123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- %{
- Copyright © 2020 Alexey A. Shcherbakov. All rights reserved.
- This file is part of GratingFMM.
- GratingFMM is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 2 of the License, or
- (at your option) any later version.
- GratingFMM is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with GratingFMM. If not, see <https://www.gnu.org/licenses/>.
- %}
- %% description:
- % calculation of a grating S-matrix by the Fourier Modal Method
- % in the case of the non-collinear diffraction by 1D gratings being periodic in x
- % dimension of the Cartesian coordinates
- %% input:
- % no: number of Fourier harmonics
- % kx0: incident plane wave wavevector x-projection (Bloch wavevector)
- % ky0: incident plane wave wavevector y-projection
- % (ky0=0 corresponds to the collinear diffraction)
- % kg: wavelength-to-period ratio (grating vector)
- % kh: grating depth multiplied by the vacuum wavenumber
- % eps1: permittivity of the substrate
- % eps2: permittivity of the superstrate
- % FE: Fourier matrix of the grating profile
- %% output:
- % SM: scattering matrix of size (2*no,2*no,2,2)
- % block SM(:,:,1,1) corresponds to refelection from substrate to substrate
- % block SM(:,:,2,2) corresponds to refelection from superstrate to superstrate
- % block SM(:,:,2,1) corresponds to transmission from substrate to superstrate
- % block SM(:,:,1,2) corresponds to transmission from superstrate to substrate
- % first no components in each of the two first dimensions if the S-matrix
- % correspond to the TE polarization, and indeces from no+1 to 2*no
- % correspond to the TM polarization
- % central harmonic index is ind_0 = ceil(no/2)
- % for example, an ampitude of the TE-polarized transmitted wave to i-th diffraction order
- % from the substrate to the superstrate under the TM plane wave illumination
- % with unit amplitude is SM(ind_0+i, no+ind_0, 2, 1)
- %% implementation
- function [SM] = fmmnc(no, kx0, ky0, kg, kh, eps1, eps2, FE)
- % block indices
- ib1 = 1:no;
- ib2 = no+1:2*no;
- ib3 = 2*no+1:3*no;
- ib4 = 3*no+1:4*no;
- % wavevector projections
- [kz1, kz2, kx, kxy] = fmm_kxz(no, kx0, ky0, kg, eps1, eps2);
- % permittivity Toeplitz matrices
- ME = toeplitz(FE(no:2*no-1,1),FE(no:-1:1,1)); % permittivity Toeplitz matrix
- MU = toeplitz(FE(no:2*no-1,2),FE(no:-1:1,2)); % inverse permittivity Toeplitz matrix
- % initialize the eigenvectors
- EV = zeros(2*no,2*no);
- HV = zeros(2*no,2*no);
- % matrix for the electric field
- IMU = eye(no)/MU;
- TM = ME\((kx').*IMU);
- EV(ib1,ib1) = IMU - (kx').*TM - (ky0^2)*eye(no);
- EV(ib2,ib1) = ky0*(diag(kx) - TM);
- EV(ib2,ib2) = ME - diag(kxy.*kxy);
- % solve the eigenvalue problem for the electric field
- [EV,MB] = eig(EV);
- beta = transpose(sqrt(diag(MB))); % row of eigenvalues
- ind = angle(beta) < -1e-7; % check the branch of the square root
- beta(ind) = -beta(ind);
- % calculate the magnetic field eigen vectors
- HV(ib2,ib2) = diag(ky0*kx);
- HV(ib1,ib1) = -HV(ib2,ib2);
- HV(ib2,ib1) = IMU - (ky0^2)*eye(no);
- HV(ib1,ib2) = diag(kx.*kx) - ME;
- HV = (HV*EV).*(1./beta);
- bexp = exp((1i*kh)*beta);
- % apply the boundary conditions:
- % calculate T-matrices
- TS = fmmnc_calc_T(no,EV,HV,kx,ky0,kxy,kz1,eps1); % susbtrate-grating T-matrix
- TC = fmmnc_calc_T(no,EV,HV,kx,ky0,kxy,kz2,eps2); % grating-cover T-matrix
- % initialization
- M1 = zeros(4*no,4*no);
- M2 = zeros(4*no,4*no);
- % combine T-matrices
- M1([ib1,ib2],[ib1,ib2]) = TS([ib3,ib4],[ib1,ib2]);
- M1([ib3,ib4],[ib3,ib4]) = TC([ib1,ib2],[ib3,ib4]);
- M1(ib1,ib3) = TS(ib3,ib3).*bexp(ib1);
- M1(ib2,ib3) = TS(ib4,ib3).*bexp(ib1);
- M1(ib1,ib4) = TS(ib3,ib4).*bexp(ib2);
- M1(ib2,ib4) = TS(ib4,ib4).*bexp(ib2);
- M1(ib3,ib1) = TC(ib1,ib1).*bexp(ib1);
- M1(ib4,ib1) = TC(ib2,ib1).*bexp(ib1);
- M1(ib3,ib2) = TC(ib1,ib2).*bexp(ib2);
- M1(ib4,ib2) = TC(ib2,ib2).*bexp(ib2);
- M2([ib1,ib2],[ib1,ib2]) = TS([ib1,ib2],[ib1,ib2]);
- M2([ib3,ib4],[ib3,ib4]) = TC([ib3,ib4],[ib3,ib4]);
- M2(ib1,ib3) = TS(ib1,ib3).*bexp(ib1);
- M2(ib2,ib3) = TS(ib2,ib3).*bexp(ib1);
- M2(ib1,ib4) = TS(ib1,ib4).*bexp(ib2);
- M2(ib2,ib4) = TS(ib2,ib4).*bexp(ib2);
- M2(ib3,ib1) = TC(ib3,ib1).*bexp(ib1);
- M2(ib4,ib1) = TC(ib4,ib1).*bexp(ib1);
- M2(ib3,ib2) = TC(ib3,ib2).*bexp(ib2);
- M2(ib4,ib2) = TC(ib4,ib2).*bexp(ib2);
- % attain S-matrix
- SM = M2S(M1/M2);
- end
|