|  | @@ -0,0 +1,121 @@
 | 
	
		
			
				|  |  | +#!/usr/bin/env python
 | 
	
		
			
				|  |  | +# -*- coding: UTF-8 -*-
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +#    Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +#    This file is part of python-scattnlay
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +#    This program is free software: you can redistribute it and/or modify
 | 
	
		
			
				|  |  | +#    it under the terms of the GNU General Public License as published by
 | 
	
		
			
				|  |  | +#    the Free Software Foundation, either version 3 of the License, or
 | 
	
		
			
				|  |  | +#    (at your option) any later version.
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +#    This program is distributed in the hope that it will be useful,
 | 
	
		
			
				|  |  | +#    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
	
		
			
				|  |  | +#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
	
		
			
				|  |  | +#    GNU General Public License for more details.
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +#    The only additional remark is that we expect that all publications
 | 
	
		
			
				|  |  | +#    describing work using this software, or all commercial products
 | 
	
		
			
				|  |  | +#    using it, cite the following reference:
 | 
	
		
			
				|  |  | +#    [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
 | 
	
		
			
				|  |  | +#        a multilayered sphere," Computer Physics Communications,
 | 
	
		
			
				|  |  | +#        vol. 180, Nov. 2009, pp. 2348-2354.
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +#    You should have received a copy of the GNU General Public License
 | 
	
		
			
				|  |  | +#    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +# This test case calculates the electric field in the
 | 
	
		
			
				|  |  | +# E-k plane, for an spherical Si-Ag-Si nanoparticle. Core radius is 17.74 nm,
 | 
	
		
			
				|  |  | +# inner layer 23.31nm, outer layer 22.95nm. Working wavelength is 800nm, we use
 | 
	
		
			
				|  |  | +# silicon epsilon=13.64+i0.047, silver epsilon= -28.05+i1.525
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +import os, cmath
 | 
	
		
			
				|  |  | +import numpy as np
 | 
	
		
			
				|  |  | +from scattnlay import fieldnlay
 | 
	
		
			
				|  |  | +from fieldplot import fieldplot
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +if __name__ == '__main__':
 | 
	
		
			
				|  |  | +    import argparse
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    parser = argparse.ArgumentParser()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    parser.add_argument("dirnames", nargs='*', default='.', help="read all data from DIR(S)")
 | 
	
		
			
				|  |  | +    parser.add_argument("-f", "--filename", dest="fname", nargs='?', default=None,
 | 
	
		
			
				|  |  | +                        help="name of 'n' file")
 | 
	
		
			
				|  |  | +    parser.add_argument("-w", "--wavelength", dest="wl", default=3.75, type=float,
 | 
	
		
			
				|  |  | +                        help="wavelength of electromagnetic wave")
 | 
	
		
			
				|  |  | +    parser.add_argument("-r", "--radius", dest="rad", default=None, type=float,
 | 
	
		
			
				|  |  | +                        help="radius of PEC sphere")
 | 
	
		
			
				|  |  | +    parser.add_argument("-t", "--thickness", dest="tc", default=0.8, type=float,
 | 
	
		
			
				|  |  | +                        help="thickness of cloaking layer")
 | 
	
		
			
				|  |  | +    parser.add_argument("-n", "--npoints", dest="npts", default=101, type=int,
 | 
	
		
			
				|  |  | +                        help="number of points for the grid")
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    args = parser.parse_args()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    for dirname in args.dirnames:
 | 
	
		
			
				|  |  | +        print "Calculating spectra for data file(s) in dir '%s'..." % (dirname)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        wl = args.wl # cm
 | 
	
		
			
				|  |  | +        if (args.rad is None):
 | 
	
		
			
				|  |  | +            Rs = 0.75*wl  # cm
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            Rs = args.rad # cm
 | 
	
		
			
				|  |  | +        tc = args.tc # cm
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        if (args.fname is None):
 | 
	
		
			
				|  |  | +            files = [x for x in os.listdir('%s/' % (dirname)) if x.endswith('.dat')]
 | 
	
		
			
				|  |  | +            files.sort()
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            files = [args.fname]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        npts = args.npts # cm
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        if not os.path.exists('%s/flow-results/' % (dirname)):
 | 
	
		
			
				|  |  | +            os.makedirs('%s/flow-results/' % (dirname))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        Rt = Rs + tc # cm
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        print "Wl = %.2f, Rs = %.2f, tc = %.2f, Rt = %.2f" % (wl, Rs, tc, Rt)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        ms = 1.0 + 40.0j
 | 
	
		
			
				|  |  | +        for i, fname in enumerate(files):
 | 
	
		
			
				|  |  | +            print "Calculating spectra for file '%s'..." % (fname)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            basename = os.path.splitext(fname)[0]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            nvalues = np.loadtxt('%s/%s' % (dirname, fname))*1.0 + 1e-11j
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            tl = tc/len(nvalues) # cm
 | 
	
		
			
				|  |  | +            r = [Rs]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            for i in range(len(nvalues)):
 | 
	
		
			
				|  |  | +                r += [r[i] + tl]
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            x = np.ones((1, len(nvalues) + 1), dtype = np.float64)
 | 
	
		
			
				|  |  | +            m = np.ones((1, len(nvalues) + 1), dtype = np.complex128)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            x[0] = 2.0*np.pi*np.array(r, dtype = np.float64)/wl
 | 
	
		
			
				|  |  | +            m[0] = np.array([ms] + nvalues[:, 1].tolist(), dtype = np.complex128)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            factor = 2
 | 
	
		
			
				|  |  | +            comment='PEC-'+basename
 | 
	
		
			
				|  |  | +            WL_units='cm'
 | 
	
		
			
				|  |  | +            flow_total = 39
 | 
	
		
			
				|  |  | +            #flow_total = 0
 | 
	
		
			
				|  |  | +            #crossplane='XZ'
 | 
	
		
			
				|  |  | +            crossplane='YZ'
 | 
	
		
			
				|  |  | +            #crossplane='XY'
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            # Options to plot: Eabs, Habs, Pabs, angleEx, angleHy
 | 
	
		
			
				|  |  | +            field_to_plot='Pabs'
 | 
	
		
			
				|  |  | +            #field_to_plot='Eabs'
 | 
	
		
			
				|  |  | +            #field_to_plot='angleEx'
 | 
	
		
			
				|  |  | +            fieldplot(x[0],m[0], wl, comment, WL_units, crossplane, field_to_plot, npts,
 | 
	
		
			
				|  |  | +                      factor, flow_total, pl=0, outline_width=0.1)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        print "Done!!"
 | 
	
		
			
				|  |  | +
 |