|  | @@ -52,7 +52,7 @@ def GetFlow(scale_x, scale_z, Ec, Hc, a, b, nmax):
 | 
	
		
			
				|  |  |      z_pos = flow_z[-1]
 | 
	
		
			
				|  |  |      x_idx = get_index(scale_x, x_pos)
 | 
	
		
			
				|  |  |      z_idx = get_index(scale_z, z_pos)
 | 
	
		
			
				|  |  | -    S=np.cross(Ec[npts*z_idx+x_idx], Hc[npts*z_idx+x_idx]).real
 | 
	
		
			
				|  |  | +    S=np.cross(Ec[npts*z_idx+x_idx], Hc[npts*z_idx+x_idx].conjugate()).real
 | 
	
		
			
				|  |  |      #if (np.linalg.norm(S)> 1e-4):
 | 
	
		
			
				|  |  |      Snorm_prev=S/np.linalg.norm(S)
 | 
	
		
			
				|  |  |      Snorm_prev=Snorm_prev.real
 | 
	
	
		
			
				|  | @@ -93,15 +93,12 @@ def GetFlow(scale_x, scale_z, Ec, Hc, a, b, nmax):
 | 
	
		
			
				|  |  |  # c)
 | 
	
		
			
				|  |  |  WL=354 #nm
 | 
	
		
			
				|  |  |  core_r = WL/20.0
 | 
	
		
			
				|  |  | -epsilon_Ag = -2.0 + 0.28j   #original
 | 
	
		
			
				|  |  | -#epsilon_ag = -1.59 + 0.01j  # strange
 | 
	
		
			
				|  |  | -#epsilon_Ag = 1.09 + 1.1j  # good
 | 
	
		
			
				|  |  | -#epsilon_Ag = -1.3 + 0.1j  # 
 | 
	
		
			
				|  |  | +epsilon_Ag = -2.0 + 0.28j
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -# # d)
 | 
	
		
			
				|  |  | -# WL=367 #nm
 | 
	
		
			
				|  |  | -# core_r = WL/20.0
 | 
	
		
			
				|  |  | -# epsilon_Ag = -2.71 + 0.25j
 | 
	
		
			
				|  |  | +# d)
 | 
	
		
			
				|  |  | +#WL=367 #nm
 | 
	
		
			
				|  |  | +#core_r = WL/20.0
 | 
	
		
			
				|  |  | +#epsilon_Ag = -2.71 + 0.25j
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  index_Ag = np.sqrt(epsilon_Ag)
 | 
	
	
		
			
				|  | @@ -138,7 +135,7 @@ coord = np.vstack((coordX, coordY, coordZ)).transpose()
 | 
	
		
			
				|  |  |  terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m)
 | 
	
		
			
				|  |  |  terms, E, H = fieldnlay(x, m, coord)
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -P = np.array(map(lambda n: np.linalg.norm(np.cross(E[0][n], H[0][n])).real, range(0, len(E[0]))))
 | 
	
		
			
				|  |  | +P = np.array(map(lambda n: np.linalg.norm(np.cross(E[0][n], H[0][n].conjugate())).real, range(0, len(E[0]))))
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  Ec = E[0, :, :]
 | 
	
		
			
				|  |  |  Hc = H[0, :, :]
 | 
	
	
		
			
				|  | @@ -186,7 +183,7 @@ try:
 | 
	
		
			
				|  |  |      scale_ticks = np.linspace(min_tick, max_tick, 11)
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
 | 
	
		
			
				|  |  | -    ax.set_title(r'$Re(E \times H)$')
 | 
	
		
			
				|  |  | +    ax.set_title(r'$Re(E \times H^*)$')
 | 
	
		
			
				|  |  |      cax = ax.imshow(Eabs_data, interpolation = 'nearest', cmap = cm.jet,
 | 
	
		
			
				|  |  |                          origin = 'lower'
 | 
	
		
			
				|  |  |                          #, vmin = min_tick, vmax = max_tick
 |