|  | @@ -0,0 +1,320 @@
 | 
	
		
			
				|  |  | +#!/usr/bin/env python
 | 
	
		
			
				|  |  | +# -*- coding: UTF-8 -*-
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +#    Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
 | 
	
		
			
				|  |  | +#    Copyright (C) 2013-2015  Konstantin Ladutenko <kostyfisik@gmail.com>
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +#    This file is part of python-scattnlay
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +#    This program is free software: you can redistribute it and/or modify
 | 
	
		
			
				|  |  | +#    it under the terms of the GNU General Public License as published by
 | 
	
		
			
				|  |  | +#    the Free Software Foundation, either version 3 of the License, or
 | 
	
		
			
				|  |  | +#    (at your option) any later version.
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +#    This program is distributed in the hope that it will be useful,
 | 
	
		
			
				|  |  | +#    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
	
		
			
				|  |  | +#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
	
		
			
				|  |  | +#    GNU General Public License for more details.
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +#    The only additional remark is that we expect that all publications
 | 
	
		
			
				|  |  | +#    describing work using this software, or all commercial products
 | 
	
		
			
				|  |  | +#    using it, cite the following reference:
 | 
	
		
			
				|  |  | +#    [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
 | 
	
		
			
				|  |  | +#        a multilayered sphere," Computer Physics Communications,
 | 
	
		
			
				|  |  | +#        vol. 180, Nov. 2009, pp. 2348-2354.
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +#    You should have received a copy of the GNU General Public License
 | 
	
		
			
				|  |  | +#    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +# Several functions to plot field and streamlines (power flow lines).
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +import scattnlay
 | 
	
		
			
				|  |  | +from scattnlay import fieldnlay
 | 
	
		
			
				|  |  | +from scattnlay import scattnlay
 | 
	
		
			
				|  |  | +import numpy as np
 | 
	
		
			
				|  |  | +import cmath
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def unit_vector(vector):
 | 
	
		
			
				|  |  | +    """ Returns the unit vector of the vector.  """
 | 
	
		
			
				|  |  | +    return vector / np.linalg.norm(vector)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def angle_between(v1, v2):
 | 
	
		
			
				|  |  | +    """ Returns the angle in radians between vectors 'v1' and 'v2'::
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            >>> angle_between((1, 0, 0), (0, 1, 0))
 | 
	
		
			
				|  |  | +            1.5707963267948966
 | 
	
		
			
				|  |  | +            >>> angle_between((1, 0, 0), (1, 0, 0))
 | 
	
		
			
				|  |  | +            0.0
 | 
	
		
			
				|  |  | +            >>> angle_between((1, 0, 0), (-1, 0, 0))
 | 
	
		
			
				|  |  | +            3.141592653589793
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    v1_u = unit_vector(v1)
 | 
	
		
			
				|  |  | +    v2_u = unit_vector(v2)
 | 
	
		
			
				|  |  | +    angle = np.arccos(np.dot(v1_u, v2_u))
 | 
	
		
			
				|  |  | +    if np.isnan(angle):
 | 
	
		
			
				|  |  | +        if (v1_u == v2_u).all():
 | 
	
		
			
				|  |  | +            return 0.0
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            return np.pi
 | 
	
		
			
				|  |  | +    return angle
 | 
	
		
			
				|  |  | +###############################################################################
 | 
	
		
			
				|  |  | +def GetFlow3D(x0, y0, z0, max_length, max_angle, x, m, pl):
 | 
	
		
			
				|  |  | +    # Initial position
 | 
	
		
			
				|  |  | +    flow_x = [x0]
 | 
	
		
			
				|  |  | +    flow_y = [y0]
 | 
	
		
			
				|  |  | +    flow_z = [z0]
 | 
	
		
			
				|  |  | +    max_step = x[-1]/3
 | 
	
		
			
				|  |  | +    min_step = x[0]/2000
 | 
	
		
			
				|  |  | +#    max_step = min_step
 | 
	
		
			
				|  |  | +    step = min_step*2.0
 | 
	
		
			
				|  |  | +    if max_step < min_step:
 | 
	
		
			
				|  |  | +        max_step = min_step
 | 
	
		
			
				|  |  | +    coord = np.vstack(([flow_x[-1]], [flow_y[-1]], [flow_z[-1]])).transpose()
 | 
	
