|
@@ -72,7 +72,7 @@ namespace nmie {
|
|
S1 = multi_layer_mie.GetS1();
|
|
S1 = multi_layer_mie.GetS1();
|
|
S2 = multi_layer_mie.GetS2();
|
|
S2 = multi_layer_mie.GetS2();
|
|
//multi_layer_mie.GetFailed();
|
|
//multi_layer_mie.GetFailed();
|
|
- } catch( const std::invalid_argument& ia ) {
|
|
|
|
|
|
+ } catch(const std::invalid_argument& ia) {
|
|
// Will catch if multi_layer_mie fails or other errors.
|
|
// Will catch if multi_layer_mie fails or other errors.
|
|
std::cerr << "Invalid argument: " << ia.what() << std::endl;
|
|
std::cerr << "Invalid argument: " << ia.what() << std::endl;
|
|
throw std::invalid_argument(ia);
|
|
throw std::invalid_argument(ia);
|
|
@@ -86,16 +86,16 @@ namespace nmie {
|
|
// ********************************************************************** //
|
|
// ********************************************************************** //
|
|
int nField(const int L, const int pl, const std::vector<double>& x, const std::vector<std::complex<double> >& m, const int nmax, const int ncoord, const std::vector<double>& Xp_vec, const std::vector<double>& Yp_vec, const std::vector<double>& Zp_vec, std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
|
|
int nField(const int L, const int pl, const std::vector<double>& x, const std::vector<std::complex<double> >& m, const int nmax, const int ncoord, const std::vector<double>& Xp_vec, const std::vector<double>& Yp_vec, const std::vector<double>& Zp_vec, std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
|
|
if (x.size() != L || m.size() != L)
|
|
if (x.size() != L || m.size() != L)
|
|
- throw std::invalid_argument("Declared number of layers do not fit x and m!");
|
|
|
|
|
|
+ throw std::invalid_argument("Declared number of layers do not fit x and m!");
|
|
if (Xp_vec.size() != ncoord || Yp_vec.size() != ncoord || Zp_vec.size() != ncoord
|
|
if (Xp_vec.size() != ncoord || Yp_vec.size() != ncoord || Zp_vec.size() != ncoord
|
|
- || E.size() != ncoord || H.size() != ncoord )
|
|
|
|
|
|
+ || E.size() != ncoord || H.size() != ncoord)
|
|
throw std::invalid_argument("Declared number of coords do not fit Xp, Yp, Zp, E, or H!");
|
|
throw std::invalid_argument("Declared number of coords do not fit Xp, Yp, Zp, E, or H!");
|
|
for (auto f:E)
|
|
for (auto f:E)
|
|
- if ( f.size() != 3)
|
|
|
|
- throw std::invalid_argument("Field E is not 3D!");
|
|
|
|
|
|
+ if (f.size() != 3)
|
|
|
|
+ throw std::invalid_argument("Field E is not 3D!");
|
|
for (auto f:H)
|
|
for (auto f:H)
|
|
- if ( f.size() != 3)
|
|
|
|
- throw std::invalid_argument("Field H is not 3D!");
|
|
|
|
|
|
+ if (f.size() != 3)
|
|
|
|
+ throw std::invalid_argument("Field H is not 3D!");
|
|
try {
|
|
try {
|
|
MultiLayerMie multi_layer_mie;
|
|
MultiLayerMie multi_layer_mie;
|
|
//multi_layer_mie.SetPEC(pl);
|
|
//multi_layer_mie.SetPEC(pl);
|
|
@@ -106,11 +106,11 @@ namespace nmie {
|
|
E = multi_layer_mie.GetFieldE();
|
|
E = multi_layer_mie.GetFieldE();
|
|
H = multi_layer_mie.GetFieldH();
|
|
H = multi_layer_mie.GetFieldH();
|
|
//multi_layer_mie.GetFailed();
|
|
//multi_layer_mie.GetFailed();
|
|
- } catch( const std::invalid_argument& ia ) {
|
|
|
|
|
|
+ } catch(const std::invalid_argument& ia) {
|
|
// Will catch if multi_layer_mie fails or other errors.
|
|
// Will catch if multi_layer_mie fails or other errors.
|
|
std::cerr << "Invalid argument: " << ia.what() << std::endl;
|
|
std::cerr << "Invalid argument: " << ia.what() << std::endl;
|
|
throw std::invalid_argument(ia);
|
|
throw std::invalid_argument(ia);
|
|
- return -1;
|
|
|
|
|
|
+ return - 1;
|
|
}
|
|
}
|
|
|
|
|
|
return 0;
|
|
return 0;
|
|
@@ -124,18 +124,18 @@ namespace nmie {
|
|
std::complex<double> z(faild_x, 0.0);
|
|
std::complex<double> z(faild_x, 0.0);
|
|
std::vector<int> nmax_local_array = {20, 100, 500, 2500};
|
|
std::vector<int> nmax_local_array = {20, 100, 500, 2500};
|
|
for (auto nmax_local : nmax_local_array) {
|
|
for (auto nmax_local : nmax_local_array) {
|
|
- std::vector<std::complex<double> > D1_failed(nmax_local +1);
|
|
|
|
|
|
+ std::vector<std::complex<double> > D1_failed(nmax_local + 1);
|
|
// Downward recurrence for D1 - equations (16a) and (16b)
|
|
// Downward recurrence for D1 - equations (16a) and (16b)
|
|
D1_failed[nmax_local] = std::complex<double>(0.0, 0.0);
|
|
D1_failed[nmax_local] = std::complex<double>(0.0, 0.0);
|
|
const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;
|
|
const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;
|
|
for (int n = nmax_local; n > 0; n--) {
|
|
for (int n = nmax_local; n > 0; n--) {
|
|
- D1_failed[n - 1] = double(n)*zinv - 1.0/(D1_failed[n] + double(n)*zinv);
|
|
|
|
|
|
+ D1_failed[n - 1] = double(n)*zinv - 1.0/(D1_failed[n] + double(n)*zinv);
|
|
}
|
|
}
|
|
printf("Faild D1[0] from reccurence (z = %16.14f, nmax = %d): %g\n",
|
|
printf("Faild D1[0] from reccurence (z = %16.14f, nmax = %d): %g\n",
|
|
- faild_x, nmax_local, D1_failed[0].real());
|
|
|
|
|
|
+ faild_x, nmax_local, D1_failed[0].real());
|
|
}
|
|
}
|
|
printf("Faild D1[0] from continued fraction (z = %16.14f): %g\n", faild_x,
|
|
printf("Faild D1[0] from continued fraction (z = %16.14f): %g\n", faild_x,
|
|
- calcD1confra(0,z).real());
|
|
|
|
|
|
+ calcD1confra(0,z).real());
|
|
//D1[nmax_] = calcD1confra(nmax_, z);
|
|
//D1[nmax_] = calcD1confra(nmax_, z);
|
|
|
|
|
|
|
|
|
|
@@ -170,13 +170,13 @@ namespace nmie {
|
|
std::vector<double> MultiLayerMie::GetQabs_channel_normalized() {
|
|
std::vector<double> MultiLayerMie::GetQabs_channel_normalized() {
|
|
if (!isMieCalculated_)
|
|
if (!isMieCalculated_)
|
|
throw std::invalid_argument("You should run calculations before result request!");
|
|
throw std::invalid_argument("You should run calculations before result request!");
|
|
- // std::vector<double> NACS(nmax_-1, 0.0);
|
|
|
|
|
|
+ // std::vector<double> NACS(nmax_ - 1, 0.0);
|
|
// double x2 = pow2(size_parameter_.back());
|
|
// double x2 = pow2(size_parameter_.back());
|
|
// for (int i = 0; i < nmax_ - 1; ++i) {
|
|
// for (int i = 0; i < nmax_ - 1; ++i) {
|
|
- // const int n = i+1;
|
|
|
|
- // NACS[i] = Qabs_ch_[i]*x2/(2.0*(2.0*static_cast<double>(n)+1));
|
|
|
|
|
|
+ // const int n = i + 1;
|
|
|
|
+ // NACS[i] = Qabs_ch_[i]*x2/(2.0*(2.0*static_cast<double>(n) + 1));
|
|
// // if (NACS[i] > 0.250000001)
|
|
// // if (NACS[i] > 0.250000001)
|
|
- // // throw std::invalid_argument("Unexpected normalized absorption cross-section value!");
|
|
|
|
|
|
+ // // throw std::invalid_argument("Unexpected normalized absorption cross-section value!");
|
|
// }
|
|
// }
|
|
//return NACS;
|
|
//return NACS;
|
|
return Qabs_ch_norm_;
|
|
return Qabs_ch_norm_;
|
|
@@ -203,11 +203,11 @@ namespace nmie {
|
|
std::vector<double> MultiLayerMie::GetQsca_channel_normalized() {
|
|
std::vector<double> MultiLayerMie::GetQsca_channel_normalized() {
|
|
if (!isMieCalculated_)
|
|
if (!isMieCalculated_)
|
|
throw std::invalid_argument("You should run calculations before result request!");
|
|
throw std::invalid_argument("You should run calculations before result request!");
|
|
- // std::vector<double> NACS(nmax_-1, 0.0);
|
|
|
|
|
|
+ // std::vector<double> NACS(nmax_ - 1, 0.0);
|
|
// double x2 = pow2(size_parameter_.back());
|
|
// double x2 = pow2(size_parameter_.back());
|
|
// for (int i = 0; i < nmax_ - 1; ++i) {
|
|
// for (int i = 0; i < nmax_ - 1; ++i) {
|
|
- // const int n = i+1;
|
|
|
|
- // NACS[i] = Qsca_ch_[i]*x2/(2.0*(2.0*static_cast<double>(n)+1.0));
|
|
|
|
|
|
+ // const int n = i + 1;
|
|
|
|
+ // NACS[i] = Qsca_ch_[i]*x2/(2.0*(2.0*static_cast<double>(n) + 1.0));
|
|
// }
|
|
// }
|
|
// return NACS;
|
|
// return NACS;
|
|
return Qsca_ch_norm_;
|
|
return Qsca_ch_norm_;
|
|
@@ -323,7 +323,7 @@ namespace nmie {
|
|
throw std::invalid_argument("Size parameter should be positive!");
|
|
throw std::invalid_argument("Size parameter should be positive!");
|
|
if (prev_size_parameter > layer_size_parameter)
|
|
if (prev_size_parameter > layer_size_parameter)
|
|
throw std::invalid_argument
|
|
throw std::invalid_argument
|
|
- ("Size parameter for next layer should be larger than the previous one!");
|
|
|
|
|
|
+ ("Size parameter for next layer should be larger than the previous one!");
|
|
prev_size_parameter = layer_size_parameter;
|
|
prev_size_parameter = layer_size_parameter;
|
|
size_parameter_.push_back(layer_size_parameter);
|
|
size_parameter_.push_back(layer_size_parameter);
|
|
}
|
|
}
|
|
@@ -344,8 +344,7 @@ namespace nmie {
|
|
void MultiLayerMie::SetFieldPointsSP(const std::vector< std::vector<double> >& coords_sp) {
|
|
void MultiLayerMie::SetFieldPointsSP(const std::vector< std::vector<double> >& coords_sp) {
|
|
if (coords_sp.size() != 3)
|
|
if (coords_sp.size() != 3)
|
|
throw std::invalid_argument("Error! Wrong dimension of field monitor points!");
|
|
throw std::invalid_argument("Error! Wrong dimension of field monitor points!");
|
|
- if (coords_sp[0].size() != coords_sp[1].size()
|
|
|
|
- || coords_sp[0].size() != coords_sp[2].size())
|
|
|
|
|
|
+ if (coords_sp[0].size() != coords_sp[1].size() || coords_sp[0].size() != coords_sp[2].size())
|
|
throw std::invalid_argument("Error! Missing coordinates for field monitor points!");
|
|
throw std::invalid_argument("Error! Missing coordinates for field monitor points!");
|
|
coords_sp_ = coords_sp;
|
|
coords_sp_ = coords_sp;
|
|
// for (int i = 0; i < coords_sp_[0].size(); ++i) {
|
|
// for (int i = 0; i < coords_sp_[0].size(); ++i) {
|
|
@@ -379,11 +378,11 @@ namespace nmie {
|
|
double radius = 0.0;
|
|
double radius = 0.0;
|
|
for (auto width : target_width_) {
|
|
for (auto width : target_width_) {
|
|
radius += width;
|
|
radius += width;
|
|
- size_parameter_.push_back(2*PI_*radius / wavelength_);
|
|
|
|
|
|
+ size_parameter_.push_back(2*PI_*radius/wavelength_);
|
|
}
|
|
}
|
|
for (auto width : coating_width_) {
|
|
for (auto width : coating_width_) {
|
|
radius += width;
|
|
radius += width;
|
|
- size_parameter_.push_back(2*PI_*radius / wavelength_);
|
|
|
|
|
|
+ size_parameter_.push_back(2*PI_*radius/wavelength_);
|
|
}
|
|
}
|
|
total_radius_ = radius;
|
|
total_radius_ = radius;
|
|
} // end of void MultiLayerMie::GenerateSizeParameter();
|
|
} // end of void MultiLayerMie::GenerateSizeParameter();
|
|
@@ -413,14 +412,14 @@ namespace nmie {
|
|
if (!isMieCalculated_)
|
|
if (!isMieCalculated_)
|
|
throw std::invalid_argument("You should run calculations before result request!");
|
|
throw std::invalid_argument("You should run calculations before result request!");
|
|
std::vector< std::vector<double> > spectra;
|
|
std::vector< std::vector<double> > spectra;
|
|
- double step_WL = (to_WL - from_WL)/ static_cast<double>(samples);
|
|
|
|
|
|
+ double step_WL = (to_WL - from_WL)/static_cast<double>(samples);
|
|
double wavelength_backup = wavelength_;
|
|
double wavelength_backup = wavelength_;
|
|
long fails = 0;
|
|
long fails = 0;
|
|
for (double WL = from_WL; WL < to_WL; WL += step_WL) {
|
|
for (double WL = from_WL; WL < to_WL; WL += step_WL) {
|
|
wavelength_ = WL;
|
|
wavelength_ = WL;
|
|
try {
|
|
try {
|
|
RunMieCalculations();
|
|
RunMieCalculations();
|
|
- } catch( const std::invalid_argument& ia ) {
|
|
|
|
|
|
+ } catch(const std::invalid_argument& ia) {
|
|
fails++;
|
|
fails++;
|
|
continue;
|
|
continue;
|
|
}
|
|
}
|
|
@@ -493,15 +492,15 @@ namespace nmie {
|
|
Nstop(); // Set initial nmax_ value
|
|
Nstop(); // Set initial nmax_ value
|
|
for (int i = first_layer; i < x.size(); i++) {
|
|
for (int i = first_layer; i < x.size(); i++) {
|
|
if (i > PEC_layer_position_)
|
|
if (i > PEC_layer_position_)
|
|
- ri = round(std::abs(x[i]*m[i]));
|
|
|
|
|
|
+ ri = round(std::abs(x[i]*m[i]));
|
|
else
|
|
else
|
|
- ri = 0;
|
|
|
|
|
|
+ ri = 0;
|
|
nmax_ = std::max(nmax_, ri);
|
|
nmax_ = std::max(nmax_, ri);
|
|
// first layer is pec, if pec is present
|
|
// first layer is pec, if pec is present
|
|
