|
@@ -36,54 +36,6 @@ from fieldplot import fieldplot
|
|
|
|
|
|
import numpy as np
|
|
|
import cmath
|
|
|
-
|
|
|
-<<<<<<< HEAD
|
|
|
-
|
|
|
-def get_index(array,value):
|
|
|
- idx = (np.abs(array-value)).argmin()
|
|
|
- return idx
|
|
|
-
|
|
|
-#Ec = np.resize(Ec, (npts, npts)).T
|
|
|
-
|
|
|
-
|
|
|
-def GetFlow(scale_x, scale_z, Ec, Hc, a, b, nmax):
|
|
|
- # Initial position
|
|
|
- flow_x = [a]
|
|
|
- flow_z = [b]
|
|
|
- x_pos = flow_x[-1]
|
|
|
- z_pos = flow_z[-1]
|
|
|
- x_idx = get_index(scale_x, x_pos)
|
|
|
- z_idx = get_index(scale_z, z_pos)
|
|
|
- S=np.cross(Ec[npts*z_idx+x_idx], Hc[npts*z_idx+x_idx].conjugate()).real
|
|
|
- #if (np.linalg.norm(S)> 1e-4):
|
|
|
- Snorm_prev=S/np.linalg.norm(S)
|
|
|
- Snorm_prev=Snorm_prev.real
|
|
|
- for n in range(0, nmax):
|
|
|
- #Get the next position
|
|
|
- #1. Find Poynting vector and normalize it
|
|
|
- x_pos = flow_x[-1]
|
|
|
- z_pos = flow_z[-1]
|
|
|
- x_idx = get_index(scale_x, x_pos)
|
|
|
- z_idx = get_index(scale_z, z_pos)
|
|
|
- Epoint = Ec[npts*z_idx+x_idx]
|
|
|
- Hpoint = Hc[npts*z_idx+x_idx]
|
|
|
- S=np.cross(Epoint, Hpoint.conjugate())
|
|
|
- #if (np.linalg.norm(S)> 1e-4):
|
|
|
- Snorm=S.real/np.linalg.norm(S)
|
|
|
- #Snorm=Snorm.real
|
|
|
- #2. Evaluate displacement = half of the discrete and new position
|
|
|
- dpos = abs(scale_z[0]-scale_z[1])/2.0
|
|
|
- dx = dpos*Snorm[0];
|
|
|
- dz = dpos*Snorm[2];
|
|
|
- x_pos = x_pos+dx
|
|
|
- z_pos = z_pos+dz
|
|
|
- #3. Save result
|
|
|
- flow_x.append(x_pos)
|
|
|
- flow_z.append(z_pos)
|
|
|
- return flow_x, flow_z
|
|
|
-
|
|
|
-=======
|
|
|
->>>>>>> feb3ad9a4b3aa424f2e1087b4bc7b9bc52598810
|
|
|
# # a)
|
|
|
#WL=400 #nm
|
|
|
#core_r = WL/20.0
|
|
@@ -120,137 +72,6 @@ m[1] = index_Ag/nm
|
|
|
print "x =", x
|
|
|
print "m =", m
|
|
|
|
|
|
-<<<<<<< HEAD
|
|
|
-npts = 281
|
|
|
-
|
|
|
-factor=3
|
|
|
-scan = np.linspace(-factor*x[0, 0], factor*x[0, 0], npts)
|
|
|
-
|
|
|
-coordX, coordZ = np.meshgrid(scan, scan)
|
|
|
-coordX.resize(npts*npts)
|
|
|
-coordZ.resize(npts*npts)
|
|
|
-coordY = np.zeros(npts*npts, dtype = np.float64)
|
|
|
-
|
|
|
-coord = np.vstack((coordX, coordY, coordZ)).transpose()
|
|
|
-#coord = np.vstack((coordY, coordX, coordZ)).transpose()
|
|
|
-
|
|
|
-terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m)
|
|
|
-terms, E, H = fieldnlay(x, m, coord)
|
|
|
-
|
|
|
-P = np.array(map(lambda n: np.linalg.norm(np.cross(E[0][n], H[0][n].conjugate())).real, range(0, len(E[0]))))
|
|
|
-
|
|
|
-Ec = E[0, :, :]
|
|
|
-Hc = H[0, :, :]
|
|
|
-
|
|
|
-
|
|
|
-try:
|
|
|
- import matplotlib.pyplot as plt
|
|
|
- from matplotlib import cm
|
|
|
- from matplotlib.colors import LogNorm
|
|
|
-
|
|
|
- # min_tick = 0.0
|
|
|
- # max_tick = 1.0
|
|
|
-
|
|
|
- Eabs_data = np.resize(P, (npts, npts)).T
|
|
|
-
|
|
|
- #Eabs_data = np.resize(Eabs, (npts, npts)).T
|
|
|
- #Eabs_data = np.resize(Eangle, (npts, npts)).T
|
|
|
- #Eabs_data = np.resize(Habs, (npts, npts)).T
|
|
|
- #Eabs_data = np.resize(Hangle, (npts, npts)).T
|
|
|
-
|
|
|
- fig, ax = plt.subplots(1, 1)#, sharey=True, sharex=True)
|
|
|
-
|
|
|
- #idxs = np.where(np.abs(coordX) < 1e-10)
|
|
|
- #print H[0, idxs][0, :, 1]
|
|
|
- #axs[0].errorbar(coordZ[idxs]*WL/2.0/np.pi/nm, P[idxs], fmt = 'r', label = 'Poynting vector')
|
|
|
- #axs[0].errorbar(coordZ[idxs]*WL/2.0/np.pi/nm, np.linalg.norm(E[0, idxs][0], axis = 1), fmt = 'g', label = 'E')
|
|
|
- # axs[0].errorbar(coordZ[idxs]*WL/2.0/np.pi/nm, np.linalg.norm(H[0, idxs][0], axis = 1), fmt = 'b', label = 'H')
|
|
|
- # axs[0].errorbar(coordZ[idxs]*WL/2.0/np.pi/nm, H[0, idxs][0, :, 1].real, fmt = 'k', label = 'H.r')
|
|
|
- # axs[0].errorbar(coordZ[idxs]*WL/2.0/np.pi/nm, H[0, idxs][0, :, 1].imag, fmt = 'b', label = 'H.i')