		
			
				|  |  | +    terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord,pl=pl)
 | 
	
		
			
				|  |  | +    Ec, Hc = E[0, 0, :], H[0, 0, :]
 | 
	
		
			
				|  |  | +    S = np.cross(Ec, Hc.conjugate()).real
 | 
	
		
			
				|  |  | +    Snorm_prev = S/np.linalg.norm(S)
 | 
	
		
			
				|  |  | +    Sprev = S
 | 
	
		
			
				|  |  | +    length = 0
 | 
	
		
			
				|  |  | +    dpos = step
 | 
	
		
			
				|  |  | +    count = 0
 | 
	
		
			
				|  |  | +    while length < max_length:
 | 
	
		
			
				|  |  | +        count = count + 1
 | 
	
		
			
				|  |  | +        if (count>3000): # Limit length of the absorbed power streamlines
 | 
	
		
			
				|  |  | +            break
 | 
	
		
			
				|  |  | +        if step<max_step:
 | 
	
		
			
				|  |  | +                step = step*2.0
 | 
	
		
			
				|  |  | +        r = np.sqrt(flow_x[-1]**2 + flow_y[-1]**2 + flow_z[-1]**2)
 | 
	
		
			
				|  |  | +        while step > min_step:
 | 
	
		
			
				|  |  | +            #Evaluate displacement from previous poynting vector
 | 
	
		
			
				|  |  | +            dpos = step
 | 
	
		
			
				|  |  | +            dx = dpos*Snorm_prev[0];
 | 
	
		
			
				|  |  | +            dy = dpos*Snorm_prev[1];
 | 
	
		
			
				|  |  | +            dz = dpos*Snorm_prev[2];
 | 
	
		
			
				|  |  | +            #Test the next position not to turn\chang size for more than max_angle
 | 
	
		
			
				|  |  | +            coord = np.vstack(([flow_x[-1]+dx], [flow_y[-1]+dy], [flow_z[-1]+dz])).transpose()
 | 
	
		
			
				|  |  | +            terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord,pl=pl)
 | 
	
		
			
				|  |  | +            Ec, Hc = E[0, 0, :], H[0, 0, :]
 | 
	
		
			
				|  |  | +            Eth = max(np.absolute(Ec))/1e10
 | 
	
		
			
				|  |  | +            Hth = max(np.absolute(Hc))/1e10
 | 
	
		
			
				|  |  | +            for i in xrange(0,len(Ec)):
 | 
	
		
			
				|  |  | +                if abs(Ec[i]) < Eth:
 | 
	
		
			
				|  |  | +                    Ec[i] = 0+0j
 | 
	
		
			
				|  |  | +                if abs(Hc[i]) < Hth:
 | 
	
		
			
				|  |  | +                    Hc[i] = 0+0j
 | 
	
		
			
				|  |  | +            S = np.cross(Ec, Hc.conjugate()).real
 | 
	
		
			
				|  |  | +            if not np.isfinite(S).all():
 | 
	
		
			
				|  |  | +                break
 | 
	
		
			
				|  |  | +            Snorm = S/np.linalg.norm(S)
 | 
	
		
			
				|  |  | +            diff = (S-Sprev)/max(np.linalg.norm(S), np.linalg.norm(Sprev))
 | 
	
