1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216 |
- #ifndef SRC_NMIE_IMPL_HPP_
- #define SRC_NMIE_IMPL_HPP_
- //**********************************************************************************//
- // Copyright (C) 2009-2016 Ovidio Pena <ovidio@bytesfall.com> //
- // Copyright (C) 2013-2016 Konstantin Ladutenko <kostyfisik@gmail.com> //
- // //
- // This file is part of scattnlay //
- // //
- // This program is free software: you can redistribute it and/or modify //
- // it under the terms of the GNU General Public License as published by //
- // the Free Software Foundation, either version 3 of the License, or //
- // (at your option) any later version. //
- // //
- // This program is distributed in the hope that it will be useful, //
- // but WITHOUT ANY WARRANTY; without even the implied warranty of //
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
- // GNU General Public License for more details. //
- // //
- // The only additional remark is that we expect that all publications //
- // describing work using this software, or all commercial products //
- // using it, cite the following reference: //
- // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
- // a multilayered sphere," Computer Physics Communications, //
- // vol. 180, Nov. 2009, pp. 2348-2354. //
- // //
- // You should have received a copy of the GNU General Public License //
- // along with this program. If not, see <http://www.gnu.org/licenses/>. //
- //**********************************************************************************//
- //**********************************************************************************//
- // This class implements the algorithm for a multilayered sphere described by: //
- // [1] W. Yang, "Improved recursive algorithm for light scattering by a //
- // multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720. //
- // //
- // You can find the description of all the used equations in: //
- // [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
- // a multilayered sphere," Computer Physics Communications, //
- // vol. 180, Nov. 2009, pp. 2348-2354. //
- // //
- // Hereinafter all equations numbers refer to [2] //
- //**********************************************************************************//
- #include "nmie.hpp"
- #include "nmie-precision.hpp"
- #include <array>
- #include <algorithm>
- #include <cstdio>
- #include <cstdlib>
- #include <iostream>
- #include <iomanip>
- #include <stdexcept>
- #include <vector>
- namespace nmie {
- //helpers
-
-
- template<class T> inline T pow2(const T value) {return value*value;}
- template<class T> inline T cabs(const std::complex<T> value)
- {return nmm::sqrt(pow2(value.real()) + pow2(value.imag()));}
- template <typename FloatType>
- int newround(FloatType x) {
- return x >= 0 ? static_cast<int>(x + 0.5):static_cast<int>(x - 0.5);
- //return x >= 0 ? (x + 0.5).convert_to<int>():(x - 0.5).convert_to<int>();
- }
- template<typename T>
- inline std::complex<T> my_exp(const std::complex<T>& x) {
- using std::exp; // use ADL
- T const& r = exp(x.real());
- return std::polar(r, x.imag());
- }
- template <typename ToFloatType, typename FromFloatType>
- std::vector<ToFloatType> ConvertVector(const std::vector<FromFloatType> x) {
- std::vector<ToFloatType> new_x;
- for (auto element : x) {
- new_x.push_back(static_cast<ToFloatType>(element));
- }
- return new_x;
- }
- template <typename ToFloatType, typename FromFloatType>
- std::vector<std::complex<ToFloatType> > ConvertComplexVector(std::vector<std::complex<FromFloatType> > x) {
- std::vector<std::complex<ToFloatType> > new_x;
- for (auto element : x) {
- new_x.push_back(std::complex<ToFloatType>(static_cast<ToFloatType>(element.real()),
- static_cast<ToFloatType>(element.imag())
- )
- );
- }
- return new_x;
- }
- template <typename ToFloatType, typename FromFloatType>
- std::vector<std::vector<std::complex<ToFloatType> > > ConvertComplexVectorVector(std::vector<std::vector<std::complex<FromFloatType> > > x) {
- std::vector<std::vector<std::complex<ToFloatType> > > new_x;
- std::vector<std::complex<ToFloatType> > new_y;
- for (auto y : x) {
- new_y.clear();
- for (auto element : y) {
- new_y.push_back(std::complex<ToFloatType>(static_cast<ToFloatType>(element.real()),
- static_cast<ToFloatType>(element.imag())
- )
- );
- }
- new_x.push_back(new_y);
- }
- return new_x;
- }
-
-
- // ********************************************************************** //
- // Returns previously calculated Qext //
- // ********************************************************************** //
- template <typename FloatType>
- FloatType MultiLayerMie<FloatType>::GetQext() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return Qext_;
- }
- // ********************************************************************** //
- // Returns previously calculated Qabs //
- // ********************************************************************** //
- template <typename FloatType>
- FloatType MultiLayerMie<FloatType>::GetQabs() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return Qabs_;
- }
- // ********************************************************************** //
- // Returns previously calculated Qsca //
- // ********************************************************************** //
- template <typename FloatType>
- FloatType MultiLayerMie<FloatType>::GetQsca() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return Qsca_;
- }
- // ********************************************************************** //
- // Returns previously calculated Qbk //
- // ********************************************************************** //
- template <typename FloatType>
- FloatType MultiLayerMie<FloatType>::GetQbk() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return Qbk_;
- }
- // ********************************************************************** //
- // Returns previously calculated Qpr //
- // ********************************************************************** //
- template <typename FloatType>
- FloatType MultiLayerMie<FloatType>::GetQpr() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return Qpr_;
- }
- // ********************************************************************** //
- // Returns previously calculated assymetry factor //
- // ********************************************************************** //
- template <typename FloatType>
- FloatType MultiLayerMie<FloatType>::GetAsymmetryFactor() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return asymmetry_factor_;
- }
- // ********************************************************************** //
- // Returns previously calculated Albedo //
- // ********************************************************************** //
- template <typename FloatType>