|
|
|
- #axs[0].errorbar(coordZ[idxs]*WL/2.0/np.pi/nm, H[0, idxs][0, :, 0].real, fmt = 'b', label = 'Px')
|
|
|
- #axs[0].errorbar(coordZ[idxs]*WL/2.0/np.pi/nm, H[0, idxs][0, :, 1].real, fmt = 'k', label = 'Py')
|
|
|
- #axs[0].errorbar(coordZ[idxs]*WL/2.0/np.pi/nm, H[0, idxs][0, :, 2].real, fmt = 'b', label = 'Pz')
|
|
|
-
|
|
|
- #axs[0].legend()
|
|
|
-
|
|
|
- #fig.tight_layout()
|
|
|
- # Rescale to better show the axes
|
|
|
- scale_x = np.linspace(min(coordX)*WL/2.0/np.pi/nm, max(coordX)*WL/2.0/np.pi/nm, npts)
|
|
|
- scale_z = np.linspace(min(coordZ)*WL/2.0/np.pi/nm, max(coordZ)*WL/2.0/np.pi/nm, npts)
|
|
|
-
|
|
|
- # Define scale ticks
|
|
|
- min_tick = np.amin(Eabs_data)
|
|
|
- max_tick = np.amax(Eabs_data)
|
|
|
- # scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6))
|
|
|
- scale_ticks = np.linspace(min_tick, max_tick, 11)
|
|
|
-
|
|
|
- # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
|
|
|
- ax.set_title(r'$Re(E \times H^*)$')
|
|
|
- cax = ax.imshow(Eabs_data, interpolation = 'nearest', cmap = cm.jet,
|
|
|
- origin = 'lower'
|
|
|
- #, vmin = min_tick, vmax = max_tick
|
|
|
- , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z))
|
|
|
- #,norm = LogNorm()
|
|
|
- )
|
|
|
- ax.axis("image")
|
|
|
-
|
|
|
- # # Add colorbar
|
|
|
- cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
|
|
|
- cbar.ax.set_yticklabels(['%5.3g' % (a) for a in scale_ticks]) # vertically oriented colorbar
|
|
|
- # pos = list(cbar.ax.get_position().bounds)
|
|
|
- # fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
|
|
|
-
|
|
|
- plt.xlabel('Z, nm')
|
|
|
- plt.ylabel('X, nm')
|
|
|
-
|
|
|
- # This part draws the nanoshell
|
|
|
- from matplotlib import patches
|
|
|
- s1 = patches.Arc((0, 0), 2.0*core_r, 2.0*core_r, angle=0.0, zorder=2,
|
|
|
- theta1=0.0, theta2=360.0, linewidth=1, color='black')
|
|
|
- ax.add_patch(s1)
|
|
|
-
|
|
|
- from matplotlib.path import Path
|
|
|
- #import matplotlib.patches as patches
|
|
|
- flow_total = 39
|
|
|
- for flow in range(0,flow_total):
|
|
|
- flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
|
|
|
- min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),
|
|
|
- min(scale_z),
|
|
|
- #0.0,
|
|
|
- npts*16)
|
|
|
- verts = np.vstack((flow_z, flow_x)).transpose().tolist()
|
|
|
- #codes = [Path.CURVE4]*len(verts)
|
|
|
- codes = [Path.LINETO]*len(verts)
|
|
|
- codes[0] = Path.MOVETO
|
|
|
- path = Path(verts, codes)
|
|
|
- patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='white')
|
|
|
- ax.add_patch(patch)
|
|
|
- # # Start powerflow lines in the middle of the image
|
|
|
- # flow_total = 131
|
|
|
- # for flow in range(0,flow_total):
|
|
|
- # flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
|
|
|
- # min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),
|
|
|
- # 15.0, #min(scale_z),
|
|
|
- # npts*6)
|
|
|
- # verts = np.vstack((flow_z, flow_x)).transpose().tolist()
|
|
|
- # #codes = [Path.CURVE4]*len(verts)
|
|
|
- # codes = [Path.LINETO]*len(verts)
|
|
|
- # codes[0] = Path.MOVETO
|
|
|
- # path = Path(verts, codes)
|
|
|
- # patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='white')
|
|
|
- # ax.add_patch(patch)
|
|
|
-
|
|
|
- plt.savefig("Ag-flow.png")
|
|
|
- plt.draw()
|
|
|
-
|
|
|
- plt.show()
|
|
|
-
|
|
|
- plt.clf()
|
|
|
- plt.close()
|
|
|
-finally:
|
|
|
- print("Qabs = "+str(Qabs));
|
|
|
-#
|
|
|
-=======
|
|
|
comment='bulk-Ag-flow'
|
|
|
WL_units='nm'
|
|
|
npts = 501
|
|
@@ -268,6 +89,3 @@ field_to_plot='Pabs'
|
|
|
|
|
|
fieldplot(x,m, WL, comment, WL_units, crossplane, field_to_plot, npts, factor, flow_total, is_flow_extend=False)
|
|
|
|
|
|
->>>>>>> feb3ad9a4b3aa424f2e1087b4bc7b9bc52598810
|
|
|
-
|
|
|
-
|