		
			
				|  |  | +            if np.linalg.norm(diff)<max_angle:
 | 
	
		
			
				|  |  | +            # angle = angle_between(Snorm, Snorm_prev)
 | 
	
		
			
				|  |  | +            # if abs(angle) < max_angle:
 | 
	
		
			
				|  |  | +                break
 | 
	
		
			
				|  |  | +            step = step/2.0
 | 
	
		
			
				|  |  | +        #3. Save result
 | 
	
		
			
				|  |  | +        Sprev = S
 | 
	
		
			
				|  |  | +        Snorm_prev = Snorm
 | 
	
		
			
				|  |  | +        dx = dpos*Snorm_prev[0];
 | 
	
		
			
				|  |  | +        dy = dpos*Snorm_prev[1];
 | 
	
		
			
				|  |  | +        dz = dpos*Snorm_prev[2];
 | 
	
		
			
				|  |  | +        length = length + step
 | 
	
		
			
				|  |  | +        flow_x.append(flow_x[-1] + dx)
 | 
	
		
			
				|  |  | +        flow_y.append(flow_y[-1] + dy)
 | 
	
		
			
				|  |  | +        flow_z.append(flow_z[-1] + dz)
 | 
	
		
			
				|  |  | +    return np.array(flow_x), np.array(flow_y), np.array(flow_z)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +###############################################################################
 | 
	
		
			
				|  |  | +def GetField(crossplane, npts, factor, x, m, pl):
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    crossplane: XZ, YZ, XY
 | 
	
		
			
				|  |  | +    npts: number of point in each direction
 | 
	
		
			
				|  |  | +    factor: ratio of plotting size to outer size of the particle
 | 
	
		
			
				|  |  | +    x: size parameters for particle layers
 | 
	
		
			
				|  |  | +    m: relative index values for particle layers
 | 
	
		
			
				|  |  | +    """
 | 
	
		
			
				|  |  | +    scan = np.linspace(-factor*x[-1], factor*x[-1], npts)
 | 
	
		
			
				|  |  | +    zero = np.zeros(npts*npts, dtype = np.float64)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    if crossplane=='XZ':
 | 
	
		
			
				|  |  | +        coordX, coordZ = np.meshgrid(scan, scan)
 | 
	
		
			
				|  |  | +        coordX.resize(npts*npts)
 | 
	
		
			
				|  |  | +        coordZ.resize(npts*npts)
 | 
	
		
			
				|  |  | +        coordY = zero
 | 
	
		
			
				|  |  | +        coordPlot1 = coordX
 | 
	
		
			
				|  |  | +        coordPlot2 = coordZ
 | 
	
		
			
				|  |  | +    elif crossplane=='YZ':
 | 
	
		
			
				|  |  | +        coordY, coordZ = np.meshgrid(scan, scan)
 | 
	
		
			
				|  |  | +        coordY.resize(npts*npts)
 | 
	
		
			
				|  |  | +        coordZ.resize(npts*npts)
 | 
	
		
			
				|  |  | +        coordX = zero
 | 
	
		
			
				|  |  | +        coordPlot1 = coordY
 | 
	
		
			
				|  |  | +        coordPlot2 = coordZ
 | 
	
		
			
				|  |  | +    elif crossplane=='XY':
 | 
	
		
			
				|  |  | +        coordX, coordY = np.meshgrid(scan, scan)
 | 
	
		
			
				|  |  | +        coordX.resize(npts*npts)
 | 
	
		
			
				|  |  | +        coordY.resize(npts*npts)
 | 
	
		
			
				|  |  | +        coordZ = zero
 | 
	
		
			
				|  |  | +        coordPlot1 = coordY
 | 
	
		
			
				|  |  | +        coordPlot2 = coordX
 | 
	
		
			
				|  |  | +        
 | 
	
		
			
				|  |  | +    coord = np.vstack((coordX, coordY, coordZ)).transpose()
 | 
	
		
			
				|  |  | +    terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord, pl=pl)
 | 
	
		
			
				|  |  | +    Ec = E[0, :, :]
 | 
	
		
			
				|  |  | +    Hc = H[0, :, :]
 | 
	
		
			
				|  |  | +    P=[]
 | 
	
		
			
				|  |  | +    P = np.array(map(lambda n: np.linalg.norm(np.cross(Ec[n], Hc[n])).real, range(0, len(E[0]))))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # for n in range(0, len(E[0])):
 | 
	
		
			
				|  |  | +    #     P.append(np.linalg.norm( np.cross(Ec[n], np.conjugate(Hc[n]) ).real/2 ))
 | 
	