- FloatType MultiLayerMie<FloatType>::GetAlbedo() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return albedo_;
- }
- // ********************************************************************** //
- // Returns previously calculated S1 //
- // ********************************************************************** //
- template <typename FloatType>
- std::vector<std::complex<FloatType> > MultiLayerMie<FloatType>::GetS1() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return S1_;
- }
- // ********************************************************************** //
- // Returns previously calculated S2 //
- // ********************************************************************** //
- template <typename FloatType>
- std::vector<std::complex<FloatType> > MultiLayerMie<FloatType>::GetS2() {
- if (!isMieCalculated_)
- throw std::invalid_argument("You should run calculations before result request!");
- return S2_;
- }
- // ********************************************************************** //
- // Modify scattering (theta) angles //
- // ********************************************************************** //
- template <typename FloatType>
- void MultiLayerMie<FloatType>::SetAngles(const std::vector<FloatType>& angles) {
- MarkUncalculated();
- theta_ = angles;
- }
- // ********************************************************************** //
- // Modify size of all layers //
- // ********************************************************************** //
- template <typename FloatType>
- void MultiLayerMie<FloatType>::SetLayersSize(const std::vector<FloatType>& layer_size) {
- MarkUncalculated();
- size_param_.clear();
- FloatType prev_layer_size = 0.0;
- for (auto curr_layer_size : layer_size) {
- if (curr_layer_size <= 0.0)
- throw std::invalid_argument("Size parameter should be positive!");
- if (prev_layer_size > curr_layer_size)
- throw std::invalid_argument
- ("Size parameter for next layer should be larger than the previous one!");
- prev_layer_size = curr_layer_size;
- size_param_.push_back(curr_layer_size);
- }
- }
- // ********************************************************************** //
- // Modify refractive index of all layers //
- // ********************************************************************** //
- template <typename FloatType>
- void MultiLayerMie<FloatType>::SetLayersIndex(const std::vector< std::complex<FloatType> >& index) {
- MarkUncalculated();
- refractive_index_ = index;
- }
- // ********************************************************************** //
- // Modify coordinates for field calculation //
- // ********************************************************************** //
- template <typename FloatType>
- void MultiLayerMie<FloatType>::SetFieldCoords(const std::vector< std::vector<FloatType> >& coords) {
- if (coords.size() != 3)
- throw std::invalid_argument("Error! Wrong dimension of field monitor points!");
- if (coords[0].size() != coords[1].size() || coords[0].size() != coords[2].size())
- throw std::invalid_argument("Error! Missing coordinates for field monitor points!");
- coords_ = coords;
- }
- // ********************************************************************** //
- // Modify index of PEC layer //
- // ********************************************************************** //
- template <typename FloatType>
- void MultiLayerMie<FloatType>::SetPECLayer(int layer_position) {
- MarkUncalculated();
- if (layer_position < 0 && layer_position != -1)
- throw std::invalid_argument("Error! Layers are numbered from 0!");
- PEC_layer_position_ = layer_position;
- }
- // ********************************************************************** //
- // Set maximun number of terms to be used //
- // ********************************************************************** //
- template <typename FloatType>
- void MultiLayerMie<FloatType>::SetMaxTerms(int nmax) {
- MarkUncalculated();
- nmax_preset_ = nmax;
- }
- // ********************************************************************** //
- // Get total size parameter of particle //
- // ********************************************************************** //
- template <typename FloatType>
- FloatType MultiLayerMie<FloatType>::GetSizeParameter() {
- if (size_param_.size() > 0)
- return size_param_.back();
- else
- return 0;
- }
- // ********************************************************************** //
- // Mark uncalculated //
- // ********************************************************************** //
- template <typename FloatType>
- void MultiLayerMie<FloatType>::MarkUncalculated() {
- isExpCoeffsCalc_ = false;
- isScaCoeffsCalc_ = false;
- isMieCalculated_ = false;
- }
- // ********************************************************************** //
- // Clear layer information //
- // ********************************************************************** //
- template <typename FloatType>
- void MultiLayerMie<FloatType>::ClearLayers() {
- MarkUncalculated();
- size_param_.clear();
- refractive_index_.clear();
- }
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- // Computational core
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- // ********************************************************************** //
- // Calculate calcNstop - equation (17) //
- // ********************************************************************** //
- template <typename FloatType>
- void MultiLayerMie<FloatType>::calcNstop() {
- const FloatType& xL = size_param_.back();
- if (xL <= 8) {
- nmax_ = newround(xL + 4.0*pow(xL, 1.0/3.0) + 1);
- } else if (xL <= 4200) {
- nmax_ = newround(xL + 4.05*pow(xL, 1.0/3.0) + 2);
- } else {
- nmax_ = newround(xL + 4.0*pow(xL, 1.0/3.0) + 2);
- }
- }
- // ********************************************************************** //
- // Maximum number of terms required for the calculation //
- // ********************************************************************** //
- template <typename FloatType>
- void MultiLayerMie<FloatType>::calcNmax(unsigned int first_layer) {
- int ri, riM1;
- const std::vector<FloatType>& x = size_param_;
- const std::vector<std::complex<FloatType> >& m = refractive_index_;
- calcNstop(); // Set initial nmax_ value
- for (unsigned int i = first_layer; i < x.size(); i++) {
- if (static_cast<int>(i) > PEC_layer_position_) // static_cast used to avoid warning
- ri = newround(cabs(x[i]*m[i]));
- else
- ri = 0;
- nmax_ = std::max(nmax_, ri);
- // first layer is pec, if pec is present
- if ((i > first_layer) && (static_cast<int>(i - 1) > PEC_layer_position_))
- riM1 = newround(cabs(x[i - 1]* m[i]));
- else
- riM1 = 0;
- nmax_ = std::max(nmax_, riM1);
- }
- nmax_ += 15; // Final nmax_ value
- // nmax_ *= nmax_;
- // printf("using nmax %i\n", nmax_);
- }
- // ********************************************************************** //
- // Calculate an - equation (5) //
