test04_field.py 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136
  1. #!/usr/bin/env python
  2. # -*- coding: UTF-8 -*-
  3. #
  4. # Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
  5. #
  6. # This file is part of python-scattnlay
  7. #
  8. # This program is free software: you can redistribute it and/or modify
  9. # it under the terms of the GNU General Public License as published by
  10. # the Free Software Foundation, either version 3 of the License, or
  11. # (at your option) any later version.
  12. #
  13. # This program is distributed in the hope that it will be useful,
  14. # but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. # GNU General Public License for more details.
  17. #
  18. # The only additional remark is that we expect that all publications
  19. # describing work using this software, or all commercial products
  20. # using it, cite the following reference:
  21. # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
  22. # a multilayered sphere," Computer Physics Communications,
  23. # vol. 180, Nov. 2009, pp. 2348-2354.
  24. #
  25. # You should have received a copy of the GNU General Public License
  26. # along with this program. If not, see <http://www.gnu.org/licenses/>.
  27. # This test case calculates the the electric field in the
  28. # XY plane, for a Luneburg lens, as described in:
  29. # B. R. Johnson, Applied Optics 35 (1996) 3286-3296.
  30. # The Luneburg lens is a sphere of radius a, with a
  31. # radially-varying index of refraction, given by:
  32. # m(r) = [2 - (r/a)**1]**(1/2)
  33. # For the calculations, the Luneburg lens was approximated
  34. # as a multilayered sphere with 500 equally spaced layers.
  35. # The refractive index of each layer is defined to be equal to
  36. # m(r) at the midpoint of the layer: ml = [2 - (xm/xL)**1]**(1/2),
  37. # with xm = (xl-1 + xl)/2, for l = 1,2,...,L. The size
  38. # parameter in the lth layer is xl = l*xL/500.
  39. from scattnlay import fieldnlay
  40. import numpy as np
  41. nL = 500.0
  42. Xmax = 60.0
  43. x = np.ones((1, nL), dtype = np.float64)
  44. x[0] = np.arange(1.0, nL + 1.0)*Xmax/nL
  45. m = np.ones((1, nL), dtype = np.complex128)
  46. m[0] = np.sqrt((2.0 - ((x[0] - 0.5*Xmax/nL)/60.0)**2.0)) + 0.0j
  47. print "x =", x
  48. print "m =", m
  49. npts = 501
  50. scan = np.linspace(-10.0*x[0, -1], 10.0*x[0, -1], npts)
  51. coordX, coordY = np.meshgrid(scan, scan)
  52. coordX.resize(npts*npts)
  53. coordY.resize(npts*npts)
  54. coordZ = np.zeros(npts*npts, dtype = np.float64)
  55. coord = np.vstack((coordX, coordY, coordZ)).transpose()
  56. terms, E, H = fieldnlay(x, m, coord)
  57. Er = np.absolute(E)
  58. # |E|/|Eo|
  59. Eh = np.sqrt(Er[0, :, 0]**2 + Er[0, :, 1]**2 + Er[0, :, 2]**2)
  60. result = np.vstack((coordX, coordY, coordZ, Eh)).transpose()
  61. try:
  62. import matplotlib.pyplot as plt
  63. from matplotlib import cm
  64. from matplotlib.colors import LogNorm
  65. min_tick = 0.1
  66. max_tick = 1.0
  67. edata = np.resize(Eh, (npts, npts))
  68. fig = plt.figure()
  69. ax = fig.add_subplot(111)
  70. # Rescale to better show the axes
  71. scale_x = np.linspace(min(coordX), max(coordX), npts)
  72. scale_y = np.linspace(min(coordY), max(coordY), npts)
  73. # Define scale ticks
  74. min_tick = min(min_tick, np.amin(edata))
  75. max_tick = max(max_tick, np.amax(edata))
  76. scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6))
  77. # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
  78. cax = ax.imshow(edata, interpolation = 'nearest', cmap = cm.jet,
  79. origin = 'lower', vmin = min_tick, vmax = max_tick,
  80. extent = (min(scale_x), max(scale_x), min(scale_y), max(scale_y)),
  81. norm = LogNorm())
  82. # Add colorbar
  83. cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
  84. cbar.ax.set_yticklabels(['%3.1e' % (a) for a in scale_ticks]) # vertically oriented colorbar
  85. pos = list(cbar.ax.get_position().bounds)
  86. fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
  87. plt.xlabel('X')
  88. plt.ylabel('Y')
  89. # This part draws the nanoshell
  90. # from matplotlib import patches
  91. # s1 = patches.Arc((0, 0), 2.0*x[0, 0], 2.0*x[0, 0], angle=0.0, zorder=2,
  92. # theta1=0.0, theta2=360.0, linewidth=1, color='#00fa9a')
  93. # ax.add_patch(s1)
  94. # s2 = patches.Arc((0, 0), 2.0*x[0, 1], 2.0*x[0, 1], angle=0.0, zorder=2,
  95. # theta1=0.0, theta2=360.0, linewidth=1, color='#00fa9a')
  96. # ax.add_patch(s2)
  97. # End of drawing
  98. plt.draw()
  99. plt.show()
  100. plt.clf()
  101. plt.close()
  102. finally:
  103. np.savetxt("test04_field.txt", result, fmt = "%.5f")
  104. print result