#!/usr/bin/env python # -*- coding: UTF-8 -*- # # Copyright (C) 2009-2015 Ovidio Peña Rodríguez # # This file is part of python-scattnlay # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # The only additional remark is that we expect that all publications # describing work using this software, or all commercial products # using it, cite the following reference: # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by # a multilayered sphere," Computer Physics Communications, # vol. 180, Nov. 2009, pp. 2348-2354. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # This test case calculates the the electric field in the # XY plane, for a Luneburg lens, as described in: # B. R. Johnson, Applied Optics 35 (1996) 3286-3296. # The Luneburg lens is a sphere of radius a, with a # radially-varying index of refraction, given by: # m(r) = [2 - (r/a)**1]**(1/2) # For the calculations, the Luneburg lens was approximated # as a multilayered sphere with 500 equally spaced layers. # The refractive index of each layer is defined to be equal to # m(r) at the midpoint of the layer: ml = [2 - (xm/xL)**1]**(1/2), # with xm = (xl-1 + xl)/2, for l = 1,2,...,L. The size # parameter in the lth layer is xl = l*xL/500. from scattnlay import fieldnlay import numpy as np nL = 500.0 Xmax = 60.0 x = np.ones((1, nL), dtype = np.float64) x[0] = np.arange(1.0, nL + 1.0)*Xmax/nL m = np.ones((1, nL), dtype = np.complex128) m[0] = np.sqrt((2.0 - ((x[0] - 0.5*Xmax/nL)/60.0)**2.0)) + 0.0j print "x =", x print "m =", m npts = 501 scan = np.linspace(-10.0*x[0, -1], 10.0*x[0, -1], npts) coordX, coordY = np.meshgrid(scan, scan) coordX.resize(npts*npts) coordY.resize(npts*npts) coordZ = np.zeros(npts*npts, dtype = np.float64) coord = np.vstack((coordX, coordY, coordZ)).transpose() terms, E, H = fieldnlay(x, m, coord) Er = np.absolute(E) # |E|/|Eo| Eh = np.sqrt(Er[0, :, 0]**2 + Er[0, :, 1]**2 + Er[0, :, 2]**2) result = np.vstack((coordX, coordY, coordZ, Eh)).transpose() try: import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.colors import LogNorm min_tick = 0.1 max_tick = 1.0 edata = np.resize(Eh, (npts, npts)) fig = plt.figure() ax = fig.add_subplot(111) # Rescale to better show the axes scale_x = np.linspace(min(coordX), max(coordX), npts) scale_y = np.linspace(min(coordY), max(coordY), npts) # Define scale ticks min_tick = min(min_tick, np.amin(edata)) max_tick = max(max_tick, np.amax(edata)) scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6)) # Interpolation can be 'nearest', 'bilinear' or 'bicubic' cax = ax.imshow(edata, interpolation = 'nearest', cmap = cm.jet, origin = 'lower', vmin = min_tick, vmax = max_tick, extent = (min(scale_x), max(scale_x), min(scale_y), max(scale_y)), norm = LogNorm()) # Add colorbar cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks]) cbar.ax.set_yticklabels(['%3.1e' % (a) for a in scale_ticks]) # vertically oriented colorbar pos = list(cbar.ax.get_position().bounds) fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14) plt.xlabel('X') plt.ylabel('Y') # This part draws the nanoshell # from matplotlib import patches # s1 = patches.Arc((0, 0), 2.0*x[0, 0], 2.0*x[0, 0], angle=0.0, zorder=2, # theta1=0.0, theta2=360.0, linewidth=1, color='#00fa9a') # ax.add_patch(s1) # s2 = patches.Arc((0, 0), 2.0*x[0, 1], 2.0*x[0, 1], angle=0.0, zorder=2, # theta1=0.0, theta2=360.0, linewidth=1, color='#00fa9a') # ax.add_patch(s2) # End of drawing plt.draw() plt.show() plt.clf() plt.close() finally: np.savetxt("test04_field.txt", result, fmt = "%.5f") print result