if ((i > first_layer) && ((i - 1) > PEC_layer_position_))
|
|
if ((i > first_layer) && ((i - 1) > PEC_layer_position_))
|
|
- riM1 = round(std::abs(x[i - 1]* m[i]));
|
|
|
|
|
|
+ riM1 = round(std::abs(x[i - 1]* m[i]));
|
|
else
|
|
else
|
|
- riM1 = 0;
|
|
|
|
|
|
+ riM1 = 0;
|
|
nmax_ = std::max(nmax_, riM1);
|
|
nmax_ = std::max(nmax_, riM1);
|
|
}
|
|
}
|
|
nmax_ += 15; // Final nmax_ value
|
|
nmax_ += 15; // Final nmax_ value
|
|
@@ -521,7 +520,7 @@ namespace nmie {
|
|
// The implementation follows the algorithm by I.J. Thompson and A.R. Barnett, //
|
|
// The implementation follows the algorithm by I.J. Thompson and A.R. Barnett, //
|
|
// Comp. Phys. Comm. 47 (1987) 245-257. //
|
|
// Comp. Phys. Comm. 47 (1987) 245-257. //
|
|
// //
|
|
// //
|
|
- // Complex spherical Bessel functions from n=0..nmax_-1 for z in the upper half //
|
|
|
|
|
|
+ // Complex spherical Bessel functions from n=0..nmax_ - 1 for z in the upper half //
|
|
// plane (Im(z) > -3). //
|
|
// plane (Im(z) > -3). //
|
|
// //
|
|
// //
|
|
// j[n] = j/n(z) Regular solution: j[0]=sin(z)/z //
|
|
// j[n] = j/n(z) Regular solution: j[0]=sin(z)/z //
|
|
@@ -533,10 +532,10 @@ namespace nmie {
|
|
// Using complex CF1, and trigonometric forms for n=0 solutions. //
|
|
// Using complex CF1, and trigonometric forms for n=0 solutions. //
|
|
//**********************************************************************************//
|
|
//**********************************************************************************//
|
|
void MultiLayerMie::sbesjh(std::complex<double> z,
|
|
void MultiLayerMie::sbesjh(std::complex<double> z,
|
|
- std::vector<std::complex<double> >& jn,
|
|
|
|
- std::vector<std::complex<double> >& jnp,
|
|
|
|
- std::vector<std::complex<double> >& h1n,
|
|
|
|
- std::vector<std::complex<double> >& h1np) {
|
|
|
|
|
|
+ std::vector<std::complex<double> >& jn,
|
|
|
|
+ std::vector<std::complex<double> >& jnp,
|
|
|
|
+ std::vector<std::complex<double> >& h1n,
|
|
|
|
+ std::vector<std::complex<double> >& h1np) {
|
|
const int limit = 20000;
|
|
const int limit = 20000;
|
|
const double accur = 1.0e-12;
|
|
const double accur = 1.0e-12;
|
|
const double tm30 = 1e-30;
|
|
const double tm30 = 1e-30;
|
|
@@ -565,12 +564,12 @@ namespace nmie {
|
|
|
|
|
|
absc = std::abs(std::real(d)) + std::abs(std::imag(d));
|
|
absc = std::abs(std::real(d)) + std::abs(std::imag(d));
|
|
if (absc < tm30) {
|
|
if (absc < tm30) {
|
|
- d = tm30;
|
|
|
|
|
|
+ d = tm30;
|
|
}
|
|
}
|
|
|
|
|
|
absc = std::abs(std::real(c)) + std::abs(std::imag(c));
|
|
absc = std::abs(std::real(c)) + std::abs(std::imag(c));
|
|
if (absc < tm30) {
|
|
if (absc < tm30) {
|
|
- c = tm30;
|
|
|
|
|
|
+ c = tm30;
|
|
}
|
|
}
|
|
|
|
|
|
d = 1.0/d;
|
|
d = 1.0/d;
|
|
@@ -581,8 +580,8 @@ namespace nmie {
|
|
absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
|
|
absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
|
|
|
|
|
|
if (absc < accur) {
|
|
if (absc < accur) {
|
|
- // We have obtained the desired accuracy
|
|
|
|
- break;
|
|
|
|
|
|
+ // We have obtained the desired accuracy
|
|
|
|
+ break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
@@ -613,18 +612,18 @@ namespace nmie {
|
|
jn[n] = jn0*(w*jn[n]);
|
|
jn[n] = jn0*(w*jn[n]);
|
|
jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
|
|
jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
|
|
if (n != 0) {
|
|
if (n != 0) {
|
|
- h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
|
|
|
|
|
|
+ h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
|
|
|
|
|
|
- // check if hankel is increasing (upward stable)
|
|
|
|
- if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
|
|
|
|
- jndb = z;
|
|
|
|
- h1nldb = h1n[n];
|
|
|
|
- h1nbdb = h1n[n - 1];
|
|
|
|
- }
|
|
|
|
|
|
+ // check if hankel is increasing (upward stable)
|
|
|
|
+ if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
|
|
|
|
+ jndb = z;
|
|
|
|
+ h1nldb = h1n[n];
|
|
|
|
+ h1nbdb = h1n[n - 1];
|
|
|
|
+ }
|
|
|
|
|
|
- pl += zi;
|
|
|
|
|
|
+ pl += zi;
|
|
|
|
|
|
- h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
|
|
|
|
|
|
+ h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
@@ -642,9 +641,9 @@ namespace nmie {
|
|
// bd: Logarithmic derivative //
|
|
// bd: Logarithmic derivative //
|
|
//**********************************************************************************//
|
|
//**********************************************************************************//
|
|
void MultiLayerMie::sphericalBessel(std::complex<double> z,
|
|
void MultiLayerMie::sphericalBessel(std::complex<double> z,
|
|
- std::vector<std::complex<double> >& bj,
|
|
|
|
- std::vector<std::complex<double> >& by,
|
|
|
|
- std::vector<std::complex<double> >& bd) {
|
|
|
|
|
|
+ std::vector<std::complex<double> >& bj,
|
|
|
|
+ std::vector<std::complex<double> >& by,
|
|
|
|
+ std::vector<std::complex<double> >& bd) {
|
|
std::vector<std::complex<double> > jn(nmax_), jnp(nmax_), h1n(nmax_), h1np(nmax_);
|
|
std::vector<std::complex<double> > jn(nmax_), jnp(nmax_), h1n(nmax_), h1np(nmax_);
|
|
sbesjh(z, jn, jnp, h1n, h1np);
|
|
sbesjh(z, jn, jnp, h1n, h1np);
|
|
|
|
|
|
@@ -664,8 +663,8 @@ namespace nmie {
|
|
// by[1] = by[0]*3.0/z-bessely_0;//bj2
|
|
// by[1] = by[0]*3.0/z-bessely_0;//bj2
|
|
// }
|
|
// }
|
|
// for (int n = 2; n < nmax_; n++) {
|
|
// for (int n = 2; n < nmax_; n++) {
|
|
- // bj[n] = (2.0*n-1.0)/z*bj[n-1] - bj[n];
|
|
|
|
- // by[n] = (2.0*n-1.0)/z*by[n-1] - by[n];
|
|
|
|
|
|
+ // bj[n] = (2.0*n - 1.0)/z*bj[n - 1] - bj[n];
|
|
|
|
+ // by[n] = (2.0*n - 1.0)/z*by[n - 1] - by[n];
|
|
// }
|
|
// }
|
|
}
|
|
}
|
|
// ********************************************************************** //
|
|
// ********************************************************************** //
|
|
@@ -673,8 +672,8 @@ namespace nmie {
|
|
// ********************************************************************** //
|
|
// ********************************************************************** //
|
|
// Calculate an - equation (5)
|
|
// Calculate an - equation (5)
|
|
std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
|
|
std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
|
|
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
|
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
|
|
|
+ std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
|
+ std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
|
|
|
std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
|
|
std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
|
|
std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
|
|
std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
|
|
@@ -686,8 +685,8 @@ namespace nmie {
|
|
// ********************************************************************** //
|
|
// ********************************************************************** //
|
|
// Calculate bn - equation (6)
|
|
// Calculate bn - equation (6)
|
|
std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
|
|
std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
|
|
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
|
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
|
|
|
+ std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
|
+ std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
|
|
|
std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
|
|
std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
|
|
std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
|
|
std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
|
|
@@ -699,7 +698,7 @@ namespace nmie {
|
|
// ********************************************************************** //
|
|
// ********************************************************************** //
|
|
// Calculates S1 - equation (25a)
|
|
// Calculates S1 - equation (25a)
|
|
std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,
|
|
std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,
|
|
- double Pi, double Tau) {
|
|
|
|
|
|
+ double Pi, double Tau) {
|
|
return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
|
|
return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
|
|
}
|
|
}
|
|
// ********************************************************************** //
|
|
// ********************************************************************** //
|
|
@@ -707,7 +706,7 @@ namespace nmie {
|
|
// ********************************************************************** //
|
|
// ********************************************************************** //
|
|
// Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
|
|
// Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
|
|
std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,
|
|
std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,
|
|
- double Pi, double Tau) {
|
|
|
|
|
|
+ double Pi, double Tau) {
|
|
return calc_S1(n, an, bn, Tau, Pi);
|
|
return calc_S1(n, an, bn, Tau, Pi);
|
|
}
|
|
}
|
|
//**********************************************************************************//
|
|
//**********************************************************************************//
|
|
@@ -723,10 +722,10 @@ namespace nmie {
|
|
// Psi, Zeta: Riccati-Bessel functions //
|
|
// Psi, Zeta: Riccati-Bessel functions //
|
|
//**********************************************************************************//
|
|
//**********************************************************************************//
|
|
void MultiLayerMie::calcPsiZeta(std::complex<double> z,
|
|
void MultiLayerMie::calcPsiZeta(std::complex<double> z,
|
|
- std::vector<std::complex<double> > D1,
|
|
|
|
- std::vector<std::complex<double> > D3,
|
|
|
|
- std::vector<std::complex<double> >& Psi,
|
|
|
|
- std::vector<std::complex<double> >& Zeta) {
|
|
|
|
|
|
+ std::vector<std::complex<double> > D1,
|
|
|
|
+ std::vector<std::complex<double> > D3,
|
|
|
|
+ std::vector<std::complex<double> >& Psi,
|
|
|
|
+ std::vector<std::complex<double> >& Zeta) {
|
|
//Upward recurrence for Psi and Zeta - equations (20a) - (21b)
|
|
//Upward recurrence for Psi and Zeta - equations (20a) - (21b)
|
|
//Psi[0] = std::complex<double>(std::sin(x), 0);
|
|
//Psi[0] = std::complex<double>(std::sin(x), 0);
|
|
std::complex<double> c_i(0.0, 1.0);
|
|
std::complex<double> c_i(0.0, 1.0);
|
|
@@ -758,33 +757,33 @@ c a_k
|
|
c CAPT Factor used in Lentz iteration for A (Eq. R27)
|
|
c CAPT Factor used in Lentz iteration for A (Eq. R27)
|
|
c T_k
|
|
c T_k
|
|
|
|
|
|
-c CNUMER Numerator in capT ( Eq. R28A )
|
|
|
|
|
|
+c CNUMER Numerator in capT (Eq. R28A)
|
|
c N_k
|
|
c N_k
|
|
-c CDENOM Denominator in capT ( Eq. R28B )
|
|
|
|
|
|
+c CDENOM Denominator in capT (Eq. R28B)
|
|
c D_k
|
|
c D_k
|
|
|
|
|
|
c CDTD Product of two successive denominators of capT factors
|
|
c CDTD Product of two successive denominators of capT factors
|
|
-c ( Eq. R34C )
|
|
|
|
|
|
+c (Eq. R34C)
|
|
c xi_1
|
|
c xi_1
|
|
|
|
|
|
c CNTN Product of two successive numerators of capT factors
|
|
c CNTN Product of two successive numerators of capT factors
|
|
-c ( Eq. R34B )
|
|
|
|
|
|
+c (Eq. R34B)
|
|
c xi_2
|
|
c xi_2
|
|
|
|
|
|
c EPS1 Ill-conditioning criterion
|
|
c EPS1 Ill-conditioning criterion
|
|
c EPS2 Convergence criterion
|
|
c EPS2 Convergence criterion
|
|
|
|
|
|
-c KK Subscript k of cAk ( Eq. R25B )
|
|
|
|
|
|
+c KK Subscript k of cAk (Eq. R25B)
|
|
c k
|
|
c k
|
|
|
|
|
|
-c KOUNT Iteration counter ( used to prevent infinite looping )
|
|
|
|
|
|
+c KOUNT Iteration counter (used to prevent infinite looping)
|
|
|
|
|
|
c MAXIT Max. allowed no. of iterations
|
|
c MAXIT Max. allowed no. of iterations
|
|
|
|
|
|
-c MM + 1 and - 1, alternately
|
|
|
|
|
|
+c MM + 1 and - 1, alternately
|
|
*/
|
|
*/
|
|
std::complex<double> MultiLayerMie::calcD1confra(const int N, const std::complex<double> z) {
|
|
std::complex<double> MultiLayerMie::calcD1confra(const int N, const std::complex<double> z) {
|
|
- // NTMR -> nmax_ -1 \\TODO nmax_ ?
