#ifndef SRC_NMIE_IMPL_HPP_ #define SRC_NMIE_IMPL_HPP_ //**********************************************************************************// // Copyright (C) 2009-2016 Ovidio Pena // // Copyright (C) 2013-2016 Konstantin Ladutenko // // // // This file is part of scattnlay // // // // This program is free software: you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation, either version 3 of the License, or // // (at your option) any later version. // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License for more details. // // // // The only additional remark is that we expect that all publications // // describing work using this software, or all commercial products // // using it, cite the following reference: // // [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by // // a multilayered sphere," Computer Physics Communications, // // vol. 180, Nov. 2009, pp. 2348-2354. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // //**********************************************************************************// //**********************************************************************************// // This class implements the algorithm for a multilayered sphere described by: // // [1] W. Yang, "Improved recursive algorithm for light scattering by a // // multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720. // // // // You can find the description of all the used equations in: // // [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by // // a multilayered sphere," Computer Physics Communications, // // vol. 180, Nov. 2009, pp. 2348-2354. // // // // Hereinafter all equations numbers refer to [2] // //**********************************************************************************// #include "nmie.hpp" #include "nmie-precision.hpp" #include #include #include #include #include #include #include #include namespace nmie { //helpers template inline T pow2(const T value) {return value*value;} template inline T cabs(const std::complex value) {return nmm::sqrt(pow2(value.real()) + pow2(value.imag()));} template int newround(FloatType x) { return x >= 0 ? static_cast(x + 0.5):static_cast(x - 0.5); //return x >= 0 ? (x + 0.5).convert_to():(x - 0.5).convert_to(); } template inline std::complex my_exp(const std::complex& x) { using std::exp; // use ADL T const& r = exp(x.real()); return std::polar(r, x.imag()); } template std::vector ConvertVector(const std::vector x) { std::vector new_x; for (auto element : x) { new_x.push_back(static_cast(element)); } return new_x; } template std::vector > ConvertComplexVector(std::vector > x) { std::vector > new_x; for (auto element : x) { new_x.push_back(std::complex(static_cast(element.real()), static_cast(element.imag()) ) ); } return new_x; } template std::vector > > ConvertComplexVectorVector(std::vector > > x) { std::vector > > new_x; std::vector > new_y; for (auto y : x) { new_y.clear(); for (auto element : y) { new_y.push_back(std::complex(static_cast(element.real()), static_cast(element.imag()) ) ); } new_x.push_back(new_y); } return new_x; } // ********************************************************************** // // Returns previously calculated Qext // // ********************************************************************** // template FloatType MultiLayerMie::GetQext() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return Qext_; } // ********************************************************************** // // Returns previously calculated Qabs // // ********************************************************************** // template FloatType MultiLayerMie::GetQabs() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return Qabs_; } // ********************************************************************** // // Returns previously calculated Qsca // // ********************************************************************** // template FloatType MultiLayerMie::GetQsca() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return Qsca_; } // ********************************************************************** // // Returns previously calculated Qbk // // ********************************************************************** // template FloatType MultiLayerMie::GetQbk() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return Qbk_; } // ********************************************************************** // // Returns