- // ********************************************************************** //
- template <typename FloatType>
- std::complex<FloatType> MultiLayerMie<FloatType>::calc_an(int n, FloatType XL, std::complex<FloatType> Ha, std::complex<FloatType> mL,
- std::complex<FloatType> PsiXL, std::complex<FloatType> ZetaXL,
- std::complex<FloatType> PsiXLM1, std::complex<FloatType> ZetaXLM1) {
- std::complex<FloatType> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
- std::complex<FloatType> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
- // std::cout<< std::setprecision(100)
- // << "Ql " << PsiXL
- // <<std::endl;
- return Num/Denom;
- }
- // ********************************************************************** //
- // Calculate bn - equation (6) //
- // ********************************************************************** //
- template <typename FloatType>
- std::complex<FloatType> MultiLayerMie<FloatType>::calc_bn(int n, FloatType XL, std::complex<FloatType> Hb, std::complex<FloatType> mL,
- std::complex<FloatType> PsiXL, std::complex<FloatType> ZetaXL,
- std::complex<FloatType> PsiXLM1, std::complex<FloatType> ZetaXLM1) {
- std::complex<FloatType> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
- std::complex<FloatType> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
- return Num/Denom;
- }
- // ********************************************************************** //
- // Calculates S1 - equation (25a) //
- // ********************************************************************** //
- template <typename FloatType>
- std::complex<FloatType> MultiLayerMie<FloatType>::calc_S1(int n, std::complex<FloatType> an, std::complex<FloatType> bn,
- FloatType Pi, FloatType Tau) {
- return FloatType(n + n + 1)*(Pi*an + Tau*bn)/FloatType(n*n + n);
- }
- // ********************************************************************** //
- // Calculates S2 - equation (25b) (it's the same as (25a), just switches //
- // Pi and Tau) //
- // ********************************************************************** //
- template <typename FloatType>
- std::complex<FloatType> MultiLayerMie<FloatType>::calc_S2(int n, std::complex<FloatType> an, std::complex<FloatType> bn,
- FloatType Pi, FloatType Tau) {
- return calc_S1(n, an, bn, Tau, Pi);
- }
- //**********************************************************************************//
- // This function calculates the logarithmic derivatives of the Riccati-Bessel //
- // functions (D1 and D3) for a complex argument (z). //
- // Equations (16a), (16b) and (18a) - (18d) //
- // //
- // Input parameters: //
- // z: Complex argument to evaluate D1 and D3 //
- // nmax_: Maximum number of terms to calculate D1 and D3 //
- // //
- // Output parameters: //
- // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
- //**********************************************************************************//
- template <typename FloatType>
- void MultiLayerMie<FloatType>::calcD1D3(const std::complex<FloatType> z,
- std::vector<std::complex<FloatType> >& D1,
- std::vector<std::complex<FloatType> >& D3) {
- // Downward recurrence for D1 - equations (16a) and (16b)
- D1[nmax_] = std::complex<FloatType>(0.0, 0.0);
- std::complex<FloatType> c_one(1.0, 0.0);
- const std::complex<FloatType> zinv = std::complex<FloatType>(1.0, 0.0)/z;
- for (int n = nmax_; n > 0; n--) {
- D1[n - 1] = static_cast<FloatType>(n)*zinv - c_one/(D1[n] + static_cast<FloatType>(n)*zinv);
- }
- // TODO: Do we need this check?
- // if (cabs(D1[0]) > 1.0e15) {
- // throw std::invalid_argument("Unstable D1! Please, try to change input parameters!\n");
- // //printf("Warning: Potentially unstable D1! Please, try to change input parameters!\n");
- // }
- // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
- PsiZeta_[0] = static_cast<FloatType>(0.5)*(static_cast<FloatType>(1.0) - std::complex<FloatType>(nmm::cos(2.0*z.real()), nmm::sin(2.0*z.real()))
- *static_cast<FloatType>(nmm::exp(-2.0*z.imag())));
- D3[0] = std::complex<FloatType>(0.0, 1.0);
- for (int n = 1; n <= nmax_; n++) {
- PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<FloatType>(n)*zinv - D1[n - 1])
- *(static_cast<FloatType>(n)*zinv - D3[n - 1]);
- D3[n] = D1[n] + std::complex<FloatType>(0.0, 1.0)/PsiZeta_[n];
- }
- }
- //**********************************************************************************//
- // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a //
- // complex argument (z). //
- // Equations (20a) - (21b) //
- // //
- // Input parameters: //
- // z: Complex argument to evaluate Psi and Zeta //
- // nmax: Maximum number of terms to calculate Psi and Zeta //
- // //
- // Output parameters: //
- // Psi, Zeta: Riccati-Bessel functions //
- //**********************************************************************************//
- template <typename FloatType>
- void MultiLayerMie<FloatType>::calcPsiZeta(std::complex<FloatType> z,
- std::vector<std::complex<FloatType> >& Psi,
- std::vector<std::complex<FloatType> >& Zeta) {
-
- std::complex<FloatType> c_i(0.0, 1.0);
- std::vector<std::complex<FloatType> > D1(nmax_ + 1), D3(nmax_ + 1);
- // First, calculate the logarithmic derivatives
- calcD1D3(z, D1, D3);
- // Now, use the upward recurrence to calculate Psi and Zeta - equations (20a) - (21b)
- Psi[0] = std::sin(z);
- Zeta[0] = std::sin(z) - c_i*std::cos(z);
- for (int n = 1; n <= nmax_; n++) {
- Psi[n] = Psi[n - 1]*(std::complex<FloatType>(n,0.0)/z - D1[n - 1]);
- Zeta[n] = Zeta[n - 1]*(std::complex<FloatType>(n,0.0)/z - D3[n - 1]);
- }
- }
- //**********************************************************************************//
- // This function calculates Pi and Tau for a given value of cos(Theta). //
- // Equations (26a) - (26c) //
- // //
- // Input parameters: //
- // nmax_: Maximum number of terms to calculate Pi and Tau //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // //
- // Output parameters: //
- // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
- //**********************************************************************************//
- template <typename FloatType>
- void MultiLayerMie<FloatType>::calcPiTau(const FloatType& costheta,
- std::vector<FloatType>& Pi, std::vector<FloatType>& Tau) {
- int i;
- //****************************************************//
- // Equations (26a) - (26c) //
- //****************************************************//
- // Initialize Pi and Tau
- Pi[0] = 1.0; // n=1
- Tau[0] = costheta;
- // Calculate the actual values
- if (nmax_ > 1) {
- Pi[1] = 3*costheta*Pi[0]; //n=2
- Tau[1] = 2*costheta*Pi[1] - 3*Pi[0];
- for (i = 2; i < nmax_; i++) { //n=[3..nmax_]
- Pi[i] = ((i + i + 1)*costheta*Pi[i - 1] - (i + 1)*Pi[i - 2])/i;
- Tau[i] = (i + 1)*costheta*Pi[i] - (i + 2)*Pi[i - 1];
- }
- }
- } // end of MultiLayerMie::calcPiTau(...)