|
|
|
|
|
|
+ // NTMR -> nmax_ - 1 \\TODO nmax_ ?
|
|
//int N = nmax_ - 1;
|
|
//int N = nmax_ - 1;
|
|
int KK, KOUNT, MAXIT = 10000, MM;
|
|
int KK, KOUNT, MAXIT = 10000, MM;
|
|
// double EPS1=1.0e-2;
|
|
// double EPS1=1.0e-2;
|
|
@@ -793,49 +792,49 @@ c MM + 1 and - 1, alternately
|
|
std::complex<double> one = std::complex<double>(1.0,0.0);
|
|
std::complex<double> one = std::complex<double>(1.0,0.0);
|
|
std::complex<double> ZINV = one/z;
|
|
std::complex<double> ZINV = one/z;
|
|
// c ** Eq. R25a
|
|
// c ** Eq. R25a
|
|
- std::complex<double> CONFRA = static_cast<std::complex<double> >(N+1)*ZINV; //debug ZINV
|
|
|
|
- MM = -1;
|
|
|
|
|
|
+ std::complex<double> CONFRA = static_cast<std::complex<double> >(N + 1)*ZINV; //debug ZINV
|
|
|
|
+ MM = - 1;
|
|
KK = 2*N +3; //debug 3
|
|
KK = 2*N +3; //debug 3
|
|
// c ** Eq. R25b, k=2
|
|
// c ** Eq. R25b, k=2
|
|
CAK = static_cast<std::complex<double> >(MM*KK) * ZINV; //debug -3 ZINV
|
|
CAK = static_cast<std::complex<double> >(MM*KK) * ZINV; //debug -3 ZINV
|
|
CDENOM = CAK;
|
|
CDENOM = CAK;
|
|
- CNUMER = CDENOM + one / CONFRA; //-3zinv+z
|
|
|
|
|
|
+ CNUMER = CDENOM + one/CONFRA; //-3zinv+z
|
|
KOUNT = 1;
|
|
KOUNT = 1;
|
|
//10 CONTINUE
|
|
//10 CONTINUE
|
|
do { ++KOUNT;
|
|
do { ++KOUNT;
|
|
if (KOUNT > MAXIT) {
|
|
if (KOUNT > MAXIT) {
|
|
- printf("re(%g):im(%g)\t\n", CONFRA.real(), CONFRA.imag());
|
|
|
|
- throw std::invalid_argument("ConFra--Iteration failed to converge!\n");
|
|
|
|
|
|
+ printf("re(%g):im(%g)\t\n", CONFRA.real(), CONFRA.imag());
|
|
|
|
+ throw std::invalid_argument("ConFra--Iteration failed to converge!\n");
|
|
}
|
|
}
|
|
- MM *= -1; KK += 2; //debug mm=1 kk=5
|
|
|
|
|
|
+ MM *= - 1; KK += 2; //debug mm=1 kk=5
|
|
CAK = static_cast<std::complex<double> >(MM*KK) * ZINV; // ** Eq. R25b //debug 5zinv
|
|
CAK = static_cast<std::complex<double> >(MM*KK) * ZINV; // ** Eq. R25b //debug 5zinv
|
|
// //c ** Eq. R32 Ill-conditioned case -- stride two terms instead of one
|
|
// //c ** Eq. R32 Ill-conditioned case -- stride two terms instead of one
|
|
- // if (std::abs( CNUMER / CAK ) >= EPS1 || std::abs( CDENOM / CAK ) >= EPS1) {
|
|
|
|
- // //c ** Eq. R34
|
|
|
|
- // CNTN = CAK * CNUMER + 1.0;
|
|
|
|
- // CDTD = CAK * CDENOM + 1.0;
|
|
|
|
- // CONFRA = ( CNTN / CDTD ) * CONFRA; // ** Eq. R33
|
|
|
|
- // MM *= -1; KK += 2;
|
|
|
|
- // CAK = static_cast<std::complex<double> >(MM*KK) * ZINV; // ** Eq. R25b
|
|
|
|
- // //c ** Eq. R35
|
|
|
|
- // CNUMER = CAK + CNUMER / CNTN;
|
|
|
|
- // CDENOM = CAK + CDENOM / CDTD;
|
|
|
|
- // ++KOUNT;
|
|
|
|
- // //GO TO 10
|
|
|
|
- // continue;
|
|
|
|
|
|
+ // if (std::abs(CNUMER/CAK) >= EPS1 || std::abs(CDENOM/CAK) >= EPS1) {
|
|
|
|
+ // //c ** Eq. R34
|
|
|
|
+ // CNTN = CAK * CNUMER + 1.0;
|
|
|
|
+ // CDTD = CAK * CDENOM + 1.0;
|
|
|
|
+ // CONFRA = (CNTN/CDTD) * CONFRA; // ** Eq. R33
|
|
|
|
+ // MM *= - 1; KK += 2;
|
|
|
|
+ // CAK = static_cast<std::complex<double> >(MM*KK) * ZINV; // ** Eq. R25b
|
|
|
|
+ // //c ** Eq. R35
|
|
|
|
+ // CNUMER = CAK + CNUMER/CNTN;
|
|
|
|
+ // CDENOM = CAK + CDENOM/CDTD;
|
|
|
|
+ // ++KOUNT;
|
|
|
|
+ // //GO TO 10
|
|
|
|
+ // continue;
|
|
// } else { //c *** Well-conditioned case
|
|
// } else { //c *** Well-conditioned case
|
|
{
|
|
{
|
|
- CAPT = CNUMER / CDENOM; // ** Eq. R27 //debug (-3zinv + z)/(-3zinv)
|
|
|
|
- // printf("re(%g):im(%g)**\t", CAPT.real(), CAPT.imag());
|
|
|
|
|
|
+ CAPT = CNUMER/CDENOM; // ** Eq. R27 //debug (-3zinv + z)/(-3zinv)
|
|
|
|
+ // printf("re(%g):im(%g)**\t", CAPT.real(), CAPT.imag());
|
|
CONFRA = CAPT * CONFRA; // ** Eq. R26
|
|
CONFRA = CAPT * CONFRA; // ** Eq. R26
|
|
//if (N == 0) {output=true;printf(" re:");prn(CONFRA.real());printf(" im:"); prn(CONFRA.imag());output=false;};
|
|
//if (N == 0) {output=true;printf(" re:");prn(CONFRA.real());printf(" im:"); prn(CONFRA.imag());output=false;};
|
|
//c ** Check for convergence; Eq. R31
|
|
//c ** Check for convergence; Eq. R31
|
|
- if ( std::abs(CAPT.real() - 1.0) >= EPS2 || std::abs(CAPT.imag()) >= EPS2 ) {
|
|
|
|
|
|
+ if (std::abs(CAPT.real() - 1.0) >= EPS2 || std::abs(CAPT.imag()) >= EPS2) {
|
|
//c ** Eq. R30
|
|
//c ** Eq. R30
|
|
- CNUMER = CAK + one/CNUMER;
|
|
|
|
- CDENOM = CAK + one/CDENOM;
|
|
|
|
- continue;
|
|
|
|
- //GO TO 10
|
|
|
|
|
|
+ CNUMER = CAK + one/CNUMER;
|
|
|
|
+ CDENOM = CAK + one/CDENOM;
|
|
|
|
+ continue;
|
|
|
|
+ //GO TO 10
|
|
} // end of if < eps2
|
|
} // end of if < eps2
|
|
}
|
|
}
|
|
break;
|
|
break;
|
|
@@ -856,8 +855,8 @@ c MM + 1 and - 1, alternately
|
|
// D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
|
|
// D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
|
|
//**********************************************************************************//
|
|
//**********************************************************************************//
|
|
void MultiLayerMie::calcD1D3(const std::complex<double> z,
|
|
void MultiLayerMie::calcD1D3(const std::complex<double> z,
|
|
- std::vector<std::complex<double> >& D1,
|
|
|
|
- std::vector<std::complex<double> >& D3) {
|
|
|
|
|
|
+ std::vector<std::complex<double> >& D1,
|
|
|
|
+ std::vector<std::complex<double> >& D3) {
|
|
// Downward recurrence for D1 - equations (16a) and (16b)
|
|
// Downward recurrence for D1 - equations (16a) and (16b)
|
|
D1[nmax_] = std::complex<double>(0.0, 0.0);
|
|
D1[nmax_] = std::complex<double>(0.0, 0.0);
|
|
//D1[nmax_] = calcD1confra(nmax_, z);
|
|
//D1[nmax_] = calcD1confra(nmax_, z);
|
|
@@ -867,21 +866,21 @@ c MM + 1 and - 1, alternately
|
|
// prn((D1[nmax_] + double(nmax_)*zinv).real());
|
|
// prn((D1[nmax_] + double(nmax_)*zinv).real());
|
|
for (int n = nmax_; n > 0; n--) {
|
|
for (int n = nmax_; n > 0; n--) {
|
|
D1[n - 1] = double(n)*zinv - 1.0/(D1[n] + double(n)*zinv);
|
|
D1[n - 1] = double(n)*zinv - 1.0/(D1[n] + double(n)*zinv);
|
|
- //D1[n-1] = calcD1confra(n-1, z);
|
|
|
|
- // printf(" D:");prn((D1[n-1]).real()); printf("\t diff:");
|
|
|
|
|
|
+ //D1[n - 1] = calcD1confra(n - 1, z);
|
|
|
|
+ // printf(" D:");prn((D1[n - 1]).real()); printf("\t diff:");
|
|
// prn((D1[n] + double(n)*zinv).real());
|
|
// prn((D1[n] + double(n)*zinv).real());
|
|
}
|
|
}
|
|
// printf("\n\n"); iformat=0;
|
|
// printf("\n\n"); iformat=0;
|
|
- if (std::abs(D1[0]) > 100000.0 )
|
|
|
|
|
|
+ if (std::abs(D1[0]) > 100000.0)
|
|
throw std::invalid_argument
|
|
throw std::invalid_argument
|
|
- ("Unstable D1! Please, try to change input parameters!\n");
|
|
|
|
|
|
+ ("Unstable D1! Please, try to change input parameters!\n");
|
|
// Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
|
|
// Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
|
|
PsiZeta_[0] = 0.5*(1.0 - std::complex<double>(std::cos(2.0*z.real()), std::sin(2.0*z.real()))
|
|
PsiZeta_[0] = 0.5*(1.0 - std::complex<double>(std::cos(2.0*z.real()), std::sin(2.0*z.real()))
|
|
- *std::exp(-2.0*z.imag()));
|
|
|
|
|
|
+ *std::exp(-2.0*z.imag()));
|
|
D3[0] = std::complex<double>(0.0, 1.0);
|
|
D3[0] = std::complex<double>(0.0, 1.0);
|
|
for (int n = 1; n <= nmax_; n++) {
|
|
for (int n = 1; n <= nmax_; n++) {
|
|
PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<double>(n)*zinv - D1[n - 1])
|
|
PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<double>(n)*zinv - D1[n - 1])
|
|
- *(static_cast<double>(n)*zinv- D3[n - 1]);
|
|
|
|
|
|
+ *(static_cast<double>(n)*zinv- D3[n - 1]);
|
|
D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta_[n];
|
|
D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta_[n];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
@@ -890,7 +889,7 @@ c MM + 1 and - 1, alternately
|
|
// Equations (26a) - (26c) //
|
|
// Equations (26a) - (26c) //
|
|
// //
|
|
// //
|
|
// Input parameters: //
|
|
// Input parameters: //
|
|
- // nmax_: Maximum number of terms to calculate Pi and Tau //
|
|
|
|
|
|
+ // nmax_: Maximum number of terms to calculate Pi and Tau //
|
|
// nTheta: Number of scattering angles //
|
|
// nTheta: Number of scattering angles //
|
|
// Theta: Array containing all the scattering angles where the scattering //
|
|
// Theta: Array containing all the scattering angles where the scattering //
|
|
// amplitudes will be calculated //
|
|
// amplitudes will be calculated //
|
|
@@ -899,35 +898,35 @@ c MM + 1 and - 1, alternately
|
|
// Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
|
|
// Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
|
|
//**********************************************************************************//
|
|
//**********************************************************************************//
|
|
void MultiLayerMie::calcSinglePiTau(const double& costheta, std::vector<double>& Pi,
|
|
void MultiLayerMie::calcSinglePiTau(const double& costheta, std::vector<double>& Pi,
|
|
- std::vector<double>& Tau) {
|
|
|
|
|
|
+ std::vector<double>& Tau) {
|
|
//****************************************************//
|
|
//****************************************************//
|
|
// Equations (26a) - (26c) //
|
|
// Equations (26a) - (26c) //
|
|
//****************************************************//
|
|
//****************************************************//
|
|
for (int n = 0; n < nmax_; n++) {
|
|
for (int n = 0; n < nmax_; n++) {
|
|
if (n == 0) {
|
|
if (n == 0) {
|
|
- // Initialize Pi and Tau
|
|
|
|
- Pi[n] = 1.0;
|
|
|
|
- Tau[n] = (n + 1)*costheta;
|
|
|
|
|
|
+ // Initialize Pi and Tau
|
|
|
|
+ Pi[n] = 1.0;
|
|
|
|
+ Tau[n] = (n + 1)*costheta;
|
|
} else {
|
|
} else {
|
|
- // Calculate the actual values
|
|
|
|
- Pi[n] = ((n == 1) ? ((n + n + 1)*costheta*Pi[n - 1]/n)
|
|
|
|
- : (((n + n + 1)*costheta*Pi[n - 1]
|
|
|
|
- - (n + 1)*Pi[n - 2])/n));
|
|
|
|
- Tau[n] = (n + 1)*costheta*Pi[n] - (n + 2)*Pi[n - 1];
|
|
|
|
|
|
+ // Calculate the actual values
|
|
|
|
+ Pi[n] = ((n == 1) ? ((n + n + 1)*costheta*Pi[n - 1]/n)
|
|
|
|
+ : (((n + n + 1)*costheta*Pi[n - 1]
|
|
|
|
+ - (n + 1)*Pi[n - 2])/n));
|
|
|
|
+ Tau[n] = (n + 1)*costheta*Pi[n] - (n + 2)*Pi[n - 1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // end of void MultiLayerMie::calcPiTau(...)