previously calculated Qpr // // ********************************************************************** // template FloatType MultiLayerMie::GetQpr() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return Qpr_; } // ********************************************************************** // // Returns previously calculated assymetry factor // // ********************************************************************** // template FloatType MultiLayerMie::GetAsymmetryFactor() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return asymmetry_factor_; } // ********************************************************************** // // Returns previously calculated Albedo // // ********************************************************************** // template FloatType MultiLayerMie::GetAlbedo() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return albedo_; } // ********************************************************************** // // Returns previously calculated S1 // // ********************************************************************** // template std::vector > MultiLayerMie::GetS1() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return S1_; } // ********************************************************************** // // Returns previously calculated S2 // // ********************************************************************** // template std::vector > MultiLayerMie::GetS2() { if (!isMieCalculated_) throw std::invalid_argument("You should run calculations before result request!"); return S2_; } // ********************************************************************** // // Modify scattering (theta) angles // // ********************************************************************** // template void MultiLayerMie::SetAngles(const std::vector& angles) { MarkUncalculated(); theta_ = angles; } // ********************************************************************** // // Modify size of all layers // // ********************************************************************** // template void MultiLayerMie::SetLayersSize(const std::vector& layer_size) { MarkUncalculated(); size_param_.clear(); FloatType prev_layer_size = 0.0; for (auto curr_layer_size : layer_size) { if (curr_layer_size <= 0.0) throw std::invalid_argument("Size parameter should be positive!"); if (prev_layer_size > curr_layer_size) throw std::invalid_argument ("Size parameter for next layer should be larger than the previous one!"); prev_layer_size = curr_layer_size; size_param_.push_back(curr_layer_size); } } // ********************************************************************** // // Modify refractive index of all layers // // ********************************************************************** // template void MultiLayerMie::SetLayersIndex(const std::vector< std::complex >& index) { MarkUncalculated(); refractive_index_ = index; } // ********************************************************************** // // Modify coordinates for field calculation // // ********************************************************************** // template void MultiLayerMie::SetFieldCoords(const std::vector< std::vector >& coords) { if (coords.size() != 3) throw std::invalid_argument("Error! Wrong dimension of field monitor points!"); if (coords[0].size() != coords[1].size() || coords[0].size() != coords[2].size()) throw std::invalid_argument("Error! Missing coordinates for field monitor points!"); coords_ = coords; } // ********************************************************************** // // Modify index of PEC layer // // ********************************************************************** // template void MultiLayerMie::SetPECLayer(int layer_position) { MarkUncalculated(); if (layer_position < 0 && layer_position != -1) throw std::invalid_argument("Error! Layers are numbered from 0!"); PEC_layer_position_ = layer_position; } // ********************************************************************** // // Set maximun number of terms to be used // // ********************************************************************** // template void MultiLayerMie::SetMaxTerms(int nmax) { MarkUncalculated(); nmax_preset_ = nmax; } // ********************************************************************** // // Get total size parameter of particle // // ********************************************************************** // template FloatType MultiLayerMie::GetSizeParameter() { if (size_param_.size() > 0) return size_param_.back(); else return 0; } // ********************************************************************** // // Mark uncalculated // // ********************************************************************** // template void MultiLayerMie::MarkUncalculated() { isExpCoeffsCalc_ = false; isScaCoeffsCalc_ = false; isMieCalculated_ = false; } // ********************************************************************** // // Clear layer information // // ********************************************************************** // template void MultiLayerMie::ClearLayers() { MarkUncalculated(); size_param_.clear(); refractive_index_.clear(); } // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // // Computational core // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // // ********************************************************************** // // Calculate calcNstop - equation (17) // // ********************************************************************** // template void MultiLayerMie::calcNstop() { const FloatType& xL = size_param_.back(); if (xL <= 8) { nmax_ = newround(xL + 4.0*pow(xL, 1.0/3.0) + 1); } else if (xL <= 4200) { nmax_ = newround(xL + 4.05*pow(xL, 1.0/3.0) + 2); } else { nmax_ = newround(xL + 4.0*pow(xL, 1.0/3.0) + 2); } } // ********************************************************************** // // Maximum number of terms required for the calculation // // ********************************************************************** // template void MultiLayerMie::calcNmax(unsigned int first_layer) { int ri, riM1; const std::vector& x = size_param_; const std::vector >& m = refractive_index_; calcNstop(); // Set initial nmax_ value for (unsigned int i = first_layer; i < x.size(); i++) { if (static_cast(i) > PEC_layer_position_) // static_cast used to avoid warning ri = newround(cabs(x[i]*m[i])); else ri = 0; nmax_ = std::max(nmax_, ri); // first layer is pec, if pec is present if ((i > first_layer) && (static_cast(i - 1) > PEC_layer_position_)) riM1 = newround(cabs(x[i - 1]* m[i])); else riM1 = 0; nmax_ = std::max(nmax_, riM1); } nmax_ += 15; // Final nmax_ value // nmax_ *= nmax_; // printf("using nmax %i\n", nmax_); } // ********************************************************************** // // Calculate an - equation (5) // // ********************************************************************** // template std::complex MultiLayerMie::calc_an(int n, FloatType XL, std::complex Ha, std::complex mL, std::complex PsiXL, std::complex ZetaXL, std::complex PsiXLM1, std::complex ZetaXLM1) { std::complex Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1; std::complex Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1; // std::cout<< std::setprecision(100) // << "Ql " << PsiXL // < std::complex MultiLayerMie::calc_bn(int n, FloatType XL, std::complex Hb, std::complex mL, std::complex PsiXL, std::complex ZetaXL, std::complex PsiXLM1, std::complex ZetaXLM1) { std::complex Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1; std::complex Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1; return Num/Denom; } // ********************************************************************** // // Calculates S1 - equation (25a) // // ********************************************************************** // template std::complex MultiLayerMie::calc_S1(int n, std::complex an, std::complex bn, FloatType Pi, FloatType Tau) { return FloatType(n + n + 1)*(Pi*an + Tau*bn)/FloatType(n*n + n); } // ********************************************************************** // // Calculates S2 - equation (25b) (it's the same as (25a), just switches // // Pi and Tau) // // ********************************************************************** // template std::complex MultiLayerMie::calc_S2(int n, std::complex an, std::complex bn, FloatType Pi, FloatType Tau) { return calc_S1(n, an, bn, Tau, Pi); } //**********************************************************************************// // This function calculates the logarithmic derivatives of the Riccati-Bessel // // functions (D1 and D3) for a complex argument (z). // // Equations (16a), (16b) and (18a) - (18d) // // // // Input parameters: // // z: Complex argument to evaluate D1 and