- //**********************************************************************************//
- // This function calculates vector spherical harmonics (eq. 4.50, p. 95 BH), //
- // required to calculate the near-field parameters. //
- // //
- // Input parameters: //
- // Rho: Radial distance //
- // Phi: Azimuthal angle //
- // Theta: Polar angle //
- // rn: Either the spherical Ricatti-Bessel function of first or third kind //
- // Dn: Logarithmic derivative of rn //
- // Pi, Tau: Angular functions Pi and Tau //
- // n: Order of vector spherical harmonics //
- // //
- // Output parameters: //
- // Mo1n, Me1n, No1n, Ne1n: Complex vector spherical harmonics //
- //**********************************************************************************//
- template <typename FloatType>
- void MultiLayerMie<FloatType>::calcSpherHarm(const std::complex<FloatType> Rho, const FloatType Theta, const FloatType Phi,
- const std::complex<FloatType>& rn, const std::complex<FloatType>& Dn,
- const FloatType& Pi, const FloatType& Tau, const FloatType& n,
- std::vector<std::complex<FloatType> >& Mo1n, std::vector<std::complex<FloatType> >& Me1n,
- std::vector<std::complex<FloatType> >& No1n, std::vector<std::complex<FloatType> >& Ne1n) {
- // using eq 4.50 in BH
- std::complex<FloatType> c_zero(0.0, 0.0);
- using nmm::sin;
- using nmm::cos;
- Mo1n[0] = c_zero;
- Mo1n[1] = cos(Phi)*Pi*rn/Rho;
- Mo1n[2] = -sin(Phi)*Tau*rn/Rho;
- Me1n[0] = c_zero;
- Me1n[1] = -sin(Phi)*Pi*rn/Rho;
- Me1n[2] = -cos(Phi)*Tau*rn/Rho;
- No1n[0] = sin(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho;
- No1n[1] = sin(Phi)*Tau*Dn*rn/Rho;
- No1n[2] = cos(Phi)*Pi*Dn*rn/Rho;
- Ne1n[0] = cos(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho;
- Ne1n[1] = cos(Phi)*Tau*Dn*rn/Rho;
- Ne1n[2] = -sin(Phi)*Pi*Dn*rn/Rho;
- } // end of MultiLayerMie::calcSpherHarm(...)
- //**********************************************************************************//
- // This function calculates the scattering coefficients required to calculate //
- // both the near- and far-field parameters. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send -1 //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nmax: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only use it if you know what you are doing, otherwise //
- // set this parameter to -1 and the function will calculate it. //
- // //
- // Output parameters: //
- // an, bn: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- template <typename FloatType>
- void MultiLayerMie<FloatType>::calcScattCoeffs() {
- isScaCoeffsCalc_ = false;
- const std::vector<FloatType>& x = size_param_;
- const std::vector<std::complex<FloatType> >& m = refractive_index_;
- const int& pl = PEC_layer_position_;
- const int L = refractive_index_.size();
- //************************************************************************//
- // Calculate the index of the first layer. It can be either 0 (default) //
- // or the index of the outermost PEC layer. In the latter case all layers //
- // below the PEC are discarded. //
- // ***********************************************************************//
- int fl = (pl > 0) ? pl : 0;
- if (nmax_preset_ <= 0) calcNmax(fl);
- else nmax_ = nmax_preset_;
- std::complex<FloatType> z1, z2;
- //**************************************************************************//
- // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
- // means that index = layer number - 1 or index = n - 1. The only exception //
- // are the arrays for representing D1, D3 and Q because they need a value //
- // for the index 0 (zero), hence it is important to consider this shift //
- // between different arrays. The change was done to optimize memory usage. //
- //**************************************************************************//
- // Allocate memory to the arrays
- std::vector<std::complex<FloatType> > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1),
- D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1);
- std::vector<std::vector<std::complex<FloatType> > > Q(L), Ha(L), Hb(L);
- for (int l = 0; l < L; l++) {
- Q[l].resize(nmax_ + 1);
- Ha[l].resize(nmax_);
- Hb[l].resize(nmax_);
- }
- an_.resize(nmax_);
- bn_.resize(nmax_);
- PsiZeta_.resize(nmax_ + 1);
- std::vector<std::complex<FloatType> > PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);
- //*************************************************//
- // Calculate D1 and D3 for z1 in the first layer //
- //*************************************************//
- if (fl == pl) { // PEC layer
- for (int n = 0; n <= nmax_; n++) {
- D1_mlxl[n] = std::complex<FloatType>(0.0, - 1.0);
- D3_mlxl[n] = std::complex<FloatType>(0.0, 1.0);
- }
- } else { // Regular layer
- z1 = x[fl]* m[fl];
- // Calculate D1 and D3
- calcD1D3(z1, D1_mlxl, D3_mlxl);
- }
- //******************************************************************//
- // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
- //******************************************************************//
- for (int n = 0; n < nmax_; n++) {
- Ha[fl][n] = D1_mlxl[n + 1];
- Hb[fl][n] = D1_mlxl[n + 1];
- }
- //*****************************************************//
- // Iteration from the second layer to the last one (L) //
- //*****************************************************//
- std::complex<FloatType> Temp, Num, Denom;
- std::complex<FloatType> G1, G2;
- for (int l = fl + 1; l < L; l++) {
- //************************************************************//
- //Calculate D1 and D3 for z1 and z2 in the layers fl + 1..L //
- //************************************************************//
- z1 = x[l]*m[l];
- z2 = x[l - 1]*m[l];
- //Calculate D1 and D3 for z1
- calcD1D3(z1, D1_mlxl, D3_mlxl);
- //Calculate D1 and D3 for z2
- calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
- //*************************************************//
- //Calculate Q, Ha and Hb in the layers fl + 1..L //
- //*************************************************//
- // Upward recurrence for Q - equations (19a) and (19b)
