1234567891011121314151617181920212223242526272829303132333435363738 |
- import json
- import base64
- import numpy as np
- class DataDecoder:
- def __init__(self, filename):
- self.data = ''
- with open(filename, 'r') as file:
- self.data = file.read()
- self.structed_data = json.loads(self.data)
- def getRawData(self, averaging_num=0, data_num=0, channel_num=0):
- for items in self.structed_data:
- if(items['averaging_num'] == averaging_num and items['data_num'] == data_num):
- for channel_data in items['channel_data']:
- if(channel_data['channel_num'] == channel_num):
- return channel_data['channel_data']
- return None
- def getDataDecoded(self, averaging_num=0, data_num=0, channel_num=0, points=10):
- rawData = self.getRawData(averaging_num, data_num, channel_num)
- edata = base64.b64decode(rawData.encode('utf-8'))
- arr = np.frombuffer(edata, dtype=np.int16, count=points, offset=0)
- return arr
- def getDataScaled(self, averaging_num=0, data_num=0, channel_num=0, points=10, range=5.0):
- decodedData = self.getDataDecoded(averaging_num, data_num, channel_num, points)
- return range * decodedData / 32768
- #dec = DataDecoder('saved229.json')
- # print(dec.getRawData(0, 0, 1)) # ::getRawData(averagingIndex, dataTriggerIndex, channelIndex)
- # a = dec.getDataDecoded(0, 0, 0, 500)
- # print(a[0:100]) # ::getDataDecoded(averagingIndex, dataTriggerIndex, channelIndex, count)
- #a = dec.getDataScaled(0, 1, 1, 500, 5.0)
- #print(a[0:100])
|