		
			
				|  |  | +    return Ec, Hc, P, coordPlot1, coordPlot2
 | 
	
		
			
				|  |  | +###############################################################################
 | 
	
		
			
				|  |  | +def fieldplot(x,m, WL, comment='', WL_units=' ', crossplane='XZ', field_to_plot='Pabs',npts=101, factor=2.1, flow_total=11, is_flow_extend=True, pl=-1, outline_width=1):
 | 
	
		
			
				|  |  | +    Ec, Hc, P, coordX, coordZ = GetField(crossplane, npts, factor, x, m, pl)
 | 
	
		
			
				|  |  | +    Er = np.absolute(Ec)
 | 
	
		
			
				|  |  | +    Hr = np.absolute(Hc)
 | 
	
		
			
				|  |  | +    try:
 | 
	
		
			
				|  |  | +        import matplotlib.pyplot as plt
 | 
	
		
			
				|  |  | +        from matplotlib import cm
 | 
	
		
			
				|  |  | +        from matplotlib.colors import LogNorm
 | 
	
		
			
				|  |  | +        if field_to_plot == 'Pabs':
 | 
	
		
			
				|  |  | +            Eabs_data = np.resize(P, (npts, npts)).T 
 | 
	
		
			
				|  |  | +            label = r'$\operatorname{Re}(E \times H)$'
 | 
	
		
			
				|  |  | +        elif field_to_plot == 'Eabs':
 | 
	
		
			
				|  |  | +            Eabs = np.sqrt(Er[ :, 0]**2 + Er[ :, 1]**2 + Er[ :, 2]**2)
 | 
	
		
			
				|  |  | +            Eabs_data = np.resize(Eabs, (npts, npts)).T 
 | 
	
		
			
				|  |  | +            label = r'$|E|$'
 | 
	
		
			
				|  |  | +        elif field_to_plot == 'Habs':
 | 
	
		
			
				|  |  | +            Habs= np.sqrt(Hr[ :, 0]**2 + Hr[ :, 1]**2 + Hr[ :, 2]**2)
 | 
	
		
			
				|  |  | +            Eabs_data = np.resize(Habs, (npts, npts)).T 
 | 
	
		
			
				|  |  | +            label = r'$|H|$'
 | 
	
		
			
				|  |  | +        elif field_to_plot == 'angleEx':
 | 
	
		
			
				|  |  | +            Eangle = np.angle(Ec[ :, 0])/np.pi*180
 | 
	
		
			
				|  |  | +            Eabs_data = np.resize(Eangle, (npts, npts)).T 
 | 
	
		
			
				|  |  | +            label = r'$arg(E_x)$'
 | 
	
		
			
				|  |  | +        elif field_to_plot == 'angleHy':
 | 
	
		
			
				|  |  | +            Hangle = np.angle(Hc[ :, 1])/np.pi*180
 | 
	
		
			
				|  |  | +            Eabs_data = np.resize(Hangle, (npts, npts)).T 
 | 
	
		
			
				|  |  | +            label = r'$arg(H_y)$'
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        fig, ax = plt.subplots(1,1)
 | 
	
		
			
				|  |  | +        # Rescale to better show the axes
 | 
	
		
			
				|  |  | +        scale_x = np.linspace(min(coordX)*WL/2.0/np.pi, max(coordX)*WL/2.0/np.pi, npts)
 | 
	
		
			
				|  |  | +        scale_z = np.linspace(min(coordZ)*WL/2.0/np.pi, max(coordZ)*WL/2.0/np.pi, npts)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        # Define scale ticks
 | 
	
		
			
				|  |  | +        min_tick = np.amin(Eabs_data[~np.isnan(Eabs_data)])
 | 
	
		
			
				|  |  | +        max_tick = np.amax(Eabs_data[~np.isnan(Eabs_data)])
 | 
	
		
			
				|  |  | +        scale_ticks = np.linspace(min_tick, max_tick, 6)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
 | 
	
		
			
				|  |  | +        ax.set_title(label)
 | 
	
		
			
				|  |  | +        cax = ax.imshow(Eabs_data, interpolation = 'nearest', cmap = cm.jet,
 | 
	
