| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 | %{Copyright © 2020 Alexey A. Shcherbakov. All rights reserved.This file is part of GratingFMM.GratingFMM is free software: you can redistribute it and/or modifyit under the terms of the GNU General Public License as published bythe Free Software Foundation, either version 2 of the License, or(at your option) any later version.GratingFMM is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty ofMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See theGNU General Public License for more details.You should have received a copy of the GNU General Public Licensealong with GratingFMM. If not, see <https://www.gnu.org/licenses/>.%}%% description:% calculate a permittivity Fourier matrix of a 2D binary grating% being periodic in x and y dimensions of the 3D Cartesian coordinates%% input:% xno, yno: numbers of Fourier harmonics% cx, cy: rows of centers of a 2D rectangular mesh filling the grating period along%   x and y dimensions normalized by the period (each value should be between -0.5 and 0.5)% dx, dy: rows of widths of a 2D rectangular mesh elements along%   x and y dimensions normalized by the period (each value should be between 0 and 1)% eps: row of permittivities for each mesh element (length(eps) should be%   equal to length(cx)*length(cy))%% output:% FE: cell array containing two Fourier matrices of the permittivity and% inverse permittivity%% implementation:function [FE] = calc_emntd_bin(xno, yno, cx, cy, dx, dy, eps)	nx = length(cx);	ny = length(cy);	if (length(cx)~=length(dx)) || (length(cy)~=length(dy)) || (length(eps)~=(nx*ny))		error("incorrect binary grating definition");	end	FE = cellmat(1,2,2*yno-1,2*xno-1);	[CX,CY] = meshgrid(cx,cy);	[DX,DY] = meshgrid(dx,dy);	ix = linspace(1,xno-1,xno-1);	iy = linspace(1,yno-1,yno-1);	[IX,IY] = meshgrid(ix,iy);		for ip = 1:nx*ny		fx = (sin(ix*pi*DX(ip))./(pi*ix)).*exp((-2*pi*1i*CX(ip))*ix);		fy = (sin(iy*pi*DY(ip))./(pi*iy)).*exp((-2*pi*1i*CY(ip))*iy);		FX = (sin(IX*pi*DX(ip))./(pi*IX)).*exp((-2*pi*1i*CX(ip))*IX);		FY = (sin(IY*pi*DY(ip))./(pi*IY)).*exp((-2*pi*1i*CY(ip))*IY);		M = zeros(2*yno-1,2*xno-1);		M(yno+1:2*yno-1,xno) = DX(ip)*fy;		M(yno-1:-1:1,xno) = conj(M(yno+1:2*yno-1,xno));		M(yno,xno+1:2*xno-1) = DY(ip)*fx;		M(yno,xno-1:-1:1) = conj(M(yno,xno+1:2*xno-1));		M(yno+1:2*yno-1,xno+1:2*xno-1) = FX.*FY;		M(yno+1:2*yno-1,xno-1:-1:1) = conj(FX).*FY;		M(yno-1:-1:1,xno+1:2*xno-1) = FX.*conj(FY);		M(yno-1:-1:1,xno-1:-1:1) = conj(FX.*FY);		FE{1,1} = FE{1,1} + eps(ip)*M;		FE{1,2} = FE{1,2} + (1/eps(ip))*M;		FE{1,1}(yno,xno) = FE{1,1}(yno,xno) + DX(ip)*DY(ip)*eps(ip);		FE{1,2}(yno,xno) = FE{1,2}(yno,xno) + DX(ip)*DY(ip)/eps(ip);	endend%% end of calc_emntd_cyl%
 |