12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 |
- %{
- Copyright © 2020 Alexey A. Shcherbakov. All rights reserved.
- This file is part of GratingFMM.
- GratingFMM is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 2 of the License, or
- (at your option) any later version.
- GratingFMM is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with GratingFMM. If not, see <https://www.gnu.org/licenses/>.
- %}
- %% demonstration script for the 2D grating Fourier Modal Method calculations
- clc;
- %format long;
- %% initialization
- wl = 1; % wavelength in micrometers
- phi = 0;
- theta = 0.001; % for normal incidence take a small non-zero value
- kx0 = sin(theta*pi/180)*cos(phi*pi/180); % incidence wavevector horizontal projection (dimensionless) (Bloch wavevector)
- ky0 = sin(theta*pi/180)*sin(phi*pi/180); % incidence wavevector horizontal projection (dimensionless) (Bloch wavevector)
- gpx = 0.72; % grating period in x dimension
- gpy = 0.72; % grating period it y dimension
- gh = 0.5; % grating depth
- wv = 2*pi/wl; % wavevector
- % dimensionless variables
- kgx = wl/gpx;
- kgy = wl/gpy;
- kh = wv*gh;
- xno = 15; % number of Fourier modes
- yno = 15; % number of Fourier modes
- no = xno*yno;
- ixy = (ceil(xno/2)-1)*yno+ceil(yno/2);
- eps_sub = 1.5; % substrate permittivity
- eps_gr = 3.17^2; % get_epsAu_Drude(wl); %grating permittivity
- eps_sup = 1; % superstrate permittivity
- %% S-matrix calculation
- % calculate Fourier image matrix of the dielectric permittivity function
- % for a 2D lamellar grating with filling factors 0.5,0.5
- FE = calc_emntd_lam(xno,yno,0.5,0.5,eps_gr,eps_sup);
- % scattering matrix of the grating
- SM = fmmtd(xno,yno,kx0,ky0,kgx,kgy,kh,eps_sub,eps_sup,FE);
- %% diffraction of a plane wave example
- % incident field amplitude vector
- V_inc = zeros(2*no,2);
- V_inc((ceil(xno/2)-1)*yno+ceil(yno/2),2) = 1; % TE polarized plane wave (0-th harmonic) coming from the superstrate
- % define diffracted amplitude vector
- V_dif = zeros(2*no,2);
- % calculate diffraction vector
- V_dif(:,1) = SM(:,:,1,1)*V_inc(:,1) + SM(:,:,1,2)*V_inc(:,2); % diffraction to the substrate
- V_dif(:,2) = SM(:,:,2,1)*V_inc(:,1) + SM(:,:,2,2)*V_inc(:,2); % diffraction to the superstrate
- V_eff = fmmtd_efficiency(xno,yno,V_inc,V_dif,kx0,ky0,kgx,kgy,eps_sub,eps_sup);
- disp("efficiency:");
- disp(V_eff(ixy,1)); % 0th order power transmission coefficient
- disp(V_eff(ixy,2)); % 0th order power reflection coefficient
- % calculate the power balance
- b = fmmtd_balance(xno,yno,V_inc,V_dif,kx0,ky0,kgx,kgy,eps_sub,eps_sup);
- disp("balance:");
- disp(b);
|