		
			
				|  |  | +                        origin = 'lower'
 | 
	
		
			
				|  |  | +                        , vmin = min_tick, vmax = max_tick
 | 
	
		
			
				|  |  | +                        , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z))
 | 
	
		
			
				|  |  | +                        #,norm = LogNorm()
 | 
	
		
			
				|  |  | +                        )
 | 
	
		
			
				|  |  | +        ax.axis("image")
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        # Add colorbar
 | 
	
		
			
				|  |  | +        cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
 | 
	
		
			
				|  |  | +        cbar.ax.set_yticklabels(['%5.3g' % (a) for a in scale_ticks]) # vertically oriented colorbar
 | 
	
		
			
				|  |  | +        pos = list(cbar.ax.get_position().bounds)
 | 
	
		
			
				|  |  | +        #fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
 | 
	
		
			
				|  |  | +        if crossplane=='XZ':
 | 
	
		
			
				|  |  | +            plt.xlabel('Z, '+WL_units)
 | 
	
		
			
				|  |  | +            plt.ylabel('X, '+WL_units)
 | 
	
		
			
				|  |  | +        elif crossplane=='YZ':
 | 
	
		
			
				|  |  | +            plt.xlabel('Z, '+WL_units)
 | 
	
		
			
				|  |  | +            plt.ylabel('Y, '+WL_units)
 | 
	
		
			
				|  |  | +        elif crossplane=='XY':
 | 
	
		
			
				|  |  | +            plt.xlabel('Y, '+WL_units)
 | 
	
		
			
				|  |  | +            plt.ylabel('X, '+WL_units)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        # # This part draws the nanoshell
 | 
	
		
			
				|  |  | +        from matplotlib import patches
 | 
	
		
			
				|  |  | +        from matplotlib.path import Path
 | 
	
		
			
				|  |  | +        for xx in x:
 | 
	
		
			
				|  |  | +            r= xx*WL/2.0/np.pi
 | 
	
		
			
				|  |  | +            s1 = patches.Arc((0, 0), 2.0*r, 2.0*r,  angle=0.0, zorder=1.8,
 | 
	
		
			
				|  |  | +                             theta1=0.0, theta2=360.0, linewidth=outline_width, color='black')
 | 
	
		
			
				|  |  | +            ax.add_patch(s1)
 | 
	
		
			
				|  |  | +        # 
 | 
	
		
			
				|  |  | +        # for flow in range(0,flow_total):
 | 
	
		
			
				|  |  | +        #     flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
 | 
	
		
			
				|  |  | +        #                              min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),
 | 
	
		
			
				|  |  | +        #                              min(scale_z),
 | 
	
		
			
				|  |  | +        #                              #0.0,
 | 
	
		
			
				|  |  | +        #                              npts*16)
 | 
	
		
			
				|  |  | +        #     verts = np.vstack((flow_z, flow_x)).transpose().tolist()
 | 
	
		
			
				|  |  | +        #     #codes = [Path.CURVE4]*len(verts)
 | 
	
		
			
				|  |  | +        #     codes = [Path.LINETO]*len(verts)
 | 
	
		
			
				|  |  | +        #     codes[0] = Path.MOVETO
 | 
	
		
			
				|  |  | +        #     path = Path(verts, codes)
 | 
	
		
			
				|  |  | +        #     patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='yellow')
 | 
	
		
			
				|  |  | +        #     ax.add_patch(patch)
 | 
	
		
			
				|  |  | +        if (crossplane=='XZ' or crossplane=='YZ') and flow_total>0:
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            from matplotlib.path import Path
 | 
	
