Ei kuvausta

Ravi Hegde dad00f90f4 changes into new qx format 6 vuotta sitten
.ipynb_checkpoints dad00f90f4 changes into new qx format 6 vuotta sitten
.mypy_cache b2e2f34fad further dev 6 vuotta sitten
__pycache__ dad00f90f4 changes into new qx format 6 vuotta sitten
datasets 9af47cfec1 conv layer nets added and working 6 vuotta sitten
materials 1d7b8580a1 again 6 vuotta sitten
models 25d68667cb commit with assisted DE 6 vuotta sitten
results 65106a91a8 added rugate functions 6 vuotta sitten
README e9a845a293 README created online with Bitbucket 6 vuotta sitten
Untitled.ipynb a186f56b20 simple qx working code 6 vuotta sitten
barplotting.ipynb b2e2f34fad further dev 6 vuotta sitten
de2.py dad00f90f4 changes into new qx format 6 vuotta sitten
de_conv.ipynb 65106a91a8 added rugate functions 6 vuotta sitten
hypoptim.ipynb b2e2f34fad further dev 6 vuotta sitten
hyptune.py 1e493c3bd5 further develp in conv scatter nets 6 vuotta sitten
loss_defs.py b2e2f34fad further dev 6 vuotta sitten
make_dataset.py 1d7b8580a1 again 6 vuotta sitten
makeqx.py a186f56b20 simple qx working code 6 vuotta sitten
mtmm.pyx a186f56b20 simple qx working code 6 vuotta sitten
mxmodel.ipynb 25d68667cb commit with assisted DE 6 vuotta sitten
pygmoimp.ipynb 25d68667cb commit with assisted DE 6 vuotta sitten
pymietest.ipynb 65106a91a8 added rugate functions 6 vuotta sitten
qxnew.py dad00f90f4 changes into new qx format 6 vuotta sitten
qxplots.py a186f56b20 simple qx working code 6 vuotta sitten
rugate_d.ipynb dad00f90f4 changes into new qx format 6 vuotta sitten
scatternet.ipynb b2e2f34fad further dev 6 vuotta sitten
scipydiffe.ipynb 65106a91a8 added rugate functions 6 vuotta sitten
scnets.py 85e716f303 Almost ready for global optimization 6 vuotta sitten
setup.py a186f56b20 simple qx working code 6 vuotta sitten
smooth_x.ipynb 65106a91a8 added rugate functions 6 vuotta sitten
snlay.py b2e2f34fad further dev 6 vuotta sitten

README

https://bitbucket.org/rshegde/deepmie-deep-learning-electromagnetic-scattering

Abstract
===============================================================
We propose the use of Deep Convolutional Neural Networks (DCNN)
in concert with Differential Evolution for solving inverse problems in
electromagnetics. We show that networks built using innovations like
convolutional layers, batch normalization, parametric REctified Linear Unit
(ReLU) and residual blocks achieve comparable performance to previously
reported dense fully-connected networks but achieve drastic reduction in
parameter weights and training epoch lengths. The proposed lightweight CNNs
are used in concert with Differential Evolution global optimization to achieve
8x speedup in convergence time. Systematic hyperparameter grid searches are
reported to permit faster model discovery for application to other problems.

See the following arxiv paper for details


Requirements
================================================================
1) CUDA capable GPU
2) Python 3.5
3) Numpy, Matplotlib, Pandas, Scipy, Scikitlearn
4) Cudatooklit 9.0, CuDNN 7.1
5) Mxnet-GPU, Mxnet-cumkl
6) Keras, Keras-mxnet
7) Scattnlay -- needed if you want to generate other datasets
8) Jupyter notebook
9) ipyparallel for calling multiple runs at the same time

Getting started
==================================
Most of the code is placed in Jupyter notebooks for interactivity.
PyMIEtest.ipynb -- familiarizes you with generating datasets
Scatternets.ipynb -- allows building and visualizing models
hypoptim.ipynb -- hyperparameter grid search using scikit CV grid search
scipydiffe -- differential evolution using compiled models.