import json import base64 import numpy as np class DataDecoder: def __init__(self, filename): self.data = '' with open(filename, 'r') as file: self.data = file.read() self.structed_data = json.loads(self.data) def getRawData(self, averaging_num=0, data_num=0, channel_num=0): for items in self.structed_data: if(items['averaging_num'] == averaging_num and items['data_num'] == data_num): for channel_data in items['channel_data']: if(channel_data['channel_num'] == channel_num): return channel_data['channel_data'] return None def getDataDecoded(self, averaging_num=0, data_num=0, channel_num=0, points=10): rawData = self.getRawData(averaging_num, data_num, channel_num) edata = base64.b64decode(rawData.encode('utf-8')) arr = np.frombuffer(edata, dtype=np.int16, count=points, offset=0) return arr def getDataScaled(self, averaging_num=0, data_num=0, channel_num=0, points=10, range=5.0): decodedData = self.getDataDecoded(averaging_num, data_num, channel_num, points) return range * decodedData / 32768 #dec = DataDecoder('saved229.json') # print(dec.getRawData(0, 0, 1)) # ::getRawData(averagingIndex, dataTriggerIndex, channelIndex) # a = dec.getDataDecoded(0, 0, 0, 500) # print(a[0:100]) # ::getDataDecoded(averagingIndex, dataTriggerIndex, channelIndex, count) #a = dec.getDataScaled(0, 1, 1, 500, 5.0) #print(a[0:100])