- Num = std::complex<FloatType>(nmm::exp(-2.0*(z1.imag() - z2.imag())), 0.0)
- *std::complex<FloatType>(nmm::cos(-2.0*z2.real()) - nmm::exp(-2.0*z2.imag()), nmm::sin(-2.0*z2.real()));
- Denom = std::complex<FloatType>(nmm::cos(-2.0*z1.real()) - nmm::exp(-2.0*z1.imag()), nmm::sin(-2.0*z1.real()));
- Q[l][0] = Num/Denom;
- for (int n = 1; n <= nmax_; n++) {
- Num = (z1*D1_mlxl[n] + FloatType(n))*(FloatType(n) - z1*D3_mlxl[n - 1]);
- Denom = (z2*D1_mlxlM1[n] + FloatType(n))*(FloatType(n) - z2*D3_mlxlM1[n - 1]);
- Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
- }
- // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
- for (int n = 1; n <= nmax_; n++) {
- //Ha
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
- G1 = -D1_mlxlM1[n];
- G2 = -D3_mlxlM1[n];
- } else {
- G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
- G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
- } // end of if PEC
- Temp = Q[l][n]*G1;
- Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
- Denom = G2 - Temp;
- Ha[l][n - 1] = Num/Denom;
- //Hb
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
- G1 = Hb[l - 1][n - 1];
- G2 = Hb[l - 1][n - 1];
- } else {
- G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
- G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
- } // end of if PEC
- Temp = Q[l][n]*G1;
- Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
- Denom = (G2- Temp);
- Hb[l][n - 1] = (Num/ Denom);
- } // end of for Ha and Hb terms
- } // end of for layers iteration
- //**************************************//
- //Calculate Psi and Zeta for XL //
- //**************************************//
- // Calculate PsiXL and ZetaXL
- calcPsiZeta(std::complex<FloatType>(x[L - 1],0.0), PsiXL, ZetaXL);
- //*********************************************************************//
- // Finally, we calculate the scattering coefficients (an and bn) and //
- // the angular functions (Pi and Tau). Note that for these arrays the //
- // first layer is 0 (zero), in future versions all arrays will follow //
- // this convention to save memory. (13 Nov, 2014) //
- //*********************************************************************//
- for (int n = 0; n < nmax_; n++) {
- //********************************************************************//
- //Expressions for calculating an and bn coefficients are not valid if //
- //there is only one PEC layer (ie, for a simple PEC sphere). //
- //********************************************************************//
- if (pl < (L - 1)) {
- an_[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- bn_[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- } else {
- an_[n] = calc_an(n + 1, x[L - 1], std::complex<FloatType>(0.0, 0.0), std::complex<FloatType>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
- bn_[n] = PsiXL[n + 1]/ZetaXL[n + 1];
- }
- } // end of for an and bn terms
- isScaCoeffsCalc_ = true;
- } // end of MultiLayerMie::calcScattCoeffs()
- //**********************************************************************************//
- // This function calculates the actual scattering parameters and amplitudes //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send -1 //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nTheta: Number of scattering angles //
- // Theta: Array containing all the scattering angles where the scattering //
- // amplitudes will be calculated //
- // nmax_: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only use it if you know what you are doing, otherwise //
- // set this parameter to -1 and the function will calculate it //
- // //
- // Output parameters: //
- // Qext: Efficiency factor for extinction //
- // Qsca: Efficiency factor for scattering //
- // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
- // Qbk: Efficiency factor for backscattering //
- // Qpr: Efficiency factor for the radiation pressure //
- // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
- // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
- // S1, S2: Complex scattering amplitudes //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- template <typename FloatType>
- void MultiLayerMie<FloatType>::RunMieCalculation() {
- if (size_param_.size() != refractive_index_.size())
- throw std::invalid_argument("Each size parameter should have only one index!");
- if (size_param_.size() == 0)
- throw std::invalid_argument("Initialize model first!");
- const std::vector<FloatType>& x = size_param_;
- MarkUncalculated();
- // Calculate scattering coefficients
- calcScattCoeffs();
- // Initialize the scattering parameters
- Qext_ = 0.0;
- Qsca_ = 0.0;
- Qabs_ = 0.0;
- Qbk_ = 0.0;
- Qpr_ = 0.0;
- asymmetry_factor_ = 0.0;
- albedo_ = 0.0;
- // Initialize the scattering amplitudes
- std::vector<std::complex<FloatType> > tmp1(theta_.size(),std::complex<FloatType>(0.0, 0.0));
- S1_.swap(tmp1);
- S2_ = S1_;
- std::vector<FloatType> Pi(nmax_), Tau(nmax_);
- std::complex<FloatType> Qbktmp(0.0, 0.0);
- std::vector< std::complex<FloatType> > Qbktmp_ch(nmax_ - 1, Qbktmp);
- // By using downward recurrence we avoid loss of precision due to float rounding errors
- // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
- // http://en.wikipedia.org/wiki/Loss_of_significance
- for (int i = nmax_ - 2; i >= 0; i--) {
- const int n = i + 1;
- if (mode_n_ != Modes::kAll && n != mode_n_) continue;
- // Equation (27)
- Qext_ += (n + n + 1.0)*(an_[i].real() + bn_[i].real());
- // Equation (28)
- Qsca_ += (n + n + 1.0)*(an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
- + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
- // Equation (29)
- Qpr_ += ((n*(n + 2.0)/(n + 1.0))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real())
- + ((n + n + 1.0)/(n*(n + 1.0)))*(an_[i]*std::conj(bn_[i])).real());
- // Equation (33)
- Qbktmp += (FloatType)(n + n + 1.0)*(1.0 - 2.0*(n % 2))*(an_[i]- bn_[i]);
- // Calculate the scattering amplitudes (S1 and S2) //
- // Precalculate cos(theta) - gives about 5% speed up.
