fmmnc_efficiency.m 2.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. %{
  2. Copyright © 2020 Alexey A. Shcherbakov. All rights reserved.
  3. This file is part of GratingFMM.
  4. GratingFMM is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 2 of the License, or
  7. (at your option) any later version.
  8. GratingFMM is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with GratingFMM. If not, see <https://www.gnu.org/licenses/>.
  14. %}
  15. %% description:
  16. % calculate a matrix of diffraction efficiencies in case of the
  17. % non-collinear diffraction by 1D gratings being periodic in x dimension
  18. %% input:
  19. % no: number of Fourier harmonics
  20. % V_inc: incident field amplitude matrix of size (2*no,2)
  21. % V_dif: diffracted field amplitude matrix of size (2*no,2)
  22. % kx0: incident plane wave wavevector x-projection (Bloch wavevector)
  23. % ky0: incident plane wave wavevector y-projection
  24. % kg: wavelength-to-period ratio (grating vector)
  25. % eps1, eps2: substrate and superstrate permittivities
  26. %% output:
  27. % V_eff: efficiency matrix of size (2*no,2) if the if the incident field has
  28. % propagating harmonics, otherwise (if the incident field is purely evanescent)
  29. % the matrix of partial powers carried by each diffraction order
  30. % first index of V_inc, V_dif, V_eff indicates diffraction harmonics
  31. % with indices 1:no being TE orders and no+1:2*no being TM orders
  32. % (0-th order index is ind_0 = ceil(no/2))
  33. % second index of V_inc, V_dif, V_eff indicates whether the diffraction orders
  34. % are in the substrate (V(:,1)) or in the superstrate (V(:,2))
  35. %% implementation
  36. function [V_eff] = fmmnc_efficiency(no, V_inc, V_dif, kx0, ky0, kg, eps1, eps2)
  37. [kz1, kz2] = fmm_kxz(no, kx0, ky0, kg, eps1, eps2);
  38. kz1 = transpose(kz1);
  39. kz2 = transpose(kz2);
  40. ib1 = 1:no;
  41. ib2 = no+1:2*no;
  42. V_eff = zeros(2*no,2);
  43. P_inc = sum( abs(V_inc(ib1,1).^2).*real(kz1) + abs(V_inc(ib1,2).^2).*real(kz2) ) ...
  44. + sum( abs(V_inc(ib2,1).^2).*real(kz1/eps1) + abs(V_inc(ib2,2).^2).*real(kz2/eps2) );
  45. V_eff(ib1,1) = abs(V_dif(ib1,1).^2).*real(kz1);
  46. V_eff(ib1,2) = abs(V_dif(ib1,2).^2).*real(kz2);
  47. V_eff(ib2,1) = abs(V_dif(ib2,1).^2).*real(kz1/eps1);
  48. V_eff(ib2,2) = abs(V_dif(ib2,2).^2).*real(kz2/eps2);
  49. if abs(P_inc) > 1e-15
  50. V_eff = V_eff/P_inc;
  51. else
  52. V_eff = 0.5*V_eff;
  53. end
  54. end
  55. %
  56. % END
  57. %