Nav apraksta

dependabot[bot] f79603a776 Bump json5 and @vue/cli-service in /vue-cli3-webapp 1 gadu atpakaļ
.github f7a759039d update 2 gadi atpakaļ
debian 32e03214e1 Modified the default Debian package to be for Python 3. 4 gadi atpakaļ
doc 57c7261705 updated fiel plotting script 9 gadi atpakaļ
examples 675e361d5f remove c++11 std compile flag (now all major compilers has it as default) 1 gadu atpakaļ
guiapp 189b0450a3 add css transition for adding flex row 2 gadi atpakaļ
scattnlay f7eaa4fb66 initial match of supp fig 5 and simulation results 2 gadi atpakaļ
src 9605ede71c use data from paper 2 gadi atpakaļ
tests f7eaa4fb66 initial match of supp fig 5 and simulation results 2 gadi atpakaļ
utils f841e1886f introducing config.ts 3 gadi atpakaļ
vue-cli3-webapp f79603a776 Bump json5 and @vue/cli-service in /vue-cli3-webapp 1 gadu atpakaļ
.clang-format 360f3b154c Move pb11 conversion functions to a separate file 2 gadi atpakaļ
.gitignore a835aaa459 add fogotten file 3 gadi atpakaļ
.gitmodules 63921447d4 add refractiveindex.info as submodule 3 gadi atpakaļ
CHANGES 1b7786ad5a Initial commit based on Ovidio version of python-scattnlay 0.3.0 10 gadi atpakaļ
CMakeLists.txt 675e361d5f remove c++11 std compile flag (now all major compilers has it as default) 1 gadu atpakaļ
COPYING 48e7762a08 Changed version number and made some small fixes. 5 gadi atpakaļ
LICENSE 1b7786ad5a Initial commit based on Ovidio version of python-scattnlay 0.3.0 10 gadi atpakaļ
MANIFEST.in 4165e55421 Completed port from Cython to pybind11. 5 gadi atpakaļ
Makefile 1e55f528c2 Revert "update" 2 gadi atpakaļ
PKG-INFO 48e7762a08 Changed version number and made some small fixes. 5 gadi atpakaļ
README.md ad22625c95 readme update 2 gadi atpakaļ
go.sh e8024478b5 change missed .h to .hpp 8 gadi atpakaļ
push-to-github.sh eea51ce5ca Changes to push script 10 gadi atpakaļ
pyproject.toml f05aa36d40 initial python tests on GitHub 2 gadi atpakaļ
requirements.txt f05aa36d40 initial python tests on GitHub 2 gadi atpakaļ
setup.cfg 71a297d952 Updated copyright and prepared the code to add scattnlay to PyPI. 6 gadi atpakaļ
setup.py 675e361d5f remove c++11 std compile flag (now all major compilers has it as default) 1 gadu atpakaļ
tox.ini 61184be0fa scattnlay tests for python against data from Du's paper 2 gadi atpakaļ

README.md

output example Output example: Field distribution inside layered Si\Ag\Si sphere and Poynting vector distribution in Ag sphere with powerflow lines calculated with Scattnlay (scripts field-SiAgSi-flow.py and field-Ag-flow.py from example section as revision ).

Discuss:

Try to join our Gitter chat:

Fill the issue here: Issues.

Stable releases

  • Version 2.0.1 (Jan 17, 2017). DOI
  • Version 2.0.0 (Apr 1, 2016).
  • Version 1.0.0 (Nov 22, 2014).

How to use scattnlay

Table of contents:

Mie theory calculator web application

Limited web version is available at https://physics.ifmo.ru/mie/

Compile Code

To compile the source you will need a C++11 capable compiler. To use MultiPrecision feature you need to install Boost.Multiprecision library:

  • libboost-all-dev (>= 1.58.0)

To compile the Python extension you need NumPy:

  • python-numpy (>= 1.0)
  • python-all-dev (any version)
  • python-numpy-dev (any version)
  • pybind11 (any version)

And to compile the Debian package you need some tools:

  • debhelper (>=7.0.0)
  • dh-python (any version)
  • cdbs (>= 0.4.49)

Compilation options

  • make source - Create source package for Python extension
  • make ext - Create Python extension using C++ code
  • make install - Install Python extension on local system
  • make rpm - Generate a rpm package for Python extension
  • make deb - Generate a deb package for Python extension
  • make standalone - Create standalone programs (scattnlay and fieldnlay)
  • make clean - Delete temporal files

There are also an experimental CMake project and it is possible to compile into JavaScript module (using Emscripten compiler).