- std::vector<FloatType> costheta(theta_.size(), 0.0);
- for (unsigned int t = 0; t < theta_.size(); t++) {
- costheta[t] = nmm::cos(theta_[t]);
- }
- // Equations (25a) - (25b) //
- for (unsigned int t = 0; t < theta_.size(); t++) {
- calcPiTau(costheta[t], Pi, Tau);
- S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[i], Tau[i]);
- S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[i], Tau[i]);
- }
- }
- FloatType x2 = pow2(x.back());
- Qext_ = 2.0*(Qext_)/x2; // Equation (27)
- Qsca_ = 2.0*(Qsca_)/x2; // Equation (28)
- Qpr_ = Qext_ - 4.0*(Qpr_)/x2; // Equation (29)
- Qabs_ = Qext_ - Qsca_; // Equation (30)
- albedo_ = Qsca_/Qext_; // Equation (31)
- asymmetry_factor_ = (Qext_ - Qpr_)/Qsca_; // Equation (32)
- Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
- isMieCalculated_ = true;
- }
- //**********************************************************************************//
- // This function calculates the expansion coefficients inside the particle, //
- // required to calculate the near-field parameters. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send -1 //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nmax: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only use it if you know what you are doing, otherwise //
- // set this parameter to -1 and the function will calculate it. //
- // //
- // Output parameters: //
- // aln, bln, cln, dln: Complex scattering amplitudes inside the particle //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- template <typename FloatType>
- void MultiLayerMie<FloatType>::calcExpanCoeffs() {
- if (!isScaCoeffsCalc_)
- throw std::invalid_argument("(calcExpanCoeffs) You should calculate external coefficients first!");
- isExpCoeffsCalc_ = false;
- std::complex<FloatType> c_one(1.0, 0.0), c_zero(0.0, 0.0);
- const int L = refractive_index_.size();
- aln_.resize(L + 1);
- bln_.resize(L + 1);
- cln_.resize(L + 1);
- dln_.resize(L + 1);
- for (int l = 0; l <= L; l++) {
- aln_[l].resize(nmax_);
- bln_[l].resize(nmax_);
- cln_[l].resize(nmax_);
- dln_[l].resize(nmax_);
- }
- // Yang, paragraph under eq. A3
- // a^(L + 1)_n = a_n, d^(L + 1) = 1 ...
- for (int n = 0; n < nmax_; n++) {
- aln_[L][n] = an_[n];
- bln_[L][n] = bn_[n];
- cln_[L][n] = c_one;
- dln_[L][n] = c_one;
- }
- std::vector<std::complex<FloatType> > D1z(nmax_ + 1), D1z1(nmax_ + 1), D3z(nmax_ + 1), D3z1(nmax_ + 1);
- std::vector<std::complex<FloatType> > Psiz(nmax_ + 1), Psiz1(nmax_ + 1), Zetaz(nmax_ + 1), Zetaz1(nmax_ + 1);
- std::complex<FloatType> denomZeta, denomPsi, T1, T2, T3, T4;
- auto& m = refractive_index_;
- std::vector< std::complex<FloatType> > m1(L);
- for (int l = 0; l < L - 1; l++) m1[l] = m[l + 1];
- m1[L - 1] = std::complex<FloatType> (1.0, 0.0);
- std::complex<FloatType> z, z1;
- for (int l = L - 1; l >= 0; l--) {
- if (l <= PEC_layer_position_) { // We are inside a PEC. All coefficients must be zero!!!
