|
@@ -0,0 +1,119 @@
|
|
|
|
+%{
|
|
|
|
+Copyright © 2020 Alexey A. Shcherbakov. All rights reserved.
|
|
|
|
+
|
|
|
|
+This file is part of GratingFMM.
|
|
|
|
+
|
|
|
|
+GratingFMM is free software: you can redistribute it and/or modify
|
|
|
|
+it under the terms of the GNU General Public License as published by
|
|
|
|
+the Free Software Foundation, either version 2 of the License, or
|
|
|
|
+(at your option) any later version.
|
|
|
|
+
|
|
|
|
+GratingFMM is distributed in the hope that it will be useful,
|
|
|
|
+but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
+GNU General Public License for more details.
|
|
|
|
+
|
|
|
|
+You should have received a copy of the GNU General Public License
|
|
|
|
+along with GratingFMM. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
+%}
|
|
|
|
+%% description:
|
|
|
|
+% calculation of a grating S-matrix by the Fourier Modal Method
|
|
|
|
+% in the case of the non-collinear diffraction by 1D gratings being periodic in x
|
|
|
|
+% dimension of the Cartesian coordinates
|
|
|
|
+%% input:
|
|
|
|
+% no: number of Fourier harmonics
|
|
|
|
+% kx0: incident plane wave wavevector x-projection (Bloch wavevector)
|
|
|
|
+% ky0: incident plane wave wavevector y-projection
|
|
|
|
+% (ky0=0 corresponds to the collinear diffraction)
|
|
|
|
+% kg: wavelength-to-period ratio (grating vector)
|
|
|
|
+% kh: grating depth multiplied by the vacuum wavenumber
|
|
|
|
+% eps1: permittivity of the substrate
|
|
|
|
+% eps2: permittivity of the superstrate
|
|
|
|
+% FE: Fourier matrix of the grating profile
|
|
|
|
+%% output:
|
|
|
|
+% SM: scattering matrix of size (2*no,2*no,2,2)
|
|
|
|
+% block SM(:,:,1,1) corresponds to refelection from substrate to substrate
|
|
|
|
+% block SM(:,:,2,2) corresponds to refelection from superstrate to superstrate
|
|
|
|
+% block SM(:,:,2,1) corresponds to transmission from substrate to superstrate
|
|
|
|
+% block SM(:,:,1,2) corresponds to transmission from superstrate to substrate
|
|
|
|
+% first no components in each of the two first dimensions if the S-matrix
|
|
|
|
+% correspond to the TE polarization, and indeces from no+1 to 2*no
|
|
|
|
+% correspond to the TM polarization
|
|
|
|
+% central harmonic index is ind_0 = ceil(no/2)
|
|
|
|
+% for example, an ampitude of the TE-polarized transmitted wave to i-th diffraction order
|
|
|
|
+% from the substrate to the superstrate under the TM plane wave illumination
|
|
|
|
+% with unit amplitude is SM(ind_0+i, no+ind_0, 2, 1)
|
|
|
|
+%% implementation
|
|
|
|
+function [SM] = fmmnc(no, kx0, ky0, kg, kh, eps1, eps2, FE)
|
|
|
|
+ % block indices
|
|
|
|
+ ib1 = 1:no;
|
|
|
|
+ ib2 = no+1:2*no;
|
|
|
|
+ ib3 = 2*no+1:3*no;
|
|
|
|
+ ib4 = 3*no+1:4*no;
|
|
|
|
+
|
|
|
|
