説明なし

Ravi Hegde dad00f90f4 changes into new qx format 6 年 前
.ipynb_checkpoints dad00f90f4 changes into new qx format 6 年 前
.mypy_cache b2e2f34fad further dev 6 年 前
__pycache__ dad00f90f4 changes into new qx format 6 年 前
datasets 9af47cfec1 conv layer nets added and working 6 年 前
materials 1d7b8580a1 again 6 年 前
models 25d68667cb commit with assisted DE 6 年 前
results 65106a91a8 added rugate functions 6 年 前
README e9a845a293 README created online with Bitbucket 6 年 前
Untitled.ipynb a186f56b20 simple qx working code 6 年 前
barplotting.ipynb b2e2f34fad further dev 6 年 前
de2.py dad00f90f4 changes into new qx format 6 年 前
de_conv.ipynb 65106a91a8 added rugate functions 6 年 前
hypoptim.ipynb b2e2f34fad further dev 6 年 前
hyptune.py 1e493c3bd5 further develp in conv scatter nets 6 年 前
loss_defs.py b2e2f34fad further dev 6 年 前
make_dataset.py 1d7b8580a1 again 6 年 前
makeqx.py a186f56b20 simple qx working code 6 年 前
mtmm.pyx a186f56b20 simple qx working code 6 年 前
mxmodel.ipynb 25d68667cb commit with assisted DE 6 年 前
pygmoimp.ipynb 25d68667cb commit with assisted DE 6 年 前
pymietest.ipynb 65106a91a8 added rugate functions 6 年 前
qxnew.py dad00f90f4 changes into new qx format 6 年 前
qxplots.py a186f56b20 simple qx working code 6 年 前
rugate_d.ipynb dad00f90f4 changes into new qx format 6 年 前
scatternet.ipynb b2e2f34fad further dev 6 年 前
scipydiffe.ipynb 65106a91a8 added rugate functions 6 年 前
scnets.py 85e716f303 Almost ready for global optimization 6 年 前
setup.py a186f56b20 simple qx working code 6 年 前
smooth_x.ipynb 65106a91a8 added rugate functions 6 年 前
snlay.py b2e2f34fad further dev 6 年 前

README

https://bitbucket.org/rshegde/deepmie-deep-learning-electromagnetic-scattering

Abstract
===============================================================
We propose the use of Deep Convolutional Neural Networks (DCNN)
in concert with Differential Evolution for solving inverse problems in
electromagnetics. We show that networks built using innovations like
convolutional layers, batch normalization, parametric REctified Linear Unit
(ReLU) and residual blocks achieve comparable performance to previously
reported dense fully-connected networks but achieve drastic reduction in
parameter weights and training epoch lengths. The proposed lightweight CNNs
are used in concert with Differential Evolution global optimization to achieve
8x speedup in convergence time. Systematic hyperparameter grid searches are
reported to permit faster model discovery for application to other problems.

See the following arxiv paper for details


Requirements
================================================================
1) CUDA capable GPU
2) Python 3.5
3) Numpy, Matplotlib, Pandas, Scipy, Scikitlearn
4) Cudatooklit 9.0, CuDNN 7.1
5) Mxnet-GPU, Mxnet-cumkl
6) Keras, Keras-mxnet
7) Scattnlay -- needed if you want to generate other datasets
8) Jupyter notebook
9) ipyparallel for calling multiple runs at the same time

Getting started
==================================
Most of the code is placed in Jupyter notebooks for interactivity.
PyMIEtest.ipynb -- familiarizes you with generating datasets
Scatternets.ipynb -- allows building and visualizing models
hypoptim.ipynb -- hyperparameter grid search using scikit CV grid search
scipydiffe -- differential evolution using compiled models.