|
|
} // end of void MultiLayerMie::calcPiTau(...)
|
|
void MultiLayerMie::calcAllPiTau(std::vector< std::vector<double> >& Pi,
|
|
void MultiLayerMie::calcAllPiTau(std::vector< std::vector<double> >& Pi,
|
|
- std::vector< std::vector<double> >& Tau) {
|
|
|
|
|
|
+ std::vector< std::vector<double> >& Tau) {
|
|
std::vector<double> costheta(theta_.size(), 0.0);
|
|
std::vector<double> costheta(theta_.size(), 0.0);
|
|
- for (int t = 0; t < theta_.size(); t++) {
|
|
|
|
|
|
+ for (int t = 0; t < theta_.size(); t++) {
|
|
costheta[t] = std::cos(theta_[t]);
|
|
costheta[t] = std::cos(theta_[t]);
|
|
}
|
|
}
|
|
// Do not join upper and lower 'for' to a single one! It will slow
|
|
// Do not join upper and lower 'for' to a single one! It will slow
|
|
// down the code!!! (For about 0.5-2.0% of runtime, it is probably
|
|
// down the code!!! (For about 0.5-2.0% of runtime, it is probably
|
|
// due to increased cache missing rate originated from the
|
|
// due to increased cache missing rate originated from the
|
|
// recurrence in calcPiTau...)
|
|
// recurrence in calcPiTau...)
|
|
- for (int t = 0; t < theta_.size(); t++) {
|
|
|
|
|
|
+ for (int t = 0; t < theta_.size(); t++) {
|
|
calcSinglePiTau(costheta[t], Pi[t], Tau[t]);
|
|
calcSinglePiTau(costheta[t], Pi[t], Tau[t]);
|
|
//calcSinglePiTau(std::cos(theta_[t]), Pi[t], Tau[t]); // It is slow!!
|
|
//calcSinglePiTau(std::cos(theta_[t]), Pi[t], Tau[t]); // It is slow!!
|
|
}
|
|
}
|
|
@@ -952,19 +951,19 @@ c MM + 1 and - 1, alternately
|
|
// Number of multipolar expansion terms used for the calculations //
|
|
// Number of multipolar expansion terms used for the calculations //
|
|
//**********************************************************************************//
|
|
//**********************************************************************************//
|
|
void MultiLayerMie::ScattCoeffs(std::vector<std::complex<double> >& an,
|
|
void MultiLayerMie::ScattCoeffs(std::vector<std::complex<double> >& an,
|
|
- std::vector<std::complex<double> >& bn) {
|
|
|
|
|
|
+ std::vector<std::complex<double> >& bn) {
|
|
const std::vector<double>& x = size_parameter_;
|
|
const std::vector<double>& x = size_parameter_;
|
|
const std::vector<std::complex<double> >& m = index_;
|
|
const std::vector<std::complex<double> >& m = index_;
|
|
const int& pl = PEC_layer_position_;
|
|
const int& pl = PEC_layer_position_;
|
|
const int L = index_.size();
|
|
const int L = index_.size();
|
|
//************************************************************************//
|
|
//************************************************************************//
|
|
- // Calculate the index of the first layer. It can be either 0
|
|
|
|
- // (default) // or the index of the outermost PEC layer. In the
|
|
|
|
- // latter case all layers // below the PEC are discarded. //
|
|
|
|
- // ************************************************************************//
|
|
|
|
|
|
+ // Calculate the index of the first layer. It can be either 0 (default) //
|
|
|
|
+ // or the index of the outermost PEC layer. In the latter case all layers //
|
|
|
|
+ // below the PEC are discarded. //
|
|
|
|
+ // ***********************************************************************//
|
|
// TODO, is it possible for PEC to have a zero index? If yes than
|
|
// TODO, is it possible for PEC to have a zero index? If yes than
|
|
// is should be:
|
|
// is should be:
|
|
- // int fl = (pl > -1) ? pl : 0;
|
|
|
|
|
|
+ // int fl = (pl > - 1) ? pl : 0;
|
|
// This will give the same result, however, it corresponds the
|
|
// This will give the same result, however, it corresponds the
|
|
// logic - if there is PEC, than first layer is PEC.
|
|
// logic - if there is PEC, than first layer is PEC.
|
|
int fl = (pl > 0) ? pl : 0;
|
|
int fl = (pl > 0) ? pl : 0;
|
|
@@ -1001,8 +1000,8 @@ c MM + 1 and - 1, alternately
|
|
//*************************************************//
|
|
//*************************************************//
|
|
if (fl == pl) { // PEC layer
|
|
if (fl == pl) { // PEC layer
|
|
for (int n = 0; n <= nmax_; n++) {
|
|
for (int n = 0; n <= nmax_; n++) {
|
|
- D1_mlxl[n] = std::complex<double>(0.0, -1.0);
|
|
|
|
- D3_mlxl[n] = std::complex<double>(0.0, 1.0);
|
|
|
|
|
|
+ D1_mlxl[n] = std::complex<double>(0.0, - 1.0);
|
|
|
|
+ D3_mlxl[n] = std::complex<double>(0.0, 1.0);
|
|
}
|
|
}
|
|
} else { // Regular layer
|
|
} else { // Regular layer
|
|
z1 = x[fl]* m[fl];
|
|
z1 = x[fl]* m[fl];
|
|
@@ -1011,7 +1010,7 @@ c MM + 1 and - 1, alternately
|
|
}
|
|
}
|
|
// do { \
|
|
// do { \
|
|
// ++iformat;\
|
|
// ++iformat;\
|
|
- // if (iformat%5 == 0) printf("%24.16e",z1.real()); \
|
|
|
|
|
|
+ // if (iformat%5 == 0) printf("%24.16e",z1.real());
|
|
// } while (false);
|
|
// } while (false);
|
|
//******************************************************************//
|
|
//******************************************************************//
|
|
// Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
|
|
// Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
|
|
@@ -1027,7 +1026,7 @@ c MM + 1 and - 1, alternately
|
|
std::complex<double> G1, G2;
|
|
std::complex<double> G1, G2;
|
|
for (int l = fl + 1; l < L; l++) {
|
|
for (int l = fl + 1; l < L; l++) {
|
|
//************************************************************//
|
|
//************************************************************//
|
|
- //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L //
|
|
|
|
|
|
+ //Calculate D1 and D3 for z1 and z2 in the layers fl + 1..L //
|
|
//************************************************************//
|
|
//************************************************************//
|
|
z1 = x[l]*m[l];
|
|
z1 = x[l]*m[l];
|
|
z2 = x[l - 1]*m[l];
|
|
z2 = x[l - 1]*m[l];
|
|
@@ -1036,50 +1035,50 @@ c MM + 1 and - 1, alternately
|
|
//Calculate D1 and D3 for z2
|
|
//Calculate D1 and D3 for z2
|
|
calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
|
|
calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
|
|
// prn(z1.real());
|
|
// prn(z1.real());
|
|
- // for ( auto i : D1_mlxl) { prn(i.real());
|
|
|
|
|
|
+ // for (auto i : D1_mlxl) { prn(i.real());
|
|
// // prn(i.imag());
|
|
// // prn(i.imag());
|
|
- // } printf("\n");
|
|
|
|
|
|
+ // } printf("\n");
|
|
|
|
|
|
//*********************************************//
|
|
//*********************************************//
|
|
- //Calculate Q, Ha and Hb in the layers fl+1..L //
|
|
|
|
|
|
+ //Calculate Q, Ha and Hb in the layers fl + 1..L //
|
|
//*********************************************//
|
|
//*********************************************//
|
|
// Upward recurrence for Q - equations (19a) and (19b)
|
|
// Upward recurrence for Q - equations (19a) and (19b)
|
|
Num = std::exp(-2.0*(z1.imag() - z2.imag()))
|
|
Num = std::exp(-2.0*(z1.imag() - z2.imag()))
|
|
- * std::complex<double>(std::cos(-2.0*z2.real()) - std::exp(-2.0*z2.imag()), std::sin(-2.0*z2.real()));
|
|
|
|
|
|
+ * std::complex<double>(std::cos(-2.0*z2.real()) - std::exp(-2.0*z2.imag()), std::sin(-2.0*z2.real()));
|
|
Denom = std::complex<double>(std::cos(-2.0*z1.real()) - std::exp(-2.0*z1.imag()), std::sin(-2.0*z1.real()));
|
|
Denom = std::complex<double>(std::cos(-2.0*z1.real()) - std::exp(-2.0*z1.imag()), std::sin(-2.0*z1.real()));
|
|
Q[l][0] = Num/Denom;
|
|
Q[l][0] = Num/Denom;
|
|
for (int n = 1; n <= nmax_; n++) {
|
|
for (int n = 1; n <= nmax_; n++) {
|
|
- Num = (z1*D1_mlxl[n] + double(n))*(double(n) - z1*D3_mlxl[n - 1]);
|
|
|
|
- Denom = (z2*D1_mlxlM1[n] + double(n))*(double(n) - z2*D3_mlxlM1[n - 1]);
|
|
|
|
- Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
|
|
|
|
|
|
+ Num = (z1*D1_mlxl[n] + double(n))*(double(n) - z1*D3_mlxl[n - 1]);
|
|
|
|
+ Denom = (z2*D1_mlxlM1[n] + double(n))*(double(n) - z2*D3_mlxlM1[n - 1]);
|
|
|
|
+ Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
|
|
}
|
|
}
|
|
// Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
|
|
// Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
|
|
for (int n = 1; n <= nmax_; n++) {
|
|
for (int n = 1; n <= nmax_; n++) {
|
|
- //Ha
|
|
|
|
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
|
- G1 = -D1_mlxlM1[n];
|
|
|
|
- G2 = -D3_mlxlM1[n];
|
|
|
|
- } else {
|
|
|
|
- G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
|
|
|
|
- G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
|
|
|
|
- } // end of if PEC
|
|
|
|
- Temp = Q[l][n]*G1;
|
|
|
|
- Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
|
|
|
|
- Denom = G2 - Temp;
|
|
|
|
- Ha[l][n - 1] = Num/Denom;
|
|
|
|
- //Hb
|
|
|
|
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
|
- G1 = Hb[l - 1][n - 1];
|
|
|
|
- G2 = Hb[l - 1][n - 1];
|
|
|
|
- } else {
|
|
|
|
- G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
|
|
|
|
- G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
|
|
|
|
- } // end of if PEC
|
|
|
|
|
|
+ //Ha
|
|
|
|
+ if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
|
+ G1 = -D1_mlxlM1[n];
|
|
|
|
+ G2 = -D3_mlxlM1[n];
|
|
|
|
+ } else {
|
|
|
|
+ G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
|
|
|
|
+ G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
|
|
|
|
+ } // end of if PEC
|
|
|
|
+ Temp = Q[l][n]*G1;
|
|
|
|
+ Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
|
|
|
|
+ Denom = G2 - Temp;
|
|
|
|
+ Ha[l][n - 1] = Num/Denom;
|
|
|
|
+ //Hb
|
|
|
|
+ if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
|
+ G1 = Hb[l - 1][n - 1];
|
|
|
|
+ G2 = Hb[l - 1][n - 1];
|
|
|
|
+ } else {
|
|
|
|
+ G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
|
|
|
|
+ G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
|
|
|
|
+ } // end of if PEC
|
|
|
|
|
|
- Temp = Q[l][n]*G1;
|
|
|
|
- Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
|
|
|
|
- Denom = (G2- Temp);
|
|
|
|
- Hb[l][n - 1] = (Num/ Denom);
|
|
|
|
|
|
+ Temp = Q[l][n]*G1;
|
|
|
|
+ Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
|
|
|
|
+ Denom = (G2- Temp);
|
|
|
|
+ Hb[l][n - 1] = (Num/ Denom);
|
|
} // end of for Ha and Hb terms
|
|
} // end of for Ha and Hb terms
|
|
} // end of for layers iteration