+ % wavevector projections
|
|
|
|
+ [kz1, kz2, kx, kxy] = fmm_kxz(no, kx0, ky0, kg, eps1, eps2);
|
|
|
|
+
|
|
|
|
+ % permittivity Toeplitz matrices
|
|
|
|
+ ME = toeplitz(FE(no:2*no-1,1),FE(no:-1:1,1)); % permittivity Toeplitz matrix
|
|
|
|
+ MU = toeplitz(FE(no:2*no-1,2),FE(no:-1:1,2)); % inverse permittivity Toeplitz matrix
|
|
|
|
+
|
|
|
|
+ % initialize the eigenvectors
|
|
|
|
+ EV = zeros(2*no,2*no);
|
|
|
|
+ HV = zeros(2*no,2*no);
|
|
|
|
+
|
|
|
|
+ % matrix for the electric field
|
|
|
|
+ IMU = eye(no)/MU;
|
|
|
|
+ TM = ME\((kx').*IMU);
|
|
|
|
+ EV(ib1,ib1) = IMU - (kx').*TM - (ky0^2)*eye(no);
|
|
|
|
+ EV(ib2,ib1) = ky0*(diag(kx) - TM);
|
|
|
|
+ EV(ib2,ib2) = ME - diag(kxy.*kxy);
|
|
|
|
+
|
|
|
|
+ % solve the eigenvalue problem for the electric field
|
|
|
|
+ [EV,MB] = eig(EV);
|
|
|
|
+ beta = transpose(sqrt(diag(MB))); % row of eigenvalues
|
|
|
|
+ ind = angle(beta) < -1e-7; % check the branch of the square root
|
|
|
|
+ beta(ind) = -beta(ind);
|
|
|
|
+
|
|
|
|
+ % calculate the magnetic field eigen vectors
|
|
|
|
+ HV(ib2,ib2) = diag(ky0*kx);
|
|
|
|
+ HV(ib1,ib1) = -HV(ib2,ib2);
|
|
|
|
+ HV(ib2,ib1) = IMU - (ky0^2)*eye(no);
|
|
|
|
+ HV(ib1,ib2) = diag(kx.*kx) - ME;
|
|
|
|
+ HV = (HV*EV).*(1./beta);
|
|
|
|
+
|
|
|
|
+ bexp = exp((1i*kh)*beta);
|
|
|
|
+
|
|
|
|
+ % apply the boundary conditions:
|
|
|
|
+ % calculate T-matrices
|
|
|
|
+ TS = fmmnc_calc_T(no,EV,HV,kx,ky0,kxy,kz1,eps1); % susbtrate-grating T-matrix
|
|
|
|
+ TC = fmmnc_calc_T(no,EV,HV,kx,ky0,kxy,kz2,eps2); % grating-cover T-matrix
|
|
|
|
+ % initialization
|
|
|
|
+ M1 = zeros(4*no,4*no);
|
|
|
|
+ M2 = zeros(4*no,4*no);
|
|
|
|
+ % combine T-matrices
|
|
|
|
+ M1([ib1,ib2],[ib1,ib2]) = TS([ib3,ib4],[ib1,ib2]);
|
|
|
|
+ M1([ib3,ib4],[ib3,ib4]) = TC([ib1,ib2],[ib3,ib4]);
|
|
|
|
+ M1(ib1,ib3) = TS(ib3,ib3).*bexp(ib1);
|
|
|
|
+ M1(ib2,ib3) = TS(ib4,ib3).*bexp(ib1);
|
|
|
|
+ M1(ib1,ib4) = TS(ib3,ib4).*bexp(ib2);
|
|
|
|
+ M1(ib2,ib4) = TS(ib4,ib4).*bexp(ib2);
|
|
|
|
+ M1(ib3,ib1) = TC(ib1,ib1).*bexp(ib1);
|
|
|
|
+ M1(ib4,ib1) = TC(ib2,ib1).*bexp(ib1);
|
|
|
|
+ M1(ib3,ib2) = TC(ib1,ib2).*bexp(ib2);
|
|
|
|
+ M1(ib4,ib2) = TC(ib2,ib2).*bexp(ib2);
|
|
|
|
+
|
|
|
|
+ M2([ib1,ib2],[ib1,ib2]) = TS([ib1,ib2],[ib1,ib2]);
|
|
|
|
+ M2([ib3,ib4],[ib3,ib4]) = TC([ib3,ib4],[ib3,ib4]);
|
|
|
|
+ M2(ib1,ib3) = TS(ib1,ib3).*bexp(ib1);
|
|
|
|
+ M2(ib2,ib3) = TS(ib2,ib3).*bexp(ib1);
|
|
|
|
+ M2(ib1,ib4) = TS(ib1,ib4).*bexp(ib2);
|
|
|
|
+ M2(ib2,ib4) = TS(ib2,ib4).*bexp(ib2);
|
|
|
|
+ M2(ib3,ib1) = TC(ib3,ib1).*bexp(ib1);
|
|
|
|
+ M2(ib4,ib1) = TC(ib4,ib1).*bexp(ib1);
|
|
|
|
+ M2(ib3,ib2) = TC(ib3,ib2).*bexp(ib2);
|
|
|
|
+ M2(ib4,ib2) = TC(ib4,ib2).*bexp(ib2);
|
|
|
|
+
|
|
|
|
+ % attain S-matrix
|
|
|
|
+ SM = M2S(M1/M2);
|
|
|
|
+end
|