123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- import scattnlay
- from scattnlay import fieldnlay
- from scattnlay import scattnlay
- import numpy as np
- import cmath
- def unit_vector(vector):
- """ Returns the unit vector of the vector. """
- return vector / np.linalg.norm(vector)
- def angle_between(v1, v2):
- """ Returns the angle in radians between vectors 'v1' and 'v2'::
- >>> angle_between((1, 0, 0), (0, 1, 0))
- 1.5707963267948966
- >>> angle_between((1, 0, 0), (1, 0, 0))
- 0.0
- >>> angle_between((1, 0, 0), (-1, 0, 0))
- 3.141592653589793
- """
- v1_u = unit_vector(v1)
- v2_u = unit_vector(v2)
- angle = np.arccos(np.dot(v1_u, v2_u))
- if np.isnan(angle):
- if (v1_u == v2_u).all():
- return 0.0
- else:
- return np.pi
- return angle
- def GetFlow3D(x0, y0, z0, max_length, max_angle, x, m):
-
- flow_x = [x0]
- flow_y = [y0]
- flow_z = [z0]
- max_step = x[-1]/3
- min_step = x[0]/2000
- step = min_step*2.0
- if max_step < min_step:
- max_step = min_step
- coord = np.vstack(([flow_x[-1]], [flow_y[-1]], [flow_z[-1]])).transpose()
- terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord)
- Ec, Hc = E[0, 0, :], H[0, 0, :]
- S = np.cross(Ec, Hc.conjugate()).real
- Snorm_prev = S/np.linalg.norm(S)
- length = 0
- dpos = step
- while length < max_length:
- if step<max_step:
- step = step*2.0
- r = np.sqrt(flow_x[-1]**2 + flow_y[-1]**2 + flow_z[-1]**2)
- while step > min_step:
-
- dpos = step
- dx = dpos*Snorm_prev[0];
- dy = dpos*Snorm_prev[1];
- dz = dpos*Snorm_prev[2];
-
- coord = np.vstack(([flow_x[-1]+dx], [flow_y[-1]+dy], [flow_z[-1]+dz])).transpose()
- terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord)
- Ec, Hc = E[0, 0, :], H[0, 0, :]
- Eth = max(np.absolute(Ec))/1e10
- Hth = max(np.absolute(Hc))/1e10
- for i in xrange(0,len(Ec)):
- if abs(Ec[i]) < Eth:
- Ec[i] = 0+0j
- if abs(Hc[i]) < Hth:
- Hc[i] = 0+0j
- S = np.cross(Ec, Hc.conjugate()).real
- Snorm = S/np.linalg.norm(S)
-
-
- angle = angle_between(Snorm, Snorm_prev)
- if abs(angle) < max_angle:
- break
- step = step/2.0
-
- Snorm_prev = Snorm
- dx = dpos*Snorm_prev[0];
- dy = dpos*Snorm_prev[1];
- dz = dpos*Snorm_prev[2];
- length = length + step
- flow_x.append(flow_x[-1] + dx)
- flow_y.append(flow_y[-1] + dy)
- flow_z.append(flow_z[-1] + dz)
- return np.array(flow_x), np.array(flow_y), np.array(flow_z)
- def GetField(crossplane, npts, factor, x, m):
- """
- crossplane: XZ, YZ, XY
- npts: number of point in each direction
- factor: ratio of plotting size to outer size of the particle
- x: size parameters for particle layers
- m: relative index values for particle layers
- """
- scan = np.linspace(-factor*x[-1], factor*x[-1], npts)
- zero = np.zeros(npts*npts, dtype = np.float64)
- if crossplane=='XZ':
- coordX, coordZ = np.meshgrid(scan, scan)
- coordX.resize(npts*npts)
- coordZ.resize(npts*npts)
- coordY = zero
- coordPlot1 = coordX
- coordPlot2 = coordZ
- elif crossplane=='YZ':
- coordY, coordZ = np.meshgrid(scan, scan)
- coordY.resize(npts*npts)
- coordZ.resize(npts*npts)
- coordX = zero
- coordPlot1 = coordY
- coordPlot2 = coordZ
- elif crossplane=='XY':
- coordX, coordY = np.meshgrid(scan, scan)
- coordX.resize(npts*npts)
- coordY.resize(npts*npts)
- coordZ = zero
- coordPlot1 = coordY
- coordPlot2 = coordX
-
- coord = np.vstack((coordX, coordY, coordZ)).transpose()
- terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord)
- Ec = E[0, :, :]
- Hc = H[0, :, :]
- P=[]
- P = np.array(map(lambda n: np.linalg.norm(np.cross(Ec[n], Hc[n])).real, range(0, len(E[0]))))
-
-
- return Ec, Hc, P, coordPlot1, coordPlot2
|