- for (int n = 0; n < nmax_; n++) {
- // aln
- aln_[l][n] = c_zero;
- // bln
- bln_[l][n] = c_zero;
- // cln
- cln_[l][n] = c_zero;
- // dln
- dln_[l][n] = c_zero;
- }
- } else { // Regular material, just do the calculation
- z = size_param_[l]*m[l];
- z1 = size_param_[l]*m1[l];
- calcD1D3(z, D1z, D3z);
- calcD1D3(z1, D1z1, D3z1);
- calcPsiZeta(z, Psiz, Zetaz);
- calcPsiZeta(z1, Psiz1, Zetaz1);
- for (int n = 0; n < nmax_; n++) {
- int n1 = n + 1;
- denomZeta = Zetaz[n1]*(D1z[n1] - D3z[n1]);
- denomPsi = Psiz[n1]*(D1z[n1] - D3z[n1]);
- T1 = aln_[l + 1][n]*Zetaz1[n1] - dln_[l + 1][n]*Psiz1[n1];
- T2 = (bln_[l + 1][n]*Zetaz1[n1] - cln_[l + 1][n]*Psiz1[n1])*m[l]/m1[l];
- T3 = (dln_[l + 1][n]*D1z1[n1]*Psiz1[n1] - aln_[l + 1][n]*D3z1[n1]*Zetaz1[n1])*m[l]/m1[l];
- T4 = cln_[l + 1][n]*D1z1[n1]*Psiz1[n1] - bln_[l + 1][n]*D3z1[n1]*Zetaz1[n1];
- // aln
- aln_[l][n] = (D1z[n1]*T1 + T3)/denomZeta;
- // bln
- bln_[l][n] = (D1z[n1]*T2 + T4)/denomZeta;
- // cln
- cln_[l][n] = (D3z[n1]*T2 + T4)/denomPsi;
- // dln
- dln_[l][n] = (D3z[n1]*T1 + T3)/denomPsi;
- } // end of all n
- } // end PEC condition
- } // end of all l
- // Check the result and change aln_[0][n] and aln_[0][n] for exact zero
- for (int n = 0; n < nmax_; ++n) {
- if (cabs(aln_[0][n]) < 1e-10) aln_[0][n] = 0.0;
- else {
- //throw std::invalid_argument("Unstable calculation of aln_[0][n]!");
- std::cout<< std::setprecision(100)
- << "Warning: Potentially unstable calculation of aln[0]["
- << n << "] = "<< aln_[0][n] <<std::endl;
- aln_[0][n] = 0.0;
- }
- if (cabs(bln_[0][n]) < 1e-10) bln_[0][n] = 0.0;
- else {
- //throw std::invalid_argument("Unstable calculation of bln_[0][n]!");
- std::cout<< std::setprecision(100)
- << "Warning: Potentially unstable calculation of bln[0]["
- << n << "] = "<< bln_[0][n] <<std::endl;
- bln_[0][n] = 0.0;
- }
- }
- isExpCoeffsCalc_ = true;
- } // end of void MultiLayerMie::calcExpanCoeffs()
- //**********************************************************************************//
- // This function calculates the electric (E) and magnetic (H) fields inside and //
- // around the particle. //
- // //
- // Input parameters (coordinates of the point): //
- // Rho: Radial distance //
- // Phi: Azimuthal angle //
- // Theta: Polar angle //
- // mode_n: mode order. //
- // -1 - use all modes (all_) //
- // 1 - use dipole mode only //
- // 2 - use quadrupole mode only //
- // ... //
- // mode_type: only used when mode_n != -1 //
- // 0 - electric only //
- // 1 - magnetic only //
- // //
- // //
- // Output parameters: //
- // E, H: Complex electric and magnetic fields //
- //**********************************************************************************//
- template <typename FloatType>
- void MultiLayerMie<FloatType>::calcFieldByComponents(const FloatType Rho,
- const FloatType Theta, const FloatType Phi,
- std::vector<std::complex<FloatType> >& E,
- std::vector<std::complex<FloatType> >& H) {
- std::complex<FloatType> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);
- // Vector containing precomputed integer powers of i to avoid computation
- std::vector<std::complex<FloatType> > ipow = {c_one, c_i, -c_one, -c_i};
- std::vector<std::complex<FloatType> > M3o1n(3), M3e1n(3), N3o1n(3), N3e1n(3);
- std::vector<std::complex<FloatType> > M1o1n(3), M1e1n(3), N1o1n(3), N1e1n(3);
- std::vector<std::complex<FloatType> > Psi(nmax_ + 1), D1n(nmax_ + 1),
- Zeta(nmax_ + 1), D3n(nmax_ + 1);
- std::vector<FloatType> Pi(nmax_), Tau(nmax_);
- int l = 0; // Layer number
- std::complex<FloatType> ml;
- // Initialize E and H
- for (int i = 0; i < 3; i++) {
- E[i] = c_zero;
- H[i] = c_zero;
- }
-
- if (Rho > size_param_.back()) {
- l = size_param_.size();
- ml = c_one;
- } else {
- for (int i = size_param_.size() - 1; i >= 0 ; i--) {
- if (Rho <= size_param_[i]) {
- l = i;
- }
- }
- ml = refractive_index_[l];
- }
- // Calculate logarithmic derivative of the Ricatti-Bessel functions
- calcD1D3(Rho*ml, D1n, D3n);
- // Calculate Ricatti-Bessel functions
- calcPsiZeta(Rho*ml, Psi, Zeta);
- // Calculate angular functions Pi and Tau
- calcPiTau(nmm::cos(Theta), Pi, Tau);
- for (int n = nmax_ - 2; n >= 0; n--) {
- int n1 = n + 1;
- FloatType rn = static_cast<FloatType>(n1);
- // using BH 4.12 and 4.50
- calcSpherHarm(Rho*ml, Theta, Phi, Psi[n1], D1n[n1], Pi[n], Tau[n], rn,
- M1o1n, M1e1n, N1o1n, N1e1n);
- calcSpherHarm(Rho*ml, Theta, Phi, Zeta[n1], D3n[n1], Pi[n], Tau[n], rn,
- M3o1n, M3e1n, N3o1n, N3e1n);
- // Total field in the lth layer: eqs. (1) and (2) in Yang, Appl. Opt., 42 (2003) 1710-1720
- std::complex<FloatType> En = ipow[n1 % 4]
- *static_cast<FloatType>((rn + rn + 1.0)/(rn*rn + rn));
- for (int i = 0; i < 3; i++) {
- if (mode_n_ == Modes::kAll) {
- // electric field E [V m - 1] = EF*E0
- E[i] += En*( cln_[l][n]*M1o1n[i] - c_i*dln_[l][n]*N1e1n[i]
- + c_i*aln_[l][n]*N3e1n[i] - bln_[l][n]*M3o1n[i]);
- H[i] += En*( -dln_[l][n]*M1e1n[i] - c_i*cln_[l][n]*N1o1n[i]
- + c_i*bln_[l][n]*N3o1n[i] + aln_[l][n]*M3e1n[i]);
- continue;
