123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- #!/usr/bin/env python
- # This test case calculates the differential scattering
- # cross section from a Luneburg lens, as described in:
- # B. R. Johnson, Applied Optics 35 (1996) 3286-3296.
- # The Luneburg lens is a sphere of radius a, with a
- # radially-varying index of refraction, given by:
- # m(r) = [2 - (r/a)**1]**(1/2)
- # For the calculations, the Luneburg lens was approximated
- # as a multilayered sphere with 500 equally spaced layers.
- # The refractive index of each layer is defined to be equal to
- # m(r) at the midpoint of the layer: ml = [2 - (xm/xL)**1]**(1/2),
- # with xm = (xl-1 + xl)/2, for l = 1,2,...,L. The size
- # parameter in the lth layer is xl = l*xL/500. According to
- # geometrical optics theory, the differential cross section
- # can be expressed as:
- # d(Csca)/d(a**2*Omega) = cos(Theta)
- # The differential cross section from wave optics is:
- # d(Csca)/d(a**2*Omega) = S11(Theta)/x**2
- from scattnlay import fieldnlay
- import numpy as np
- x = np.ones((1, 1), dtype = np.float64)
- x[0, 0] = 1.
- m = np.ones((1, 1), dtype = np.complex128)
- m[0, 0] = (0.05 + 2.070j)/1.46
- npts = 1001
- scan = np.linspace(-3.0*x[0, 0], 3.0*x[0, 0], npts)
- coordX, coordY = np.meshgrid(scan, scan)
- coordX.resize(npts*npts)
- coordY.resize(npts*npts)
- coordZ = np.zeros(npts*npts, dtype = np.float64)
- coord = np.vstack((coordX, coordY, coordZ)).transpose()
- terms, E, H = fieldnlay(x, m, coord)
- Er = np.absolute(E)
- # |E|/|Eo|
- Eh = np.sqrt(Er[0, :, 0]**2 + Er[0, :, 1]**2 + Er[0, :, 2]**2)
- result = np.vstack((coordX, coordY, coordZ, Eh)).transpose()
- try:
- import matplotlib.pyplot as plt
- from matplotlib import cm
- from matplotlib.colors import LogNorm
- min_tick = 0.1
- max_tick = 1.0
- edata = np.resize(Eh, (npts, npts))
- fig = plt.figure()
- ax = fig.add_subplot(111)
- # Rescale to better show the axes
- scale_x = np.linspace(min(coordX), max(coordX), npts)
- scale_y = np.linspace(min(coordY), max(coordY), npts)
- # Define scale ticks
- min_tick = max(0.5, min(min_tick, np.amin(edata)))
- max_tick = max(max_tick, np.amax(edata))
- scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6))
- # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
- cax = ax.imshow(edata, interpolation = 'bicubic', cmap = cm.afmhot,
- origin = 'lower', vmin = min_tick, vmax = max_tick,
- extent = (min(scale_x), max(scale_x), min(scale_y), max(scale_y)),
- norm = LogNorm())
- # Add colorbar
- cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
- cbar.ax.set_yticklabels(['%3.1e' % (a) for a in scale_ticks]) # vertically oriented colorbar
- pos = list(cbar.ax.get_position().bounds)
- fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
- plt.xlabel('X')
- plt.ylabel('Y')
- plt.draw()
- plt.show()
- plt.clf()
- plt.close()
- finally:
- np.savetxt("field.txt", result, fmt = "%.5f")
- print result
|