Python module

To build and install Python module run from the source code directory:

pip install . --user

Binary install

Binary files for Ubuntu and derivative distributions can be found at Launchpad To install it you must configure the repository:

sudo add-apt-repository ppa:ovidio/scattering
sudo apt update

and then you simply install the package:

sudo apt install python-scattnlay

You can also install it from PyPi via

sudo pip install python-scattnlay

You can also git clone and pip install -e . to develop python package.

Use

  1. Python library
    • Use scattnlay directly
from scattnlay import scattnlay, fieldnlay
...
x = ...
m = ...
coords = ...
terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m)
terms, E, H = fieldnlay(x, m, coords)
...
  • Execute some of the test scripts (located in the folder 'tests/python') Example:
./test01.py
  1. Standalone program
    • Execute scattnlay directly:
scattnlay -l Layers x1 m1.r m1.i [x2 m2.r m2.i ...] [-t ti tf nt] [-c comment]
  • Execute fieldnlay directly:
fieldnlay -l Layers x1 m1.r m1.i [x2 m2.r m2.i ...] -p xi xf nx yi yf ny zi zf nz [-c comment]
  • Execute some of the test scripts (located in the folder 'tests/shell'):
./test01.sh > test01.csv
  1. C++ library

Scattnlay "Hello world!" example:

    try {
      nmie::MultiLayerMieApplied<double> multi_layer_mie; 
      multi_layer_mie.AddTargetLayer(core_width, index_Si);
      multi_layer_mie.AddTargetLayer(inner_width, index_Ag);
      multi_layer_mie.AddTargetLayer(outer_width, index_Si);
      multi_layer_mie.SetWavelength(WL);
      multi_layer_mie.RunMieCalculation();
      double Qabs = multi_layer_mie.GetQabs();
      printf("Qabs = %g\n", Qabs);
    } catch( const std::invalid_argument& ia ) {
      // Will catch if  multi_layer_mie fails or other errors.
      std::cerr << "Invalid argument: " << ia.what() << std::endl;
      return -1;
    }

The complete example-minimal.cc and a bit more complicated example-get-Mie.cc can be found in example directory along with go-cc-examples.sh script with build commands.

example-get-Mie.cc can be compiled using double precision or multiple precision (just include -DMULTI_PRECISION=200 to use 200 digits for calculations).

Related papers

  1. O. Peña and U. Pal, "Scattering of electromagnetic radiation by a multilayered sphere," Comput. Phys. Commun. 180, 2348-2354 (2009). http://dx.doi.org/10.1016/j.cpc.2009.07.010

  2. K. Ladutenko, O. Peña-Rodríguez, I. Melchakova, I. Yagupov and P. Belov, "Reduction of scattering using thin all-dielectric shells designed by stochastic optimizer," J. Appl. Phys. 116, 184508 (2014). http://dx.doi.org/10.1063/1.4900529

  3. K. Ladutenko, P. Belov, O. Peña-Rodríguez, A. Mirzaei, A. Miroshnichenko and I. Shadrivov, "Superabsorption of light by nanoparticles," Nanoscale 7, 18897-18901 (2015). http://dx.doi.org/10.1039/C5NR05468K

  4. K. Ladutenko, U. Pal, A. Rivera, and O. Peña-Rodríguez, "Mie calculation of electromagnetic near-field for a multilayered sphere," Comp. Phys. Comm. 214, 225-230 (2017). http://dx.doi.org/j.cpc.2017.01.017

Acknowledgment

We expect that all publications describing work using this software, or all commercial products using it, cite at least one of the following references:

[1] O. Peña and U. Pal, "Scattering of electromagnetic radiation

by a multilayered sphere," Computer Physics Communications,
vol. 180, Nov. 2009, pp. 2348-2354.

[2] K. Ladutenko, U. Pal, A. Rivera and O. Peña-Rodríguez, "Mie calculation

of electromagnetic near-field for a multilayered sphere,"
Computer Physics Communications, vol. 214, May 2017, pp. 225-230.

License

GPL v3+