D3 // // nmax_: Maximum number of terms to calculate D1 and D3 // // // // Output parameters: // // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions // //**********************************************************************************// template void MultiLayerMie::calcD1D3(const std::complex z, std::vector >& D1, std::vector >& D3) { // Downward recurrence for D1 - equations (16a) and (16b) D1[nmax_] = std::complex(0.0, 0.0); std::complex c_one(1.0, 0.0); const std::complex zinv = std::complex(1.0, 0.0)/z; for (int n = nmax_; n > 0; n--) { D1[n - 1] = static_cast(n)*zinv - c_one/(D1[n] + static_cast(n)*zinv); } // TODO: Do we need this check? // if (cabs(D1[0]) > 1.0e15) { // throw std::invalid_argument("Unstable D1! Please, try to change input parameters!\n"); // //printf("Warning: Potentially unstable D1! Please, try to change input parameters!\n"); // } // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d) PsiZeta_[0] = static_cast(0.5)*(static_cast(1.0) - std::complex(nmm::cos(2.0*z.real()), nmm::sin(2.0*z.real())) *static_cast(nmm::exp(-2.0*z.imag()))); D3[0] = std::complex(0.0, 1.0); for (int n = 1; n <= nmax_; n++) { PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast(n)*zinv - D1[n - 1]) *(static_cast(n)*zinv - D3[n - 1]); D3[n] = D1[n] + std::complex(0.0, 1.0)/PsiZeta_[n]; } } //**********************************************************************************// // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a // // complex argument (z). // // Equations (20a) - (21b) // // // // Input parameters: // // z: Complex argument to evaluate Psi and Zeta // // nmax: Maximum number of terms to calculate Psi and Zeta // // // // Output parameters: // // Psi, Zeta: Riccati-Bessel functions // //**********************************************************************************// template void MultiLayerMie::calcPsiZeta(std::complex z, std::vector >& Psi, std::vector >& Zeta) { std::complex c_i(0.0, 1.0); std::vector > D1(nmax_ + 1), D3(nmax_ + 1); // First, calculate the logarithmic derivatives calcD1D3(z, D1, D3); // Now, use the upward recurrence to calculate Psi and Zeta - equations (20a) - (21b) Psi[0] = std::sin(z); Zeta[0] = std::sin(z) - c_i*std::cos(z); for (int n = 1; n <= nmax_; n++) { Psi[n] = Psi[n - 1]*(std::complex(n,0.0)/z - D1[n - 1]); Zeta[n] = Zeta[n - 1]*(std::complex(n,0.0)/z - D3[n - 1]); } } //**********************************************************************************// // This function calculates Pi and Tau for a given value of cos(Theta). // // Equations (26a) - (26c) // // // // Input parameters: // // nmax_: Maximum number of terms to calculate Pi and Tau // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // // // Output parameters: // // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) // //**********************************************************************************// template void MultiLayerMie::calcPiTau(const FloatType& costheta, std::vector& Pi, std::vector& Tau) { int i; //****************************************************// // Equations (26a) - (26c) // //****************************************************// // Initialize Pi and Tau Pi[0] = 1.0; // n=1 Tau[0] = costheta; // Calculate the actual values if (nmax_ > 1) { Pi[1] = 3*costheta*Pi[0]; //n=2 Tau[1] = 2*costheta*Pi[1] - 3*Pi[0]; for (i = 2; i < nmax_; i++) { //n=[3..nmax_] Pi[i] = ((i + i + 1)*costheta*Pi[i - 1] - (i + 1)*Pi[i - 2])/i; Tau[i] = (i + 1)*costheta*Pi[i] - (i + 2)*Pi[i - 1]; } } } // end of MultiLayerMie::calcPiTau(...) //**********************************************************************************// // This function calculates vector spherical harmonics (eq. 4.50, p. 95 BH), // // required to calculate the near-field parameters. // // // // Input parameters: // // Rho: Radial distance // // Phi: Azimuthal angle // // Theta: Polar angle // // rn: Either the spherical Ricatti-Bessel function of first or third kind // // Dn: Logarithmic derivative of rn // // Pi, Tau: Angular functions Pi and Tau // // n: Order of vector spherical harmonics // // // // Output parameters: // // Mo1n, Me1n, No1n, Ne1n: Complex vector spherical harmonics // //**********************************************************************************// template void MultiLayerMie::calcSpherHarm(const std::complex Rho, const FloatType