- }
- if (n1 == mode_n_) {
- if (mode_type_ == Modes::kElectric || mode_type_ == Modes::kAll) {
- E[i] += En*( -c_i*dln_[l][n]*N1e1n[i]
- + c_i*aln_[l][n]*N3e1n[i]);
- H[i] += En*(-dln_[l][n]*M1e1n[i]
- +aln_[l][n]*M3e1n[i]);
- //std::cout << mode_n_;
- }
- if (mode_type_ == Modes::kMagnetic || mode_type_ == Modes::kAll) {
- E[i] += En*( cln_[l][n]*M1o1n[i]
- - bln_[l][n]*M3o1n[i]);
- H[i] += En*( -c_i*cln_[l][n]*N1o1n[i]
- + c_i*bln_[l][n]*N3o1n[i]);
- //std::cout << mode_n_;
- }
- //std::cout << std::endl;
- }
- //throw std::invalid_argument("Error! Unexpected mode for field evaluation!\n mode_n="+std::to_string(mode_n)+", mode_type="+std::to_string(mode_type)+"\n=====*****=====");
- }
- } // end of for all n
- // magnetic field
- std::complex<FloatType> hffact = ml/static_cast<FloatType>(cc_*mu_);
- for (int i = 0; i < 3; i++) {
- H[i] = hffact*H[i];
- }
- } // end of MultiLayerMie::calcFieldByComponents(...)
- //**********************************************************************************//
- // This function calculates complex electric and magnetic field in the surroundings //
- // and inside the particle. //
- // //
- // Input parameters: //
- // L: Number of layers //
- // pl: Index of PEC layer. If there is none just send 0 (zero) //
- // x: Array containing the size parameters of the layers [0..L-1] //
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
- // nmax: Maximum number of multipolar expansion terms to be used for the //
- // calculations. Only use it if you know what you are doing, otherwise //
- // set this parameter to 0 (zero) and the function will calculate it. //
- // ncoord: Number of coordinate points //
- // Coords: Array containing all coordinates where the complex electric and //
- // magnetic fields will be calculated //
- // mode_n: mode order. //
- // -1 - use all modes (all_) //
- // 1 - use dipole mode only //
- // 2 - use quadrupole mode only //
- // ... //
- // mode_type: only used when mode_n != -1 //
- // 0 - electric only //
- // 1 - magnetic only //
- // //
- // Output parameters: //
- // E, H: Complex electric and magnetic field at the provided coordinates //
- // //
- // Return value: //
- // Number of multipolar expansion terms used for the calculations //
- //**********************************************************************************//
- template <typename FloatType>
- void MultiLayerMie<FloatType>::RunFieldCalculation() {
- FloatType Rho, Theta, Phi;
- // Calculate scattering coefficients an_ and bn_
- calcScattCoeffs();
- // Calculate expansion coefficients aln_, bln_, cln_, and dln_
- calcExpanCoeffs();
- long total_points = coords_[0].size();
- E_.resize(total_points);
- H_.resize(total_points);
- Es_.resize(total_points);
- Hs_.resize(total_points);
- for (auto& f : E_) f.resize(3);
- for (auto& f : H_) f.resize(3);
- for (auto& f : Es_) f.resize(3);
- for (auto& f : Hs_) f.resize(3);
- for (int point = 0; point < total_points; point++) {
- const FloatType& Xp = coords_[0][point];
- const FloatType& Yp = coords_[1][point];
- const FloatType& Zp = coords_[2][point];
- // Convert to spherical coordinates
- Rho = nmm::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp));
- // If Rho=0 then Theta is undefined. Just set it to zero to avoid problems
- Theta = (Rho > 0.0) ? nmm::acos(Zp/Rho) : 0.0;
- // std::atan2 should take care of any special cases, e.g. Xp=Yp=0, etc.
- Phi = nmm::atan2(Yp,Xp);
-
- // Avoid convergence problems due to Rho too small
- if (Rho < 1e-5) Rho = 1e-5;
- // std::cout << "Xp: "<<Xp<< " Yp: "<<Yp<< " Zp: "<<Zp<<std::endl;
- // std::cout << " Rho: "<<Rho<<" Theta: "<<Theta<<" Phi:"<<Phi<<std::endl<<std::endl;
- //*******************************************************//
- // external scattering field = incident + scattered //
- // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
- // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
- //*******************************************************//
- // This array contains the fields in spherical coordinates
- std::vector<std::complex<FloatType> > Es(3), Hs(3);
- // Do the actual calculation of electric and magnetic field
- calcFieldByComponents(Rho, Theta, Phi, Es, Hs);
- for (int sph_coord = 0; sph_coord<3; ++sph_coord) {
- Es_[point][sph_coord] = Es[sph_coord];
- Hs_[point][sph_coord] = Hs[sph_coord];
- }
- { //Now, convert the fields back to cartesian coordinates
- using nmm::sin;
- using nmm::cos;
- E_[point][0] = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2];
- E_[point][1] = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2];
- E_[point][2] = cos(Theta)*Es[0] - sin(Theta)*Es[1];
- H_[point][0] = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2];
- H_[point][1] = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2];
- H_[point][2] = cos(Theta)*Hs[0] - sin(Theta)*Hs[1];
- }
- } // end of for all field coordinates
- } // end of MultiLayerMie::RunFieldCalculation()
- } // end of namespace nmie
- #endif // SRC_NMIE_IMPL_HPP_
|