|
@@ -0,0 +1,226 @@
|
|
|
+#!/usr/bin/env python3
|
|
|
+# -*- coding: UTF-8 -*-
|
|
|
+from glob import glob
|
|
|
+from operator import truediv
|
|
|
+from matplotlib import pyplot as plt
|
|
|
+import cmath
|
|
|
+from scattnlay import mesomie, mie
|
|
|
+import numpy as np
|
|
|
+import scipy.io
|
|
|
+from functools import wraps
|
|
|
+import time
|
|
|
+from eval_spectra import multi_lorentzian, params_count as pc
|
|
|
+import cma
|
|
|
+import sys
|
|
|
+from optical_constants import read_refractive_index_from_yaml as read_nk
|
|
|
+
|
|
|
+isPlot = True
|
|
|
+# isPlot = False
|
|
|
+
|
|
|
+
|
|
|
+def timeit(func):
|
|
|
+ @wraps(func)
|
|
|
+ def timeit_wrapper(*args, **kwargs):
|
|
|
+ start_time = time.perf_counter()
|
|
|
+ result = func(*args, **kwargs)
|
|
|
+ end_time = time.perf_counter()
|
|
|
+ total_time = end_time - start_time
|
|
|
+ print(
|
|
|
+ f'Function {func.__name__}{args} {kwargs} Took {total_time:.4f} seconds')
|
|
|
+ return result
|
|
|
+ return timeit_wrapper
|
|
|
+
|
|
|
+
|
|
|
+min_lim = 0.4
|
|
|
+max_lim = 0.75
|
|
|
+
|
|
|
+# mat = scipy.io.loadmat('d-parameters/rs=4.mat')
|
|
|
+# omega_ratio = mat['omegav'][0]
|
|
|
+# d_perp = mat['dperp'][0]*10
|
|
|
+
|
|
|
+from_disk = np.loadtxt('rs4-d_perp_interpolated.txt')
|
|
|
+from_disk = from_disk[:,
|
|
|
+ from_disk[0, :] > min_lim
|
|
|
+ ]
|
|
|
+from_disk = from_disk[:,
|
|
|
+ from_disk[0, :] < max_lim
|
|
|
+ ]
|
|
|
+
|
|
|
+omega_ratio = from_disk[0, :]
|
|
|
+d_perp = from_disk[1, :] + 1j*from_disk[2, :]
|
|
|
+
|
|
|
+c = 299792458 # m/s
|
|
|
+h_reduced = 6.5821e-16 # eV s
|
|
|
+omega_p = 5.9 # eV
|
|
|
+gamma = 0.1 # eV
|
|
|
+eps_d = 1
|
|
|
+
|
|
|
+# omega_p_star = 3.81 # eV #orig
|
|
|
+omega_p_star = 5.81 # eV
|
|
|
+omega = omega_ratio*omega_p_star
|
|
|
+# WL_mkm = 2*np.pi/((omega/c)/h_reduced)*1e6
|
|
|
+
|
|
|
+WL = 2*np.pi/((omega_ratio * omega_p_star/c)/h_reduced)*1e6 # mkm
|
|
|
+# min_WL_available = 0.1879
|
|
|
+# max_WL_available = 1.9370
|
|
|
+# WL[WL < min_WL_available] = min_WL_available
|
|
|
+# WL[WL > max_WL_available] = max_WL_available
|
|
|
+index_Ag = read_nk('Ag-Johnson-1972.yml', WL, kind=1)
|
|
|
+eps_Ag = index_Ag**2
|
|
|
+# print(index_Ag)
|
|
|
+# plt.figure('index')
|
|
|
+# plt.plot(index_Ag[:, 0], np.real(index_Ag[:, 1]))
|
|
|
+# plt.plot(index_Ag[:, 0], np.imag(index_Ag[:, 1]))
|
|
|
+# plt.show()
|
|
|
+# sys.exit()
|
|
|
+
|
|
|
+
|
|
|
+def eps_m(omega):
|