Theta, const FloatType Phi, const std::complex& rn, const std::complex& Dn, const FloatType& Pi, const FloatType& Tau, const FloatType& n, std::vector >& Mo1n, std::vector >& Me1n, std::vector >& No1n, std::vector >& Ne1n) { // using eq 4.50 in BH std::complex c_zero(0.0, 0.0); using nmm::sin; using nmm::cos; Mo1n[0] = c_zero; Mo1n[1] = cos(Phi)*Pi*rn/Rho; Mo1n[2] = -sin(Phi)*Tau*rn/Rho; Me1n[0] = c_zero; Me1n[1] = -sin(Phi)*Pi*rn/Rho; Me1n[2] = -cos(Phi)*Tau*rn/Rho; No1n[0] = sin(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho; No1n[1] = sin(Phi)*Tau*Dn*rn/Rho; No1n[2] = cos(Phi)*Pi*Dn*rn/Rho; Ne1n[0] = cos(Phi)*(n*n + n)*sin(Theta)*Pi*rn/Rho/Rho; Ne1n[1] = cos(Phi)*Tau*Dn*rn/Rho; Ne1n[2] = -sin(Phi)*Pi*Dn*rn/Rho; } // end of MultiLayerMie::calcSpherHarm(...) //**********************************************************************************// // This function calculates the scattering coefficients required to calculate // // both the near- and far-field parameters. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nmax: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to -1 and the function will calculate it. // // // // Output parameters: // // an, bn: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// template void MultiLayerMie::calcScattCoeffs() { isScaCoeffsCalc_ = false; const std::vector& x = size_param_; const std::vector >& m = refractive_index_; const int& pl = PEC_layer_position_; const int L = refractive_index_.size(); //************************************************************************// // Calculate the index of the first layer. It can be either 0 (default) // // or the index of the outermost PEC layer. In the latter case all layers // // below the PEC are discarded. // // ***********************************************************************// int fl = (pl > 0) ? pl : 0; if (nmax_preset_ <= 0) calcNmax(fl); else nmax_ = nmax_preset_; std::complex z1, z2; //**************************************************************************// // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which // // means that index = layer number - 1 or index = n - 1. The only exception // // are the arrays for representing D1, D3 and Q because they need a value // // for the index 0 (zero), hence it is important to consider this shift // // between different arrays. The change was done to optimize memory usage. // //**************************************************************************// // Allocate memory to the arrays std::vector > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1), D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1); std::vector > > Q(L), Ha(L), Hb(L); for (int l = 0; l < L; l++) { Q[l].resize(nmax_ + 1); Ha[l].resize(nmax_); Hb[l].resize(nmax_); } an_.resize(nmax_); bn_.resize(nmax_); PsiZeta_.resize(nmax_ + 1); std::vector > PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1); //*************************************************// // Calculate D1 and D3 for z1 in the first layer // //*************************************************// if (fl == pl) { // PEC layer for (int n = 0; n <= nmax_; n++) { D1_mlxl[n] = std::complex(0.0, - 1.0); D3_mlxl[n] = std::complex(0.0, 1.0); } } else { // Regular layer z1 = x[fl]* m[fl]; // Calculate D1 and D3 calcD1D3(z1, D1_mlxl, D3_mlxl); } //******************************************************************// // Calculate Ha and Hb in the first layer - equations (7a) and (8a) // //******************************************************************// for (int n = 0; n < nmax_; n++) { Ha[fl][n] = D1_mlxl[n + 1]; Hb[fl][n] = D1_mlxl[n + 1]; } //*****************************************************// // Iteration from the second layer to the last one (L) // //*****************************************************// std::complex Temp, Num, Denom; std::complex G1, G2; for (int l = fl + 1; l < L; l++) { //************************************************************// //Calculate D1 and D3 for z1 and z2 in the layers fl + 1..L // //************************************************************// z1 = x[l]*m[l]; z2 = x[l - 1]*m[l]; //Calculate D1 and D3 for z1 calcD1D3(z1, D1_mlxl, D3_mlxl); //Calculate D1 and D3 for z2 calcD1D3(z2, D1_mlxlM1, D3_mlxlM1); //*************************************************// //Calculate Q, Ha and Hb in the layers fl + 1..L // //*************************************************// // Upward recurrence for Q - equations (19a) and (19b) Num = std::complex(nmm::exp(-2.0*(z1.imag() - z2.imag())), 0.0) *std::complex(nmm::cos(-2.0*z2.real()) - nmm::exp(-2.0*z2.imag()), nmm::sin(-2.0*z2.real())); Denom = std::complex(nmm::cos(-2.0*z1.real()) - nmm::exp(-2.0*z1.imag()), nmm::sin(-2.0*z1.real())); Q[l][0] = Num/Denom; for (int n = 1; n <= nmax_; n++) { Num = (z1*D1_mlxl[n] + FloatType(n))*(FloatType(n) - z1*D3_mlxl[n - 1]); Denom = (z2*D1_mlxlM1[n] + FloatType(n))*(FloatType(n) - z2*D3_mlxlM1[n - 1]); Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom; } // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15) for (int n = 1; n <= nmax_; n++) { //Ha if ((l - 1) == pl) { // The layer below the current one is a PEC layer G1 = -D1_mlxlM1[n]; G2 = -D3_mlxlM1[n]; } else { G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]); G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]); } // end of if PEC Temp = Q[l][n]*G1; Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]); Denom = G2 - Temp; Ha[l][n - 1] = Num/Denom; //Hb if ((l - 1) == pl) { // The layer below the current one is a PEC layer G1 = Hb[l - 1][n - 1]; G2 = Hb[l - 1][n - 1]; } else { G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]); G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]); } // end of if PEC Temp = Q[l][n]*G1; Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]); Denom = (G2- Temp); Hb[l][n - 1] = (Num/ Denom); } // end of for Ha and Hb terms } // end of for layers iteration //**************************************// //Calculate Psi and Zeta for XL // //**************************************// // Calculate PsiXL and ZetaXL calcPsiZeta(std::complex(x[L - 1],0.0), PsiXL, ZetaXL); //*********************************************************************// // Finally, we calculate the scattering coefficients (an and bn) and // // the angular functions (Pi and Tau). Note that for these arrays the // // first layer is 0 (zero), in future versions all arrays will follow // // this convention to save memory. (13 Nov, 2014) // //*********************************************************************// for (int n = 0; n < nmax_; n++) { //********************************************************************// //Expressions for calculating an and bn coefficients are not valid if // //there is only one PEC layer (ie, for a simple PEC sphere). // //********************************************************************// if (pl < (L - 1)) { an_[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); bn_[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); } else { an_[n] = calc_an(n + 1, x[L - 1], std::complex(0.0, 0.0), std::complex(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]); bn_[n] = PsiXL[n + 1]/ZetaXL[n + 1]; } } // end of for an and bn terms isScaCoeffsCalc_ = true; } // end of MultiLayerMie::calcScattCoeffs() //**********************************************************************************// // This function calculates the actual scattering parameters and amplitudes // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nTheta: Number of scattering angles // // Theta: Array containing all the scattering angles where the scattering // // amplitudes will be calculated // // nmax_: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to -1 and the function will calculate it // // // // Output parameters: // // Qext: Efficiency factor for extinction // // Qsca: Efficiency factor for scattering // // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) // // Qbk: Efficiency factor for backscattering // // Qpr: Efficiency factor for the radiation pressure // // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) // // Albedo: Single scattering albedo (Albedo = Qsca/Qext) // // S1, S2: Complex scattering amplitudes // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// template void MultiLayerMie::RunMieCalculation() { if (size_param_.size() != refractive_index_.size()) throw std::invalid_argument("Each size parameter should have only one index!"); if (size_param_.size() == 0) throw std::invalid_argument("Initialize model first!"); const std::vector& x = size_param_; MarkUncalculated(); // Calculate scattering coefficients calcScattCoeffs(); // Initialize the scattering parameters Qext_ = 0.0; Qsca_ = 0.0; Qabs_ = 0.0; Qbk_ = 