#!/usr/bin/env python # This test case calculates the differential scattering # cross section from a Luneburg lens, as described in: # B. R. Johnson, Applied Optics 35 (1996) 3286-3296. # The Luneburg lens is a sphere of radius a, with a # radially-varying index of refraction, given by: # m(r) = [2 - (r/a)**1]**(1/2) # For the calculations, the Luneburg lens was approximated # as a multilayered sphere with 500 equally spaced layers. # The refractive index of each layer is defined to be equal to # m(r) at the midpoint of the layer: ml = [2 - (xm/xL)**1]**(1/2), # with xm = (xl-1 + xl)/2, for l = 1,2,...,L. The size # parameter in the lth layer is xl = l*xL/500. According to # geometrical optics theory, the differential cross section # can be expressed as: # d(Csca)/d(a**2*Omega) = cos(Theta) # The differential cross section from wave optics is: # d(Csca)/d(a**2*Omega) = S11(Theta)/x**2 from scattnlay import fieldnlay import numpy as np x = np.ones((1, 1), dtype = np.float64) x[0, 0] = 1. m = np.ones((1, 1), dtype = np.complex128) m[0, 0] = (0.05 + 2.070j)/1.46 npts = 1001 scan = np.linspace(-3.0*x[0, 0], 3.0*x[0, 0], npts) coordX, coordY = np.meshgrid(scan, scan) coordX.resize(npts*npts) coordY.resize(npts*npts) coordZ = np.zeros(npts*npts, dtype = np.float64) coord = np.vstack((coordX, coordY, coordZ)).transpose() terms, E, H = fieldnlay(x, m, coord) Er = np.absolute(E) # |E|/|Eo| Eh = np.sqrt(Er[0, :, 0]**2 + Er[0, :, 1]**2 + Er[0, :, 2]**2) result = np.vstack((coordX, coordY, coordZ, Eh)).transpose() try: import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.colors import LogNorm min_tick = 0.1 max_tick = 1.0 edata = np.resize(Eh, (npts, npts)) fig = plt.figure() ax = fig.add_subplot(111) # Rescale to better show the axes scale_x = np.linspace(min(coordX), max(coordX), npts) scale_y = np.linspace(min(coordY), max(coordY), npts) # Define scale ticks min_tick = max(0.5, min(min_tick, np.amin(edata))) max_tick = max(max_tick, np.amax(edata)) scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6)) # Interpolation can be 'nearest', 'bilinear' or 'bicubic' cax = ax.imshow(edata, interpolation = 'bicubic', cmap = cm.afmhot, origin = 'lower', vmin = min_tick, vmax = max_tick, extent = (min(scale_x), max(scale_x), min(scale_y), max(scale_y)), norm = LogNorm()) # Add colorbar cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks]) cbar.ax.set_yticklabels(['%3.1e' % (a) for a in scale_ticks]) # vertically oriented colorbar pos = list(cbar.ax.get_position().bounds) fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14) plt.xlabel('X') plt.ylabel('Y') plt.draw() plt.show() plt.clf() plt.close() finally: np.savetxt("field.txt", result, fmt = "%.5f") print result