|
|
+ return 1 - omega_p * omega_p / (omega*omega + 1j*omega*gamma)
|
|
|
+
|
|
|
+
|
|
|
+n = 1 if isPlot else 1
|
|
|
+Rs = [2.5]*n # nm
|
|
|
+y_min = [1e-2]*n
|
|
|
+y_max = [1e1]*n
|
|
|
+
|
|
|
+# Rs = [2.5, 5, 10, 25] # nm
|
|
|
+# y_min = [1e-2, 1e-2, 1e-1, 1e-1]
|
|
|
+# y_max = [1e1, 1e1, 5e1, 5e1]
|
|
|
+
|
|
|
+# for om_rat in omega_ratio:
|
|
|
+R = 0
|
|
|
+
|
|
|
+
|
|
|
+@ timeit
|
|
|
+def run():
|
|
|
+ for fig in range(len(Rs)):
|
|
|
+ global R
|
|
|
+ R = Rs[fig]
|
|
|
+ Qext = []
|
|
|
+ Qext_fit = []
|
|
|
+ om_rat_plot = []
|
|
|
+ x_fit_from_d_perp = np.array([0.09391149, 0.81234806, -0.30526326, -0.01044856,
|
|
|
+ 0.3121473, 0.55333457, -0.01684191, 0.04727765,
|
|
|
+ 0.11249052, 0.88368699, -0.04680872, -0.10982548])
|
|
|
+ omega = omega_ratio*omega_p
|
|
|
+ x = (omega/c) * R * 1e-9/h_reduced
|
|
|
+ m_orig = np.sqrt(eps_m(omega))
|
|
|
+ # m = np.sqrt(eps_m(omega))
|
|
|
+
|
|
|
+ # m = index_Ag
|
|
|
+ m = index_Ag[:, 1]
|
|
|
+ # plt.figure('index2')
|
|
|
+ # plt.plot(x, np.real(m), label='orig')
|
|
|
+ # plt.plot(x, np.imag(m), label='orig')
|
|
|
+ # plt.plot(x, np.real(m), label='mod')
|
|
|
+ # plt.plot(x, np.imag(m), label='mod')
|
|
|
+ # plt.legend()
|
|
|
+ # plt.show()
|
|
|
+ # sys.exit()
|
|
|
+
|
|
|
+ Qext = getMesoQext(R, x, m_orig, d_perp)
|
|
|
+
|
|
|
+ def getQfit(x_fit):
|
|
|
+ d_fit = multi_lorentzian(omega_ratio, x_fit)
|
|
|
+ return getMesoQext(R, x, m, d_fit)
|
|
|
+
|
|
|
+ def rms_base(Q_rms, Q_fit):
|
|
|
+ diff_re = np.real(Q_rms - Q_fit)
|
|
|
+ diff_im = np.imag(Q_rms - Q_fit)
|
|
|
+ rms = (np.sum(np.abs(diff_re)**2))
|
|
|
+ rms += (np.sum(np.abs(diff_im)**2))
|
|
|
+ return rms
|
|
|
+
|
|
|
+ def rms(x0):
|
|
|
+ Q_fit = getQfit(x0)
|
|
|
+ return rms_base(Q_rms, Q_fit)
|
|
|
+
|
|
|
+ def rms_x12(x0):
|
|
|
+ x0[:pc] = x0[:pc]+x1
|
|
|
+ Q_fit = getQfit(x0)
|
|
|
+ return rms_base(Q_rms, Q_fit)
|
|
|
+
|
|
|
+ def rms_x1(x0):
|
|
|
+ Q_fit = getQfit(np.hstack((x1, x0)))
|
|
|
+ return rms_base(Q_rms, Q_fit)
|
|
|
+
|
|
|
+ x_fit_from_d_perp = np.array([0.09391149, 0.81234806, -0.30526326, -0.01044856,
|
|
|
+ 0.3121473, 0.55333457, -0.01684191, 0.04727765,
|
|
|
+ 0.11249052, 0.88368699, -0.04680872, -0.10982548])
|
|
|
+
|
|
|
+ x0 = np.random.random(pc)
|
|
|
+ Q_rms = Qext
|
|
|
+
|
|
|
+ xfit, es = cma.fmin2(rms, x0, sigma0=2)
|
|
|
+ # xfit = np.array([0.32740616895990493, -0.844352181880013, -
|
|
|
+ # 0.5682552466755, 0.015925488550861087])