|
|
} // end of for layers iteration
|
|
//**************************************//
|
|
//**************************************//
|
|
@@ -1087,7 +1086,7 @@ c MM + 1 and - 1, alternately
|
|
//**************************************//
|
|
//**************************************//
|
|
// Calculate D1XL and D3XL
|
|
// Calculate D1XL and D3XL
|
|
calcD1D3(x[L - 1], D1XL, D3XL);
|
|
calcD1D3(x[L - 1], D1XL, D3XL);
|
|
- //printf("%5.20f\n",Ha[L-1][0].real());
|
|
|
|
|
|
+ //printf("%5.20f\n",Ha[L - 1][0].real());
|
|
// Calculate PsiXL and ZetaXL
|
|
// Calculate PsiXL and ZetaXL
|
|
calcPsiZeta(x[L - 1], D1XL, D3XL, PsiXL, ZetaXL);
|
|
calcPsiZeta(x[L - 1], D1XL, D3XL, PsiXL, ZetaXL);
|
|
//*********************************************************************//
|
|
//*********************************************************************//
|
|
@@ -1102,11 +1101,11 @@ c MM + 1 and - 1, alternately
|
|
//there is only one PEC layer (ie, for a simple PEC sphere). //
|
|
//there is only one PEC layer (ie, for a simple PEC sphere). //
|
|
//********************************************************************//
|
|
//********************************************************************//
|
|
if (pl < (L - 1)) {
|
|
if (pl < (L - 1)) {
|
|
- an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
|
- bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
|
|
|
+ an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
|
+ bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
} else {
|
|
} else {
|
|
- an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
|
- bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
|
|
|
|
|
|
+ an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
|
+ bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
|
|
}
|
|
}
|
|
} // end of for an and bn terms
|
|
} // end of for an and bn terms
|
|
} // end of void MultiLayerMie::ScattCoeffs(...)
|
|
} // end of void MultiLayerMie::ScattCoeffs(...)
|
|
@@ -1128,18 +1127,18 @@ c MM + 1 and - 1, alternately
|
|
Qabs_ch_.clear();
|
|
Qabs_ch_.clear();
|
|
Qbk_ch_.clear();
|
|
Qbk_ch_.clear();
|
|
Qpr_ch_.clear();
|
|
Qpr_ch_.clear();
|
|
- Qsca_ch_.resize(nmax_-1);
|
|
|
|
- Qext_ch_.resize(nmax_-1);
|
|
|
|
- Qabs_ch_.resize(nmax_-1);
|
|
|
|
- Qbk_ch_.resize(nmax_-1);
|
|
|
|
- Qpr_ch_.resize(nmax_-1);
|
|
|
|
- Qsca_ch_norm_.resize(nmax_-1);
|
|
|
|
- Qext_ch_norm_.resize(nmax_-1);
|
|
|
|
- Qabs_ch_norm_.resize(nmax_-1);
|
|
|
|
- Qbk_ch_norm_.resize(nmax_-1);
|
|
|
|
- Qpr_ch_norm_.resize(nmax_-1);
|
|
|
|
|
|
+ Qsca_ch_.resize(nmax_ - 1);
|
|
|
|
+ Qext_ch_.resize(nmax_ - 1);
|
|
|
|
+ Qabs_ch_.resize(nmax_ - 1);
|
|
|
|
+ Qbk_ch_.resize(nmax_ - 1);
|
|
|
|
+ Qpr_ch_.resize(nmax_ - 1);
|
|
|
|
+ Qsca_ch_norm_.resize(nmax_ - 1);
|
|
|
|
+ Qext_ch_norm_.resize(nmax_ - 1);
|
|
|
|
+ Qabs_ch_norm_.resize(nmax_ - 1);
|
|
|
|
+ Qbk_ch_norm_.resize(nmax_ - 1);
|
|
|
|
+ Qpr_ch_norm_.resize(nmax_ - 1);
|
|
// Initialize the scattering amplitudes
|
|
// Initialize the scattering amplitudes
|
|
- std::vector<std::complex<double> > tmp1(theta_.size(),std::complex<double>(0.0, 0.0));
|
|
|
|
|
|
+ std::vector<std::complex<double> > tmp1(theta_.size(),std::complex<double>(0.0, 0.0));
|
|
S1_.swap(tmp1);
|
|
S1_.swap(tmp1);
|
|
S2_ = S1_;
|
|
S2_ = S1_;
|
|
}
|
|
}
|
|
@@ -1163,15 +1162,15 @@ c MM + 1 and - 1, alternately
|
|
// //
|
|
// //
|
|
// Input parameters: //
|
|
// Input parameters: //
|
|
// L: Number of layers //
|
|
// L: Number of layers //
|
|
- // pl: Index of PEC layer. If there is none just send -1 //
|
|
|
|
- // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
|
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
|
|
|
+ // pl: Index of PEC layer. If there is none just send - 1 //
|
|
|
|
+ // x: Array containing the size parameters of the layers [0..L - 1] //
|
|
|
|
+ // m: Array containing the relative refractive indexes of the layers [0..L - 1] //
|
|
// nTheta: Number of scattering angles //
|
|
// nTheta: Number of scattering angles //
|
|
// Theta: Array containing all the scattering angles where the scattering //
|
|
// Theta: Array containing all the scattering angles where the scattering //
|
|
// amplitudes will be calculated //
|
|
// amplitudes will be calculated //
|
|
// nmax_: Maximum number of multipolar expansion terms to be used for the //
|
|
// nmax_: Maximum number of multipolar expansion terms to be used for the //
|
|
// calculations. Only use it if you know what you are doing, otherwise //
|
|
// calculations. Only use it if you know what you are doing, otherwise //
|
|
- // set this parameter to -1 and the function will calculate it //
|
|
|
|
|
|
+ // set this parameter to - 1 and the function will calculate it //
|
|
// //
|
|
// //
|
|
// Output parameters: //
|
|
// Output parameters: //
|
|
// Qext: Efficiency factor for extinction //
|
|
// Qext: Efficiency factor for extinction //
|
|
@@ -1222,11 +1221,11 @@ c MM + 1 and - 1, alternately
|
|
Qext_ += Qext_ch_[i];
|
|
Qext_ += Qext_ch_[i];
|
|
// Equation (28)
|
|
// Equation (28)
|
|
Qsca_ch_norm_[i] = (an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
|
|
Qsca_ch_norm_[i] = (an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
|
|
- + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
|
|
|
|
|
|
+ + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
|
|
Qsca_ch_[i] = (n + n + 1.0)*Qsca_ch_norm_[i];
|
|
Qsca_ch_[i] = (n + n + 1.0)*Qsca_ch_norm_[i];
|
|
Qsca_ += Qsca_ch_[i];
|
|
Qsca_ += Qsca_ch_[i];
|
|
// Qsca_ch_[i] += (n + n + 1)*(an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
|
|
// Qsca_ch_[i] += (n + n + 1)*(an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
|
|
- // + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
|
|
|
|
|
|
+ // + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
|
|
|
|
|
|
// Equation (29) TODO We must check carefully this equation. If we
|
|
// Equation (29) TODO We must check carefully this equation. If we
|
|
// remove the typecast to double then the result changes. Which is
|
|
// remove the typecast to double then the result changes. Which is
|
|
@@ -1234,7 +1233,7 @@ c MM + 1 and - 1, alternately
|
|
// give double, without cast (n + n + 1)/(n*(n + 1)) will be
|
|
// give double, without cast (n + n + 1)/(n*(n + 1)) will be
|
|
// rounded to integer. Tig (2015/02/24)
|
|
// rounded to integer. Tig (2015/02/24)
|
|
Qpr_ch_[i]=((n*(n + 2)/(n + 1))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real())
|
|
Qpr_ch_[i]=((n*(n + 2)/(n + 1))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real())
|
|
- + ((double)(n + n + 1)/(n*(n + 1)))*(an_[i]*std::conj(bn_[i])).real());
|
|
|
|
|
|
+ + ((double)(n + n + 1)/(n*(n + 1)))*(an_[i]*std::conj(bn_[i])).real());
|
|
Qpr_ += Qpr_ch_[i];
|
|
Qpr_ += Qpr_ch_[i];
|
|
// Equation (33)
|
|
// Equation (33)
|
|
Qbktmp_ch[i] = (double)(n + n + 1)*(1 - 2*(n % 2))*(an_[i]- bn_[i]);
|
|
Qbktmp_ch[i] = (double)(n + n + 1)*(1 - 2*(n % 2))*(an_[i]- bn_[i]);
|
|
@@ -1242,8 +1241,8 @@ c MM + 1 and - 1, alternately
|
|
// Calculate the scattering amplitudes (S1 and S2) //
|
|
// Calculate the scattering amplitudes (S1 and S2) //
|
|
// Equations (25a) - (25b) //
|
|
// Equations (25a) - (25b) //
|
|
for (int t = 0; t < theta_.size(); t++) {
|
|
for (int t = 0; t < theta_.size(); t++) {
|
|
- S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[t][i], Tau[t][i]);
|
|
|
|
- S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[t][i], Tau[t][i]);
|
|
|
|
|
|
+ S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[t][i], Tau[t][i]);
|
|
|
|
+ S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[t][i], Tau[t][i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
double x2 = pow2(x.back());
|
|
double x2 = pow2(x.back());
|
|
@@ -1261,15 +1260,15 @@ c MM + 1 and - 1, alternately
|
|
Qabs_ch_norm_[i] = Qext_ch_norm_[i] - Qsca_ch_norm_[i];
|
|
Qabs_ch_norm_[i] = Qext_ch_norm_[i] - Qsca_ch_norm_[i];
|
|
}
|
|
}
|
|
|
|
|
|
- albedo_ = Qsca_ / Qext_; // Equation (31)
|
|
|
|
- asymmetry_factor_ = (Qext_ - Qpr_) / Qsca_; // Equation (32)
|
|
|
|
|
|
+ albedo_ = Qsca_/Qext_; // Equation (31)
|
|
|
|
+ asymmetry_factor_ = (Qext_ - Qpr_)/Qsca_; // Equation (32)
|
|
|
|
|
|
Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
|
|
Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
|
|
|
|
|
|
isMieCalculated_ = true;
|
|
isMieCalculated_ = true;
|
|
nmax_used_ = nmax_;
|
|
nmax_used_ = nmax_;
|
|
printf("Run Mie result: Qext = %g, Qsca = %g, Qabs = %g, Qbk = %g \n",
|
|
printf("Run Mie result: Qext = %g, Qsca = %g, Qabs = %g, Qbk = %g \n",
|
|
- GetQext(), GetQsca(), GetQabs(), GetQbk() );
|
|
|
|
|
|
+ GetQext(), GetQsca(), GetQabs(), GetQbk());
|
|
//return nmax;
|
|
//return nmax;
|
|
}
|
|
}
|
|
|
|
|
|
@@ -1284,10 +1283,10 @@ c MM + 1 and - 1, alternately
|
|
// for n = [0..nmax_) and for l=[L..0)
|
|
// for n = [0..nmax_) and for l=[L..0)
|
|
// TODO: to decrease cache miss outer loop is with n and inner with reversed l
|
|
// TODO: to decrease cache miss outer loop is with n and inner with reversed l
|
|
// at the moment outer is forward l and inner in n
|
|
// at the moment outer is forward l and inner in n
|
|
- al_n_.resize(L+1);
|
|
|
|
- bl_n_.resize(L+1);
|
|
|
|
- cl_n_.resize(L+1);
|
|
|
|
- dl_n_.resize(L+1);
|
|
|
|
|
|
+ al_n_.resize(L + 1);
|
|
|
|
+ bl_n_.resize(L + 1);
|
|
|
|
+ cl_n_.resize(L + 1);
|
|
|
|
+ dl_n_.resize(L + 1);
|
|
for (auto& element:al_n_) element.resize(nmax_);
|
|
for (auto& element:al_n_) element.resize(nmax_);
|
|
for (auto& element:bl_n_) element.resize(nmax_);
|
|
for (auto& element:bl_n_) element.resize(nmax_);
|
|
for (auto& element:cl_n_) element.resize(nmax_);
|
|
for (auto& element:cl_n_) element.resize(nmax_);
|
|
@@ -1295,7 +1294,7 @@ c MM + 1 and - 1, alternately
|
|
std::complex<double> c_one(1.0, 0.0);
|
|
std::complex<double> c_one(1.0, 0.0);
|
|
std::complex<double> c_zero(0.0, 0.0);
|
|
std::complex<double> c_zero(0.0, 0.0);
|
|
// Yang, paragraph under eq. A3
|
|
// Yang, paragraph under eq. A3
|
|
- // a^(L+1)_n = a_n, d^(L+1) = 1 ...
