } } return n_max; } //**********************************************************************************// // This function calculates the actual scattering parameters and amplitudes // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // n_max: Maximum number of multipolar expansion terms to be used for the // // calculations. Only used if you know what you are doing, otherwise set // // this parameter to -1 and the function will calculate it // // // // Output parameters: // // Qext: Efficiency factor for extinction // // Qsca: Efficiency factor for scattering // // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) // // Qbk: Efficiency factor for backscattering // // Qpr: Efficiency factor for the radiation pressure // // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) // // Albedo: Single scattering albedo (Albedo = Qsca/Qext) // // S1, S2: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int nMie(int L, int pl, std::vector x, std::vector > m, int nTheta, std::vector Theta, int n_max, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector > &S1, std::vector > &S2) { int i, n, t; std::vector > an, bn; std::complex Qbktmp; // Calculate scattering coefficients n_max = ScattCoeffs(L, pl, x, m, n_max, an, bn); std::vector< std::vector > Pi; Pi.resize(n_max); std::vector< std::vector > Tau; Tau.resize(n_max); for (n = 0; n < n_max; n++) { Pi[n].resize(nTheta); Tau[n].resize(nTheta); } calcPiTau(n_max, nTheta, Theta, Pi, Tau); double x2 = x[L - 1]*x[L - 1]; // Initialize the scattering parameters *Qext = 0; *Qsca = 0; *Qabs = 0; *Qbk = 0; Qbktmp = std::complex(0.0, 0.0); *Qpr = 0; *g = 0; *Albedo = 0; // Initialize the scattering amplitudes for (t = 0; t < nTheta; t++) { S1[t] = std::complex(0.0, 0.0); S2[t] = std::complex(0.0, 0.0); } // By using downward recurrence we avoid loss of precision due to float rounding errors // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html // http://en.wikipedia.org/wiki/Loss_of_significance for (i = n_max - 2; i >= 0; i--) { n = i + 1; // Equation (27) *Qext += (n + n + 1)*(an[i].real() + bn[i].real()); // Equation (28) *Qsca += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag() + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag()); // Equation (29) // We must check carefully this equation. If we remove the typecast to double then the result changes. Which is the correct one??? Ovidio (2014/12/10) *Qpr += ((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real()); // Equation (33) Qbktmp = Qbktmp + (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]); //****************************************************// // Calculate the scattering amplitudes (S1 and S2) // // Equations (25a) - (25b) // //****************************************************// for (t = 0; t < nTheta; t++) { S1[t] += calc_S1(n, an[i], bn[i], Pi[i][t], Tau[i][t]); S2[t] += calc_S2(n, an[i], bn[i], Pi[i][t], Tau[i][t]); } } *Qext = 2*(*Qext)/x2; // Equation (27) *Qsca = 2*(*Qsca)/x2; // Equation (28) *Qpr = *Qext - 4*(*Qpr)/x2; // Equation (29) *Qabs = *Qext - *Qsca; // Equation (30) *Albedo = *Qsca / *Qext; // Equation (31) *g = (*Qext - *Qpr) / *Qsca; // Equation (32) *Qbk = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33) return n_max; } //**********************************************************************************// // This function is just a wrapper to call the full 'nMie' function with fewer // // parameters, it is here mainly for compatibility with older versions of the // // program. Also, you can use it if you neither have a PEC layer nor want to define // // any limit for the maximum number of terms. // // // // Input parameters: // // L: Number of layers // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // // // Output parameters: // // Qext: Efficiency factor for extinction // // Qsca: Efficiency factor for scattering // // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) // // Qbk: Efficiency factor for backscattering // // Qpr: Efficiency factor for the radiation pressure // // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) // // Albedo: Single scattering albedo (Albedo = Qsca/Qext) // // S1, S2: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int nMie(int L, std::vector x, std::vector > m, int nTheta, std::vector Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector > &S1, std::vector > &S2) { return nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2); } //**********************************************************************************// // This function is just a wrapper to call the full 'nMie' function with fewer // // parameters, it is useful if you want to include a PEC layer but not a limit // // for the maximum number of terms. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // // // Output parameters: // // Qext: Efficiency factor for extinction // // Qsca: Efficiency factor for scattering // // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) // // Qbk: Efficiency factor for backscattering // // Qpr: Efficiency factor for the radiation pressure // // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) // // Albedo: Single scattering albedo (Albedo = Qsca/Qext) // // S1, S2: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int nMie(int L, int pl, std::vector x, std::vector > m, int nTheta, std::vector Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector > &S1, std::vector > &S2) { return nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2); } //**********************************************************************************// // This function is just a wrapper to call the full 'nMie' function with fewer // // parameters, it is useful if you want to include a limit for the maximum number // // of terms but not a PEC layer. // // // // Input parameters: // // L: Number of layers // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // n_max: Maximum number of multipolar expansion terms to be used for the // // calculations. Only used if you know what you are doing, otherwise set // // this parameter to -1 and the function will calculate it // // // // Output parameters: // // Qext: Efficiency factor for extinction // // Qsca: Efficiency factor for scattering // // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) // // Qbk: Efficiency factor for backscattering // // Qpr: Efficiency factor for the radiation pressure // // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) // // Albedo: Single scattering albedo (Albedo = Qsca/Qext) // // S1, S2: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int nMie(int L, std::vector x, std::vector > m, int nTheta, std::vector Theta, int n_max, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector > &S1, std::vector > &S2) { return nMie(L, -1, x, m, nTheta, Theta, n_max, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2); } //**********************************************************************************// // This function calculates complex electric and magnetic field in the surroundings // // and inside (TODO) the particle. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send 0 (zero) // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // n_max: Maximum number of multipolar expansion terms to be used for the // // calculations. Only used if you know what you are doing, otherwise set // // this parameter to 0 (zero) and the function will calculate it. // // nCoords: Number of coordinate points // // Coords: Array containing all coordinates where the complex electric and // // magnetic fields will be calculated // // // // Output parameters: // // E, H: Complex electric and magnetic field at the provided coordinates // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// int nField(int L, int pl, std::vector x, std::vector > m, int n_max, int nCoords, std::vector Xp, std::vector Yp, std::vector Zp, std::vector > &E, std::vector > &H) { <<<<<<< HEAD ======= int i, n, c; /* double **Pi, **Tau; complex *an, *bn; double *Rho = (double *) malloc(nCoords*sizeof(double)); double *Phi = (double *) malloc(nCoords*sizeof(double)); double *Theta = (double *) malloc(nCoords*sizeof(double)); >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7 int i, n, c; std::vector > an, bn; <<<<<<< HEAD // Calculate scattering coefficients ======= >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7 n_max = ScattCoeffs(L, pl, x, m, n_max, an, bn); std::vector< std::vector > Pi, Tau; Pi.resize(n_max); Tau.resize(n_max); for (n = 0; n < n_max; n++) { Pi[n].resize(nCoords); Tau[n].resize(nCoords); } std::vector Rho, Phi, Theta; Rho.resize(nCoords); Phi.resize(nCoords); Theta.resize(nCoords); for (c = 0; c < nCoords; c++) { <<<<<<< HEAD // Convert to spherical coordinates Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]); if (Rho < 1e-3) { Rho = 1e-3; } Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c])); Theta = acos(Xp[c]/Rho[c]); } ======= E[c] = C_ZERO; H[c] = C_ZERO; }*/ >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7 calcPiTau(n_max, nCoords, Theta, Pi, Tau); <<<<<<< HEAD std::vector j, y; std::vector > h1, h2; j.resize(n_max); y.resize(n_max); h1.resize(n_max); h2.resize(n_max); for (c = 0; c < nCoords; c++) { //*******************************************************// // external scattering field = incident + scattered // // BH p.92 (4.37), 94 (4.45), 95 (4.50) // // assume: medium is non-absorbing; refim = 0; Uabs = 0 // //*******************************************************// // Calculate spherical Bessel and Hankel functions sphericalBessel(Rho, n_max, j, y); sphericalHankel(Rho, n_max, h1, h2); // Initialize the fields E[c] = std::complex(0.0, 0.0); H[c] = std::complex(0.0, 0.0); // Firstly the easiest case, we want the field outside the particle if (Rho >= x[L - 1]) { } ======= // Firstly the easiest case, we want the field outside the particle // if (Rho[c] >= x[L - 1]) { // } for (i = 1; i < (n_max - 1); i++) { // n = i - 1; /* // Equation (27) *Qext = *Qext + (double)(n + n + 1)*(an[i].r + bn[i].r); // Equation (28) *Qsca = *Qsca + (double)(n + n + 1)*(an[i].r*an[i].r + an[i].i*an[i].i + bn[i].r*bn[i].r + bn[i].i*bn[i].i); // Equation (29) *Qpr = *Qpr + ((n*(n + 2)/(n + 1))*((Cadd(Cmul(an[i], std::conj(an[n])), Cmul(bn[i], std::conj(bn[n])))).r) + ((double)(n + n + 1)/(n*(n + 1)))*(Cmul(an[i], std::conj(bn[i])).r)); // Equation (33) Qbktmp = Cadd(Qbktmp, RCmul((double)((n + n + 1)*(1 - 2*(n % 2))), Csub(an[i], bn[i]))); */ //****************************************************// // Calculate the scattering amplitudes (S1 and S2) // // Equations (25a) - (25b) // //****************************************************// /* for (t = 0; t < nTheta; t++) { S1[t] = Cadd(S1[t], calc_S1(n, an[i], bn[i], Pi[i][t], Tau[i][t])); S2[t] = Cadd(S2[t], calc_S2(n, an[i], bn[i], Pi[i][t], Tau[i][t])); }*/ >>>>>>> eea51ce5ca0c5bb408c5a1c888b039637651b2e7 } return n_max; }