|
|
|
+ x1 = np.copy(xfit)
|
|
|
+ Qext_fit = getQfit(xfit)
|
|
|
+ # print(x1)
|
|
|
+
|
|
|
+ # x0 = np.random.random(pc)
|
|
|
+ # # x0 = np.copy(x1)
|
|
|
+ # x0 = np.hstack((x1, x0))
|
|
|
+ # xfit, es = cma.fmin2(rms, x0, sigma0=0.2)
|
|
|
+ # # xfit = np.array([-9.03308419e-01, -1.77584180e+00, -2.36259518e+01, 3.41837008e+00,
|
|
|
+ # 5.75724471e-06, , 2.64230613e+00, , 4.72267415e+01, -1.61624064e+00])
|
|
|
+ # # xfit = np.array([0.32740616895990493, -0.844352181880013, -
|
|
|
+ # # 0.5682552466755, 0.015925488550861087])
|
|
|
+ # x2 = np.copy(xfit)
|
|
|
+ # Qext_fit = getQfit(np.hstack((x1, x2)))
|
|
|
+
|
|
|
+ print(xfit)
|
|
|
+
|
|
|
+ om_rat_plot = omega_ratio
|
|
|
+
|
|
|
+ if isPlot:
|
|
|
+ Qext_fit = getQfit(xfit)
|
|
|
+ Qext_no_d = getMesoQext(R, x, m_orig, np.zeros(len(x)))
|
|
|
+ Qext_no_d_mod = getMesoQext(R, x, m, np.zeros(len(x)))
|
|
|
+ d_fit = multi_lorentzian(omega_ratio, xfit)
|
|
|
+ plt.figure(fig)
|
|
|
+ plt.plot(om_rat_plot, Qext_fit,
|
|
|
+ label='fitted orig using mod', color='gray', lw=4)
|
|
|
+ plt.plot(om_rat_plot, Qext_no_d,
|
|
|
+ label='d=0 orig', color='gray', lw=4)
|
|
|
+ plt.plot(om_rat_plot, Qext_no_d_mod,
|
|
|
+ label='d=0 mod', color='gray', lw=4)
|
|
|
+ plt.plot(om_rat_plot, Qext, label='direct orig', color='red', lw=1)
|
|
|
+ plt.legend()
|
|
|
+ # plt.yscale('log')
|
|
|
+ # plt.xlim((0.4, 0.404))
|
|
|
+ # plt.ylim((y_min[fig]*1.9, y_min[fig]*2.3))
|
|
|
+ plt.xlim((0.4, 0.75))
|
|
|
+ # plt.xlim((0.5, 0.6))
|
|
|
+ # plt.ylim((y_min[fig], y_max[fig]))
|
|
|
+ plt.title("Qext for R="+str(R))
|
|
|
+
|
|
|
+ plt.figure("d_param "+str(fig))
|
|
|
+ plt.plot(om_rat_plot, np.real(d_fit), label='re fit', lw=4)
|
|
|
+ plt.plot(om_rat_plot, np.real(d_perp), label='re d_perp')
|
|
|
+ plt.plot(om_rat_plot, np.imag(d_fit), label='im fit', lw=4)
|
|
|
+ plt.plot(om_rat_plot, np.imag(d_perp), label='im d_perp')
|
|
|
+ plt.legend()
|
|
|
+
|
|
|
+ if isPlot:
|
|
|
+ plt.show()
|
|
|
+
|
|
|
+
|
|
|
+# @timeit
|
|
|
+def getMesoQext(R, x, m, d_perp):
|
|
|
+ Qext = np.zeros((len(x)))
|
|
|
+ for i in range(len(x)):
|
|
|
+ mesomie.calc_ab(R*10, # calc_ab needs R in angstrem
|
|
|
+ x[i], # xd
|
|
|
+ x[i] * m[i], # xm
|
|
|
+ 1, # eps_d
|
|
|
+ m[i] * m[i], # eps_m
|
|
|
+ 0, # d_parallel
|
|
|
+ d_perp[i]) # d_perp
|
|
|
+ mesomie.calc_Q()
|
|
|
+ Qext[i] = mesomie.GetQext()
|
|
|
+ return Qext
|
|
|
+
|
|
|
+
|
|
|
+run()
|