|
|
|
|
|
|
+ // a^(L + 1)_n = a_n, d^(L + 1) = 1 ...
|
|
for (int i = 0; i < nmax_; ++i) {
|
|
for (int i = 0; i < nmax_; ++i) {
|
|
al_n_[L][i] = an_[i];
|
|
al_n_[L][i] = an_[i];
|
|
bl_n_[L][i] = bn_[i];
|
|
bl_n_[L][i] = bn_[i];
|
|
@@ -1314,23 +1313,23 @@ c MM + 1 and - 1, alternately
|
|
ScattCoeffsLayerdInit();
|
|
ScattCoeffsLayerdInit();
|
|
const int L = index_.size();
|
|
const int L = index_.size();
|
|
std::vector<std::complex<double> > z(L), z1(L);
|
|
std::vector<std::complex<double> > z(L), z1(L);
|
|
- for (int i = 0; i<L-1; ++i) {
|
|
|
|
|
|
+ for (int i = 0; i < L - 1; ++i) {
|
|
z[i] =size_parameter_[i]*index_[i];
|
|
z[i] =size_parameter_[i]*index_[i];
|
|
- z1[i]=size_parameter_[i]*index_[i+1];
|
|
|
|
|
|
+ z1[i]=size_parameter_[i]*index_[i + 1];
|
|
}
|
|
}
|
|
- z[L-1] =size_parameter_[L-1]*index_[L-1];
|
|
|
|
- z1[L-1] =size_parameter_[L-1];
|
|
|
|
|
|
+ z[L - 1] =size_parameter_[L - 1]*index_[L - 1];
|
|
|
|
+ z1[L - 1] =size_parameter_[L - 1];
|
|
std::vector< std::vector<std::complex<double> > > D1z(L), D1z1(L), D3z(L), D3z1(L);
|
|
std::vector< std::vector<std::complex<double> > > D1z(L), D1z1(L), D3z(L), D3z1(L);
|
|
std::vector< std::vector<std::complex<double> > > Psiz(L), Psiz1(L), Zetaz(L), Zetaz1(L);
|
|
std::vector< std::vector<std::complex<double> > > Psiz(L), Psiz1(L), Zetaz(L), Zetaz1(L);
|
|
for (int l = 0; l < L; ++l) {
|
|
for (int l = 0; l < L; ++l) {
|
|
- D1z[l].resize(nmax_ +1);
|
|
|
|
- D1z1[l].resize(nmax_ +1);
|
|
|
|
- D3z[l].resize(nmax_ +1);
|
|
|
|
- D3z1[l].resize(nmax_ +1);
|
|
|
|
- Psiz[l].resize(nmax_ +1);
|
|
|
|
- Psiz1[l].resize(nmax_ +1);
|
|
|
|
- Zetaz[l].resize(nmax_ +1);
|
|
|
|
- Zetaz1[l].resize(nmax_ +1);
|
|
|
|
|
|
+ D1z[l].resize(nmax_ + 1);
|
|
|
|
+ D1z1[l].resize(nmax_ + 1);
|
|
|
|
+ D3z[l].resize(nmax_ + 1);
|
|
|
|
+ D3z1[l].resize(nmax_ + 1);
|
|
|
|
+ Psiz[l].resize(nmax_ + 1);
|
|
|
|
+ Psiz1[l].resize(nmax_ + 1);
|
|
|
|
+ Zetaz[l].resize(nmax_ + 1);
|
|
|
|
+ Zetaz1[l].resize(nmax_ + 1);
|
|
}
|
|
}
|
|
for (int l = 0; l < L; ++l) {
|
|
for (int l = 0; l < L; ++l) {
|
|
calcD1D3(z[l],D1z[l],D3z[l]);
|
|
calcD1D3(z[l],D1z[l],D3z[l]);
|
|
@@ -1340,41 +1339,41 @@ c MM + 1 and - 1, alternately
|
|
}
|
|
}
|
|
auto& m = index_;
|
|
auto& m = index_;
|
|
std::vector< std::complex<double> > m1(L);
|
|
std::vector< std::complex<double> > m1(L);
|
|
- for (int l = 0; l < L-1; ++l) m1[l] = m[l+1];
|
|
|
|
- m1[L-1] = std::complex<double> (1.0, 0.0);
|
|
|
|
|
|
+ for (int l = 0; l < L - 1; ++l) m1[l] = m[l + 1];
|
|
|
|
+ m1[L - 1] = std::complex<double> (1.0, 0.0);
|
|
// for (auto zz : m) printf ("m[i]=%g \n\n ", zz.real());
|
|
// for (auto zz : m) printf ("m[i]=%g \n\n ", zz.real());
|
|
- for (int l = L-1; l >= 0; --l) {
|
|
|
|
|
|
+ for (int l = L - 1; l >= 0; --l) {
|
|
for (int n = 0; n < nmax_; ++n) {
|
|
for (int n = 0; n < nmax_; ++n) {
|
|
- // al_n
|
|
|
|
- auto denom = m1[l]*Zetaz[l][n+1] * ( D1z[l][n+1] - D3z[l][n+1] );
|
|
|
|
- al_n_[l][n] = D1z[l][n+1]* m1[l]
|
|
|
|
- *(al_n_[l+1][n]*Zetaz1[l][n+1] - dl_n_[l+1][n]*Psiz1[l][n+1])
|
|
|
|
- - m[l]*(-D1z1[l][n+1]*dl_n_[l+1][n]*Psiz1[l][n+1]
|
|
|
|
- +D3z1[l][n+1]*al_n_[l+1][n]*Zetaz1[l][n+1]);
|
|
|
|
- al_n_[l][n] /= denom;
|
|
|
|
- // if (n<2) printf( "denom[%d][%d]:%g \n", l, n,
|
|
|
|
- // std::abs(Psiz[l][n+1]));
|
|
|
|
- // dl_n
|
|
|
|
- denom = m1[l]*Psiz[l][n+1] * ( D1z[l][n+1] - D3z[l][n+1] );
|
|
|
|
- dl_n_[l][n] = D3z[l][n+1]*m1[l]
|
|
|
|
- *(al_n_[l+1][n]*Zetaz1[l][n+1] - dl_n_[l+1][n]*Psiz1[l][n+1])
|
|
|
|
- - m[l]*(-D1z1[l][n+1]*dl_n_[l+1][n]*Psiz1[l][n+1]
|
|
|
|
- +D3z1[l][n+1]*al_n_[l+1][n]*Zetaz1[l][n+1]);
|
|
|
|
- dl_n_[l][n] /= denom;
|
|
|
|
- // bl_n
|
|
|
|
- denom = m1[l]*Zetaz[l][n+1] * ( D1z[l][n+1] - D3z[l][n+1] );
|
|
|
|
- bl_n_[l][n] = D1z[l][n+1]* m[l]
|
|
|
|
- *(bl_n_[l+1][n]*Zetaz1[l][n+1] - cl_n_[l+1][n]*Psiz1[l][n+1])
|
|
|
|
- - m1[l]*(-D1z1[l][n+1]*cl_n_[l+1][n]*Psiz1[l][n+1]
|
|
|
|
- +D3z1[l][n+1]*bl_n_[l+1][n]*Zetaz1[l][n+1]);
|
|
|
|
- bl_n_[l][n] /= denom;
|
|
|
|
- // cl_n
|
|
|
|
- denom = m1[l]*Psiz[l][n+1] * ( D1z[l][n+1] - D3z[l][n+1] );
|
|
|
|
- cl_n_[l][n] = D3z[l][n+1]*m[l]
|
|
|
|
- *(bl_n_[l+1][n]*Zetaz1[l][n+1] - cl_n_[l+1][n]*Psiz1[l][n+1])
|
|
|
|
- - m1[l]*(-D1z1[l][n+1]*cl_n_[l+1][n]*Psiz1[l][n+1]
|
|
|
|
- +D3z1[l][n+1]*bl_n_[l+1][n]*Zetaz1[l][n+1]);
|
|
|
|
- cl_n_[l][n] /= denom;
|
|
|
|
|
|
+ // al_n
|
|
|
|
+ auto denom = m1[l]*Zetaz[l][n + 1] * (D1z[l][n + 1] - D3z[l][n + 1]);
|
|
|
|
+ al_n_[l][n] = D1z[l][n + 1]* m1[l]
|
|
|
|
+ *(al_n_[l + 1][n]*Zetaz1[l][n + 1] - dl_n_[l + 1][n]*Psiz1[l][n + 1])
|
|
|
|
+ - m[l]*(-D1z1[l][n + 1]*dl_n_[l + 1][n]*Psiz1[l][n + 1]
|
|
|
|
+ +D3z1[l][n + 1]*al_n_[l + 1][n]*Zetaz1[l][n + 1]);
|
|
|
|
+ al_n_[l][n] /= denom;
|
|
|
|
+ // if (n<2) printf("denom[%d][%d]:%g \n", l, n,
|
|
|
|
+ // std::abs(Psiz[l][n + 1]));
|
|
|
|
+ // dl_n
|
|
|
|
+ denom = m1[l]*Psiz[l][n + 1] * (D1z[l][n + 1] - D3z[l][n + 1]);
|
|
|
|
+ dl_n_[l][n] = D3z[l][n + 1]*m1[l]
|
|
|
|
+ *(al_n_[l + 1][n]*Zetaz1[l][n + 1] - dl_n_[l + 1][n]*Psiz1[l][n + 1])
|
|
|
|
+ - m[l]*(-D1z1[l][n + 1]*dl_n_[l + 1][n]*Psiz1[l][n + 1]
|
|
|
|
+ +D3z1[l][n + 1]*al_n_[l + 1][n]*Zetaz1[l][n + 1]);
|
|
|
|
+ dl_n_[l][n] /= denom;
|
|
|
|
+ // bl_n
|
|
|
|
+ denom = m1[l]*Zetaz[l][n + 1] * (D1z[l][n + 1] - D3z[l][n + 1]);
|
|
|
|
+ bl_n_[l][n] = D1z[l][n + 1]* m[l]
|
|
|
|
+ *(bl_n_[l + 1][n]*Zetaz1[l][n + 1] - cl_n_[l + 1][n]*Psiz1[l][n + 1])
|
|
|
|
+ - m1[l]*(-D1z1[l][n + 1]*cl_n_[l + 1][n]*Psiz1[l][n + 1]
|
|
|
|
+ +D3z1[l][n + 1]*bl_n_[l + 1][n]*Zetaz1[l][n + 1]);
|
|
|
|
+ bl_n_[l][n] /= denom;
|
|
|
|
+ // cl_n
|
|
|
|
+ denom = m1[l]*Psiz[l][n + 1] * (D1z[l][n + 1] - D3z[l][n + 1]);
|
|
|
|
+ cl_n_[l][n] = D3z[l][n + 1]*m[l]
|
|
|
|
+ *(bl_n_[l + 1][n]*Zetaz1[l][n + 1] - cl_n_[l + 1][n]*Psiz1[l][n + 1])
|
|
|
|
+ - m1[l]*(-D1z1[l][n + 1]*cl_n_[l + 1][n]*Psiz1[l][n + 1]
|
|
|
|
+ +D3z1[l][n + 1]*bl_n_[l + 1][n]*Zetaz1[l][n + 1]);
|
|
|
|
+ cl_n_[l][n] /= denom;
|
|
} // end of all n
|
|
} // end of all n
|
|
} // end of for all l
|
|
} // end of for all l
|
|
// Check the result and change an__0 and bn__0 for exact zero
|
|
// Check the result and change an__0 and bn__0 for exact zero
|
|
@@ -1388,34 +1387,34 @@ c MM + 1 and - 1, alternately
|
|
// for (int l = 0; l < L; ++l) {
|
|
// for (int l = 0; l < L; ++l) {
|
|
// printf("l=%d --> ", l);
|
|
// printf("l=%d --> ", l);
|
|
// for (int n = 0; n < nmax_ + 1; ++n) {
|
|
// for (int n = 0; n < nmax_ + 1; ++n) {
|
|
- // if (n < 20) continue;
|
|
|
|
- // printf("n=%d --> D1zn=%g, D3zn=%g, D1zn=%g, D3zn=%g || ",
|
|
|
|
- // n,
|
|
|
|
- // D1z[l][n].real(), D3z[l][n].real(),
|
|
|
|
- // D1z1[l][n].real(), D3z1[l][n].real());
|
|
|
|
|
|
+ // if (n < 20) continue;
|
|
|
|
+ // printf("n=%d --> D1zn=%g, D3zn=%g, D1zn=%g, D3zn=%g || ",
|
|
|
|
+ // n,
|
|
|
|
+ // D1z[l][n].real(), D3z[l][n].real(),
|
|
|
|
+ // D1z1[l][n].real(), D3z1[l][n].real());
|
|
// }
|
|
// }
|
|
// printf("\n\n");
|
|
// printf("\n\n");
|
|
// }
|
|
// }
|
|
// for (int l = 0; l < L; ++l) {
|
|
// for (int l = 0; l < L; ++l) {
|
|
// printf("l=%d --> ", l);
|
|
// printf("l=%d --> ", l);
|
|