0.0; Qpr_ = 0.0; asymmetry_factor_ = 0.0; albedo_ = 0.0; // Initialize the scattering amplitudes std::vector > tmp1(theta_.size(),std::complex(0.0, 0.0)); S1_.swap(tmp1); S2_ = S1_; std::vector Pi(nmax_), Tau(nmax_); std::complex Qbktmp(0.0, 0.0); std::vector< std::complex > Qbktmp_ch(nmax_ - 1, Qbktmp); // By using downward recurrence we avoid loss of precision due to float rounding errors // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html // http://en.wikipedia.org/wiki/Loss_of_significance for (int i = nmax_ - 2; i >= 0; i--) { const int n = i + 1; if (mode_n_ != Modes::kAll && n != mode_n_) continue; // Equation (27) Qext_ += (n + n + 1.0)*(an_[i].real() + bn_[i].real()); // Equation (28) Qsca_ += (n + n + 1.0)*(an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag() + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag()); // Equation (29) Qpr_ += ((n*(n + 2.0)/(n + 1.0))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real()) + ((n + n + 1.0)/(n*(n + 1.0)))*(an_[i]*std::conj(bn_[i])).real()); // Equation (33) Qbktmp += (FloatType)(n + n + 1.0)*(1.0 - 2.0*(n % 2))*(an_[i]- bn_[i]); // Calculate the scattering amplitudes (S1 and S2) // // Precalculate cos(theta) - gives about 5% speed up. std::vector costheta(theta_.size(), 0.0); for (unsigned int t = 0; t < theta_.size(); t++) { costheta[t] = nmm::cos(theta_[t]); } // Equations (25a) - (25b) // for (unsigned int t = 0; t < theta_.size(); t++) { calcPiTau(costheta[t], Pi, Tau); S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[i], Tau[i]); S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[i], Tau[i]); } } FloatType x2 = pow2(x.back()); Qext_ = 2.0*(Qext_)/x2; // Equation (27) Qsca_ = 2.0*(Qsca_)/x2; // Equation (28) Qpr_ = Qext_ - 4.0*(Qpr_)/x2; // Equation (29) Qabs_ = Qext_ - Qsca_; // Equation (30) albedo_ = Qsca_/Qext_; // Equation (31) asymmetry_factor_ = (Qext_ - Qpr_)/Qsca_; // Equation (32) Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33) isMieCalculated_ = true; } //**********************************************************************************// // This function calculates the expansion coefficients inside the particle, // // required to calculate the near-field parameters. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send -1 // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nmax: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to -1 and the function will calculate it. // // // // Output parameters: // // aln, bln, cln, dln: Complex scattering amplitudes inside the particle // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// template void MultiLayerMie::calcExpanCoeffs() { if (!isScaCoeffsCalc_) throw std::invalid_argument("(calcExpanCoeffs) You should calculate external coefficients first!"); isExpCoeffsCalc_ = false; std::complex c_one(1.0, 0.0), c_zero(0.0, 0.0); const int L = refractive_index_.size(); aln_.resize(L + 1); bln_.resize(L + 1); cln_.resize(L + 1); dln_.resize(L + 1); for (int l = 0; l <= L; l++) { aln_[l].resize(nmax_); bln_[l].resize(nmax_); cln_[l].resize(nmax_); dln_[l].resize(nmax_); } // Yang, paragraph under eq. A3 // a^(L + 1)_n = a_n, d^(L + 1) = 1 ... for (int n = 0; n < nmax_; n++) { aln_[L][n] = an_[n]; bln_[L][n] = bn_[n]; cln_[L][n] = c_one; dln_[L][n] = c_one; } std::vector > D1z(nmax_ + 1), D1z1(nmax_ + 1), D3z(nmax_ + 1), D3z1(nmax_ + 1); std::vector > Psiz(nmax_ + 1), Psiz1(nmax_ + 1), Zetaz(nmax_ + 1), Zetaz1(nmax_ + 1); std::complex denomZeta, denomPsi, T1, T2, T3, T4; auto& m = refractive_index_; std::vector< std::complex > m1(L); for (int l = 0; l < L - 1; l++) m1[l] = m[l + 1]; m1[L - 1] = std::complex (1.0, 0.0); std::complex z, z1; for (int l = L - 1; l >= 0; l--) { if (l <= PEC_layer_position_) { // We are inside a PEC. All coefficients must be zero!!! for (int n = 0; n < nmax_; n++) { // aln aln_[l][n] = c_zero; // bln bln_[l][n] = c_zero; // cln cln_[l][n] = c_zero; // dln dln_[l][n] = c_zero; } } else { // Regular material, just do the calculation z = size_param_[l]*m[l]; z1 = size_param_[l]*m1[l]; calcD1D3(z, D1z, D3z); calcD1D3(z1, D1z1, D3z1); calcPsiZeta(z, Psiz, Zetaz); calcPsiZeta(z1, Psiz1, Zetaz1); for (int n = 0; n < nmax_; n++) { int n1 = n + 1; denomZeta = Zetaz[n1]*(D1z[n1] - D3z[n1]); denomPsi = Psiz[n1]*(D1z[n1] - D3z[n1]); T1 = aln_[l + 1][n]*Zetaz1[n1] - dln_[l + 1][n]*Psiz1[n1]; T2 = (bln_[l + 1][n]*Zetaz1[n1] - cln_[l + 1][n]*Psiz1[n1])*m[l]/m1[l]; T3 = (dln_[l + 1][n]*D1z1[n1]*Psiz1[n1] - aln_[l + 1][n]*D3z1[n1]*Zetaz1[n1])*m[l]/m1[l]; T4 = cln_[l + 1][n]*D1z1[n1]*Psiz1[n1] - bln_[l + 1][n]*D3z1[n1]*Zetaz1[n1]; // aln aln_[l][n] = (D1z[n1]*T1 + T3)/denomZeta; // bln bln_[l][n] = (D1z[n1]*T2 + T4)/denomZeta; // cln cln_[l][n] = (D3z[n1]*T2 + T4)/denomPsi; // dln dln_[l][n] = (D3z[n1]*T1 + T3)/denomPsi; } // end of all n } // end PEC condition } // end of all l // Check the result and change aln_[0][n] and aln_[0][n] for exact zero for (int n = 0; n < nmax_; ++n) { if (cabs(aln_[0][n]) < 1e-10) aln_[0][n] = 0.0; else { //throw std::invalid_argument("Unstable calculation of aln_[0][n]!"); std::cout<< std::setprecision(100) << "Warning: Potentially unstable calculation of aln[0][" << n << "] = "<< aln_[0][n] < hffact = ml/static_cast(cc_*mu_); for (int i = 0; i < 3; i++) { H[i] = hffact*H[i]; } } // end of MultiLayerMie::calcFieldByComponents(...) //**********************************************************************************// // This function calculates complex electric and magnetic field in the surroundings // // and inside the particle. // // // // Input parameters: // // L: Number of layers // // pl: Index of PEC layer. If there is none just send 0 (zero) // // x: Array containing the size parameters of the layers [0..L-1] // // m: Array containing the relative refractive indexes of the layers [0..L-1] // // nmax: Maximum number of multipolar expansion terms to be used for the // // calculations. Only use it if you know what you are doing, otherwise // // set this parameter to 0 (zero) and the function will calculate it. // // ncoord: Number of coordinate points // // Coords: Array containing all coordinates where the complex electric and // // magnetic fields will be calculated // // mode_n: mode order. // // -1 - use all modes (all_) // // 1 - use dipole mode only // // 2 - use quadrupole mode only // // ... // // mode_type: only used when mode_n != -1 // // 0 - electric only // // 1 - magnetic only // // // // Output parameters: // // E, H: Complex electric and magnetic field at the provided coordinates // // // // Return value: // // Number of multipolar expansion terms used for the calculations // //**********************************************************************************// template void MultiLayerMie::RunFieldCalculation() { FloatType Rho, Theta, Phi; // Calculate scattering coefficients an_ and bn_ calcScattCoeffs(); // Calculate expansion coefficients aln_, bln_, cln_, and dln_ calcExpanCoeffs(); long total_points = coords_[0].size(); E_.resize(total_points); H_.resize(total_points); Es_.resize(total_points); Hs_.resize(total_points); for (auto& f : E_) f.resize(3); for (auto& f : H_) f.resize(3); for (auto& f : Es_) f.resize(3); for (auto& f : Hs_) f.resize(3); for (int point = 0; point < total_points; point++) { const FloatType& Xp = coords_[0][point]; const FloatType& Yp = coords_[1][point]; const FloatType& Zp = coords_[2][point]; // Convert to spherical coordinates Rho = nmm::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp)); // If Rho=0 then Theta is undefined. Just set it to zero to avoid problems Theta = (Rho > 0.0) ? nmm::acos(Zp/Rho) : 0.0; // std::atan2 should take care of any special cases, e.g. Xp=Yp=0, etc. Phi = nmm::atan2(Yp,Xp); // Avoid convergence problems due to Rho too small if (Rho < 1e-5) Rho = 1e-5; // std::cout << "Xp: "< > Es(3), Hs(3); // Do the actual calculation of electric and magnetic field calcFieldByComponents(Rho, Theta, Phi, Es, Hs); for (int sph_coord = 0; sph_coord<3; ++sph_coord) { Es_[point][sph_coord] = Es[sph_coord]; Hs_[point][sph_coord] = Hs[sph_coord]; } { //Now, convert the fields back to cartesian coordinates using nmm::sin; using nmm::cos; E_[point][0] = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2]; E_[point][1] = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2]; E_[point][2] = cos(Theta)*Es[0] - sin(Theta)*Es[1]; H_[point][0] = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2]; H_[point][1] = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2]; H_[point][2] = cos(Theta)*Hs[0] - sin(Theta)*Hs[1]; } } // end of for all field coordinates } // end of MultiLayerMie::RunFieldCalculation() } // end of namespace nmie #endif // SRC_NMIE_IMPL_HPP_