		
			
				|  |  | +            scanSP = np.linspace(-factor*x[-1], factor*x[-1], npts)
 | 
	
		
			
				|  |  | +            min_SP = -factor*x[-1]
 | 
	
		
			
				|  |  | +            step_SP = 2.0*factor*x[-1]/(flow_total-1)
 | 
	
		
			
				|  |  | +            x0, y0, z0 = 0, 0, 0
 | 
	
		
			
				|  |  | +            max_length=factor*x[-1]*8
 | 
	
		
			
				|  |  | +            #max_length=factor*x[-1]*5
 | 
	
		
			
				|  |  | +            max_angle = np.pi/160
 | 
	
		
			
				|  |  | +            if is_flow_extend:
 | 
	
		
			
				|  |  | +                rg = range(0,flow_total*2+1)
 | 
	
		
			
				|  |  | +            else:
 | 
	
		
			
				|  |  | +                rg = range(0,flow_total)
 | 
	
		
			
				|  |  | +            for flow in rg:
 | 
	
		
			
				|  |  | +                if crossplane=='XZ':
 | 
	
		
			
				|  |  | +                    if is_flow_extend:
 | 
	
		
			
				|  |  | +                        x0 = min_SP*2 + flow*step_SP
 | 
	
		
			
				|  |  | +                    else:
 | 
	
		
			
				|  |  | +                        x0 = min_SP + flow*step_SP
 | 
	
		
			
				|  |  | +                    z0 = min_SP
 | 
	
		
			
				|  |  | +                    #y0 = x[-1]/20 
 | 
	
		
			
				|  |  | +                elif crossplane=='YZ':
 | 
	
		
			
				|  |  | +                    if is_flow_extend:
 | 
	
		
			
				|  |  | +                        y0 = min_SP*2 + flow*step_SP
 | 
	
		
			
				|  |  | +                    else:
 | 
	
		
			
				|  |  | +                        y0 = min_SP + flow*step_SP
 | 
	
		
			
				|  |  | +                    z0 = min_SP
 | 
	
		
			
				|  |  | +                    #x0 = x[-1]/20
 | 
	
		
			
				|  |  | +                flow_xSP, flow_ySP, flow_zSP = GetFlow3D(x0, y0, z0, max_length, max_angle, x, m,pl)
 | 
	
		
			
				|  |  | +                if crossplane=='XZ':
 | 
	
		
			
				|  |  | +                    flow_z_plot = flow_zSP*WL/2.0/np.pi
 | 
	
		
			
				|  |  | +                    flow_f_plot = flow_xSP*WL/2.0/np.pi
 | 
	
		
			
				|  |  | +                elif crossplane=='YZ':
 | 
	
		
			
				|  |  | +                    flow_z_plot = flow_zSP*WL/2.0/np.pi
 | 
	
		
			
				|  |  | +                    flow_f_plot = flow_ySP*WL/2.0/np.pi
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +                verts = np.vstack((flow_z_plot, flow_f_plot)).transpose().tolist()
 | 
	
		
			
				|  |  | +                codes = [Path.LINETO]*len(verts)
 | 
	
		
			
				|  |  | +                codes[0] = Path.MOVETO
 | 
	
		
			
				|  |  | +                path = Path(verts, codes)
 | 
	
		
			
				|  |  | +                #patch = patches.PathPatch(path, facecolor='none', lw=0.2, edgecolor='white',zorder = 2.7)
 | 
	
		
			
				|  |  | +                patch = patches.PathPatch(path, facecolor='none', lw=0.7, edgecolor='white',zorder = 1.9)
 | 
	
		
			
				|  |  | +                ax.add_patch(patch)
 | 
	
		
			
				|  |  | +                #ax.plot(flow_z_plot, flow_f_plot, 'x',ms=2, mew=0.1, linewidth=0.5, color='k', fillstyle='none')
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        plt.savefig(comment+"-R"+str(int(round(x[-1]*WL/2.0/np.pi)))+"-"+crossplane+"-"
 | 
	
		
			
				|  |  | +                    +field_to_plot+".pdf")
 | 
	
		
			
				|  |  | +        plt.draw()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    #    plt.show()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        plt.clf()
 | 
	
		
			
				|  |  | +        plt.close()
 | 
	
		
			
				|  |  | +    finally:
 | 
	
		
			
				|  |  | +        terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(np.array([x]),
 | 
	
		
			
				|  |  | +                                                                         np.array([m]))
 | 
	
		
			
				|  |  | +        print("Qabs = "+str(Qabs));
 | 
	
		
			
				|  |  | +    #
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 |