// for (int n = 0; n < nmax_ + 1; ++n) {
|
|
// for (int n = 0; n < nmax_ + 1; ++n) {
|
|
- // printf("n=%d --> D1zn=%g, D3zn=%g, D1zn=%g, D3zn=%g || ",
|
|
|
|
- // n,
|
|
|
|
- // D1z[l][n].real(), D3z[l][n].real(),
|
|
|
|
- // D1z1[l][n].real(), D3z1[l][n].real());
|
|
|
|
|
|
+ // printf("n=%d --> D1zn=%g, D3zn=%g, D1zn=%g, D3zn=%g || ",
|
|
|
|
+ // n,
|
|
|
|
+ // D1z[l][n].real(), D3z[l][n].real(),
|
|
|
|
+ // D1z1[l][n].real(), D3z1[l][n].real());
|
|
// }
|
|
// }
|
|
// printf("\n\n");
|
|
// printf("\n\n");
|
|
// }
|
|
// }
|
|
- for (int i = 0; i < L+1; ++i) {
|
|
|
|
|
|
+ for (int i = 0; i < L + 1; ++i) {
|
|
printf("Layer =%d ---> ", i);
|
|
printf("Layer =%d ---> ", i);
|
|
for (int n = 0; n < nmax_; ++n) {
|
|
for (int n = 0; n < nmax_; ++n) {
|
|
- // if (n < 20) continue;
|
|
|
|
- printf(" || n=%d --> a=%g,%g b=%g,%g c=%g,%g d=%g,%g",
|
|
|
|
- n,
|
|
|
|
- al_n_[i][n].real(), al_n_[i][n].imag(),
|
|
|
|
- bl_n_[i][n].real(), bl_n_[i][n].imag(),
|
|
|
|
- cl_n_[i][n].real(), cl_n_[i][n].imag(),
|
|
|
|
- dl_n_[i][n].real(), dl_n_[i][n].imag());
|
|
|
|
|
|
+ // if (n < 20) continue;
|
|
|
|
+ printf(" || n=%d --> a=%g,%g b=%g,%g c=%g,%g d=%g,%g",
|
|
|
|
+ n,
|
|
|
|
+ al_n_[i][n].real(), al_n_[i][n].imag(),
|
|
|
|
+ bl_n_[i][n].real(), bl_n_[i][n].imag(),
|
|
|
|
+ cl_n_[i][n].real(), cl_n_[i][n].imag(),
|
|
|
|
+ dl_n_[i][n].real(), dl_n_[i][n].imag());
|
|
}
|
|
}
|
|
printf("\n\n");
|
|
printf("\n\n");
|
|
}
|
|
}
|
|
@@ -1431,15 +1430,14 @@ c MM + 1 and - 1, alternately
|
|
|
|
|
|
std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0);
|
|
std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0);
|
|
std::vector<std::complex<double> > vm3o1n(3), vm3e1n(3), vn3o1n(3), vn3e1n(3);
|
|
std::vector<std::complex<double> > vm3o1n(3), vm3e1n(3), vn3o1n(3), vn3e1n(3);
|
|
- std::vector<std::complex<double> > Ei(3,c_zero), Hi(3,c_zero),
|
|
|
|
- Es(3,c_zero), Hs(3,c_zero);
|
|
|
|
- std::vector<std::complex<double> > bj(nmax_+1), by(nmax_+1), bd(nmax_+1);
|
|
|
|
|
|
+ std::vector<std::complex<double> > Ei(3,c_zero), Hi(3,c_zero), Es(3,c_zero), Hs(3,c_zero);
|
|
|
|
+ std::vector<std::complex<double> > bj(nmax_ + 1), by(nmax_ + 1), bd(nmax_ + 1);
|
|
// Calculate spherical Bessel and Hankel functions
|
|
// Calculate spherical Bessel and Hankel functions
|
|
printf("########## layer OUT ############\n");
|
|
printf("########## layer OUT ############\n");
|
|
sphericalBessel(Rho,bj, by, bd);
|
|
sphericalBessel(Rho,bj, by, bd);
|
|
for (int n = 0; n < nmax_; n++) {
|
|
for (int n = 0; n < nmax_; n++) {
|
|
double rn = static_cast<double>(n + 1);
|
|
double rn = static_cast<double>(n + 1);
|
|
- std::complex<double> zn = bj[n+1] + c_i*by[n+1];
|
|
|
|
|
|
+ std::complex<double> zn = bj[n + 1] + c_i*by[n + 1];
|
|
// using BH 4.12 and 4.50
|
|
// using BH 4.12 and 4.50
|
|
std::complex<double> xxip = Rho*(bj[n] + c_i*by[n]) - rn*zn;
|
|
std::complex<double> xxip = Rho*(bj[n] + c_i*by[n]) - rn*zn;
|
|
|
|
|
|
@@ -1461,10 +1459,10 @@ c MM + 1 and - 1, alternately
|
|
// scattered field: BH p.94 (4.45)
|
|
// scattered field: BH p.94 (4.45)
|
|
std::complex<double> encap = std::pow(c_i, rn)*(2.0*rn + 1.0)/(rn*rn + rn);
|
|
std::complex<double> encap = std::pow(c_i, rn)*(2.0*rn + 1.0)/(rn*rn + rn);
|
|
for (int i = 0; i < 3; i++) {
|
|
for (int i = 0; i < 3; i++) {
|
|
- Es[i] = Es[i] + encap*(c_i*an_[n]*vn3e1n[i] - bn_[n]*vm3o1n[i]);
|
|
|
|
- Hs[i] = Hs[i] + encap*(c_i*bn_[n]*vn3o1n[i] + an_[n]*vm3e1n[i]);
|
|
|
|
- //if (n<3) printf(" E[%d]=%g ", i,std::abs(Es[i]));
|
|
|
|
- if (n<3) printf(" !!=%d=== %g ", i,std::abs(Es[i]));
|
|
|
|
|
|
+ Es[i] = Es[i] + encap*(c_i*an_[n]*vn3e1n[i] - bn_[n]*vm3o1n[i]);
|
|
|
|
+ Hs[i] = Hs[i] + encap*(c_i*bn_[n]*vn3o1n[i] + an_[n]*vm3e1n[i]);
|
|
|
|
+ //if (n<3) printf(" E[%d]=%g ", i,std::abs(Es[i]));
|
|
|
|
+ if (n<3) printf(" !!=%d=== %g ", i,std::abs(Es[i]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
@@ -1497,7 +1495,7 @@ c MM + 1 and - 1, alternately
|
|
}
|
|
}
|
|
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
for (int i = 0; i < 3; i++) {
|
|
- // electric field E [V m-1] = EF*E0
|
|
|
|
|
|
+ // electric field E [V m - 1] = EF*E0
|
|
E[i] = Ei[i] + Es[i];
|
|
E[i] = Ei[i] + Es[i];
|
|
H[i] = Hi[i] + Hs[i];
|
|
H[i] = Hi[i] + Hs[i];
|
|
// printf("ext E[%d]=%g",i,std::abs(E[i]));
|
|
// printf("ext E[%d]=%g",i,std::abs(E[i]));
|
|
@@ -1508,18 +1506,18 @@ c MM + 1 and - 1, alternately
|
|
// ********************************************************************** //
|
|
// ********************************************************************** //
|
|
void MultiLayerMie::fieldInt(const double Rho, const double Phi, const double Theta, const std::vector<double>& Pi, const std::vector<double>& Tau, std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
|
|
void MultiLayerMie::fieldInt(const double Rho, const double Phi, const double Theta, const std::vector<double>& Pi, const std::vector<double>& Tau, std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
|
|
// printf("field int Qext = %g, Qsca = %g, Qabs = %g, Qbk = %g, \n",
|
|
// printf("field int Qext = %g, Qsca = %g, Qabs = %g, Qbk = %g, \n",
|
|
- // GetQext(), GetQsca(), GetQabs(), GetQbk() );
|
|
|
|
|
|
+ // GetQext(), GetQsca(), GetQabs(), GetQbk());
|
|
|
|
|
|
std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);
|
|
std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);
|
|
std::vector<std::complex<double> > vm3o1n(3), vm3e1n(3), vn3o1n(3), vn3e1n(3);
|
|
std::vector<std::complex<double> > vm3o1n(3), vm3e1n(3), vn3o1n(3), vn3e1n(3);
|
|
std::vector<std::complex<double> > vm1o1n(3), vm1e1n(3), vn1o1n(3), vn1e1n(3);
|
|
std::vector<std::complex<double> > vm1o1n(3), vm1e1n(3), vn1o1n(3), vn1e1n(3);
|
|
std::vector<std::complex<double> > El(3,c_zero),Ei(3,c_zero), Hl(3,c_zero);
|
|
std::vector<std::complex<double> > El(3,c_zero),Ei(3,c_zero), Hl(3,c_zero);
|
|
- std::vector<std::complex<double> > bj(nmax_+1), by(nmax_+1), bd(nmax_+1);
|
|
|
|
|
|
+ std::vector<std::complex<double> > bj(nmax_ + 1), by(nmax_ + 1), bd(nmax_ + 1);
|
|
int layer=0; // layer number
|
|
int layer=0; // layer number
|
|
std::complex<double> index_l;
|
|
std::complex<double> index_l;
|
|
- for (int i = 0; i < size_parameter_.size()-1; ++i) {
|
|
|
|
- if (size_parameter_[i] < Rho && Rho <= size_parameter_[i+1]) {
|
|
|
|
- layer=i;
|
|
|
|
|
|
+ for (int i = 0; i < size_parameter_.size() - 1; ++i) {
|
|
|
|
+ if (size_parameter_[i] < Rho && Rho <= size_parameter_[i + 1]) {
|
|
|
|
+ layer=i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (Rho > size_parameter_.back()) {
|
|
if (Rho > size_parameter_.back()) {
|
|
@@ -1542,7 +1540,7 @@ c MM + 1 and - 1, alternately
|
|
for (int n = 0; n < nmax_; n++) {
|
|
for (int n = 0; n < nmax_; n++) {
|
|
double rn = static_cast<double>(n + 1);
|
|
double rn = static_cast<double>(n + 1);
|
|
std::complex<double> znm1 = bj[n] + c_i*by[n];
|
|
std::complex<double> znm1 = bj[n] + c_i*by[n];
|
|
- std::complex<double> zn = bj[n+1] + c_i*by[n+1];
|
|
|
|
|
|
+ std::complex<double> zn = bj[n + 1] + c_i*by[n + 1];
|
|
//if (n<3) printf("\nbesselh = %g,%g", zn.real(), zn.imag()); //!
|
|
//if (n<3) printf("\nbesselh = %g,%g", zn.real(), zn.imag()); //!
|
|
// using BH 4.12 and 4.50
|
|
// using BH 4.12 and 4.50
|
|
std::complex<double> xxip = Rho*(bj[n] + c_i*by[n]) - rn*zn;
|
|
std::complex<double> xxip = Rho*(bj[n] + c_i*by[n]) - rn*zn;
|
|
@@ -1554,8 +1552,8 @@ c MM + 1 and - 1, alternately
|
|
vm3o1n[1] = cos(Phi)*Pi[n]*zn;
|
|
vm3o1n[1] = cos(Phi)*Pi[n]*zn;
|
|
vm3o1n[2] = -sin(Phi)*Tau[n]*zn;
|
|
vm3o1n[2] = -sin(Phi)*Tau[n]*zn;
|
|
// if (n<3) printf("\nRE vm3o1n[0]%g vm3o1n[1]%g vm3o1n[2]%g \nIM vm3o1n[0]%g vm3o1n[1]%g vm3o1n[2]%g",
|
|
// if (n<3) printf("\nRE vm3o1n[0]%g vm3o1n[1]%g vm3o1n[2]%g \nIM vm3o1n[0]%g vm3o1n[1]%g vm3o1n[2]%g",
|
|
- // vm3o1n[0].real(), vm3o1n[1].real(), vm3o1n[2].real(),
|
|
|
|
- // vm3o1n[0].imag(), vm3o1n[1].imag(), vm3o1n[2].imag());
|
|
|
|
|
|
+ // vm3o1n[0].real(), vm3o1n[1].real(), vm3o1n[2].real(),
|
|
|
|
+ // vm3o1n[0].imag(), vm3o1n[1].imag(), vm3o1n[2].imag());
|
|
vm3e1n[0] = c_zero;
|
|
vm3e1n[0] = c_zero;
|
|
vm3e1n[1] = -sin(Phi)*Pi[n]*zn;
|
|
vm3e1n[1] = -sin(Phi)*Pi[n]*zn;
|
|
vm3e1n[2] = -cos(Phi)*Tau[n]*zn;
|
|
vm3e1n[2] = -cos(Phi)*Tau[n]*zn;
|
|
@@ -1566,13 +1564,13 @@ c MM + 1 and - 1, alternately
|
|
vn3e1n[1] = cos(Phi)*Tau[n]*xxip/Rho;
|
|
vn3e1n[1] = cos(Phi)*Tau[n]*xxip/Rho;
|
|
vn3e1n[2] = -sin(Phi)*Pi[n]*xxip/Rho;
|
|
vn3e1n[2] = -sin(Phi)*Pi[n]*xxip/Rho;
|
|
// if (n<3) printf("\nRE vn3e1n[0]%g vn3e1n[1]%g vn3e1n[2]%g \nIM vn3e1n[0]%g vn3e1n[1]%g vn3e1n[2]%g",
|
|
// if (n<3) printf("\nRE vn3e1n[0]%g vn3e1n[1]%g vn3e1n[2]%g \nIM vn3e1n[0]%g vn3e1n[1]%g vn3e1n[2]%g",
|
|
- // vn3e1n[0].real(), vn3e1n[1].real(), vn3e1n[2].real(),
|
|
|
|
- // vn3e1n[0].imag(), vn3e1n[1].imag(), vn3e1n[2].imag());
|
|
|
|
|
|
+ // vn3e1n[0].real(), vn3e1n[1].real(), vn3e1n[2].real(),
|
|
|
|
+ // vn3e1n[0].imag(), vn3e1n[1].imag(), vn3e1n[2].imag());
|
|
|
|
|
|
znm1 = bj[n];
|
|
znm1 = bj[n];
|
|
- zn = bj[n+1];
|
|
|
|
|
|
+ zn = bj[n + 1];
|
|
// znm1 = (bj[n] + c_i*by[n]).real();
|
|
// znm1 = (bj[n] + c_i*by[n]).real();
|
|
- // zn = (bj[n+1] + c_i*by[n+1]).real();
|
|
|
|
|
|
+ // zn = (bj[n + 1] + c_i*by[n + 1]).real();
|
|
xxip = Rho*(bj[n]) - rn*zn;
|
|
xxip = Rho*(bj[n]) - rn*zn;
|
|
if (n<3)printf("\nbesselj = %g,%g", zn.real(), zn.imag()); //!
|
|
if (n<3)printf("\nbesselj = %g,%g", zn.real(), zn.imag()); //!
|
|
vm1o1n[0] = c_zero;
|
|
vm1o1n[0] = c_zero;
|
|
@@ -1585,38 +1583,38 @@ c MM + 1 and - 1, alternately
|
|
vn1o1n[1] = sin(Phi)*Tau[n]*xxip/Rho;
|
|
vn1o1n[1] = sin(Phi)*Tau[n]*xxip/Rho;
|
|
vn1o1n[2] = cos(Phi)*Pi[n]*xxip/Rho;
|
|
vn1o1n[2] = cos(Phi)*Pi[n]*xxip/Rho;
|
|
// if (n<3) printf("\nvn1o1n[2](%g) = cos(Phi)(%g)*Pi[n](%g)*xxip(%g)/Rho(%g)",
|
|
// if (n<3) printf("\nvn1o1n[2](%g) = cos(Phi)(%g)*Pi[n](%g)*xxip(%g)/Rho(%g)",
|
|
- // std::abs(vn1o1n[2]), cos(Phi),Pi[n],std::abs(xxip),Rho);
|
|
|
|
|
|
+ // std::abs(vn1o1n[2]), cos(Phi),Pi[n],std::abs(xxip),Rho);
|
|
vn1e1n[0] = cos(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
|
|
vn1e1n[0] = cos(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
|
|
vn1e1n[1] = cos(Phi)*Tau[n]*xxip/Rho;
|
|
vn1e1n[1] = cos(Phi)*Tau[n]*xxip/Rho;
|
|
vn1e1n[2] = -sin(Phi)*Pi[n]*xxip/Rho;
|
|
vn1e1n[2] = -sin(Phi)*Pi[n]*xxip/Rho;
|
|
// if (n<3) printf("\nRE vm3o1n[0]%g vm3o1n[1]%g vm3o1n[2]%g \nIM vm3o1n[0]%g vm3o1n[1]%g vm3o1n[2]%g",
|
|
// if (n<3) printf("\nRE vm3o1n[0]%g vm3o1n[1]%g vm3o1n[2]%g \nIM vm3o1n[0]%g vm3o1n[1]%g vm3o1n[2]%g",
|
|
- // vm3o1n[0].real(), vm3o1n[1].real(), vm3o1n[2].real(),
|
|
|
|
- // vm3o1n[0].imag(), vm3o1n[1].imag(), vm3o1n[2].imag());
|
|
|
|
|
|
+ // vm3o1n[0].real(), vm3o1n[1].real(), vm3o1n[2].real(),
|
|
|
|
+ // vm3o1n[0].imag(), vm3o1n[1].imag(), vm3o1n[2].imag());
|
|
|
|
|
|
// scattered field: BH p.94 (4.45)
|
|
// scattered field: BH p.94 (4.45)
|
|
std::complex<double> encap = std::pow(c_i, rn)*(2.0*rn + 1.0)/(rn*rn + rn);
|
|
std::complex<double> encap = std::pow(c_i, rn)*(2.0*rn + 1.0)/(rn*rn + rn);
|
|
// if (n<3) printf("\n===== n=%d ======\n",n);
|
|
// if (n<3) printf("\n===== n=%d ======\n",n);
|
|
for (int i = 0; i < 3; i++) {
|
|
for (int i = 0; i < 3; i++) {
|
|
- // if (n<3 && i==0) printf("\nn=%d",n);
|
|
|
|
- // if (n<3) printf("\nbefore !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
|
|
|
|
- Ei[i] = encap*(
|
|
|
|
- cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]
|
|
|
|
- + c_i*al_n_[l][n]*vn3e1n[i] - bl_n_[l][n]*vm3o1n[i]
|
|
|
|
- );
|
|
|
|
- El[i] = El[i] + encap*(cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]
|
|
|
|
- + c_i*al_n_[l][n]*vn3e1n[i] - bl_n_[l][n]*vm3o1n[i]);
|
|
|
|
- Hl[i] = Hl[i] + encap*(-dl_n_[l][n]*vm1e1n[i] - c_i*cl_n_[l][n]*vn1o1n[i]
|
|
|
|
- + c_i*bl_n_[l][n]*vn3o1n[i] + al_n_[l][n]*vm3e1n[i]);
|
|
|
|
- // printf("\n !Ei[%d]=%g,%g! ", i, Ei[i].real(), Ei[i].imag());
|
|
|
|
- // if (n<3) printf("\n !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
|
|
|
|
- // //printf(" ===%d=== %g ", i,std::abs(cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]));
|
|
|
|
- // if (n<3) printf(" ===%d=== %g ", i,std::abs(//-dl_n_[l][n]*vm1e1n[i]
|
|
|
|
- // //- c_i*cl_n_[l][n]*
|
|
|
|
- // vn1o1n[i]
|
|
|
|
- // // + c_i*bl_n_[l][n]*vn3o1n[i]
|
|
|
|
- // // + al_n_[l][n]*vm3e1n[i]
|
|
|
|
- // ));
|
|
|
|
- // if (n<3) printf(" --- Ei[%d]=%g! ", i,std::abs(encap*(vm1o1n[i] - c_i*vn1e1n[i])));
|
|
|
|
|
|
+ // if (n<3 && i==0) printf("\nn=%d",n);
|
|
|
|
+ // if (n<3) printf("\nbefore !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
|
|
|
|
+ Ei[i] = encap*(
|
|
|
|
+ cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]
|
|
|
|
+ + c_i*al_n_[l][n]*vn3e1n[i] - bl_n_[l][n]*vm3o1n[i]
|
|
|
|
+);
|
|
|
|
+ El[i] = El[i] + encap*(cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]
|
|
|
|
+ + c_i*al_n_[l][n]*vn3e1n[i] - bl_n_[l][n]*vm3o1n[i]);
|
|
|
|
+ Hl[i] = Hl[i] + encap*(-dl_n_[l][n]*vm1e1n[i] - c_i*cl_n_[l][n]*vn1o1n[i]
|
|
|
|
+ + c_i*bl_n_[l][n]*vn3o1n[i] + al_n_[l][n]*vm3e1n[i]);
|
|
|
|
+ // printf("\n !Ei[%d]=%g,%g! ", i, Ei[i].real(), Ei[i].imag());
|
|
|
|
+ // if (n<3) printf("\n !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
|
|
|
|
+ // //printf(" ===%d=== %g ", i,std::abs(cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]));
|
|
|
|
+ // if (n<3) printf(" ===%d=== %g ", i,std::abs(//-dl_n_[l][n]*vm1e1n[i]
|
|
|
|
+ // //- c_i*cl_n_[l][n]*
|
|
|
|
+ // vn1o1n[i]
|
|
|
|
+ // // + c_i*bl_n_[l][n]*vn3o1n[i]
|
|
|
|
+ // // + al_n_[l][n]*vm3e1n[i]
|
|
|
|
+ // ));
|
|
|
|
+ // if (n<3) printf(" --- Ei[%d]=%g! ", i,std::abs(encap*(vm1o1n[i] - c_i*vn1e1n[i])));
|
|
|
|
|
|
}
|
|
}
|
|
//if (n<3) printf(" bj=%g \n", std::abs(bj[n]));
|
|
//if (n<3) printf(" bj=%g \n", std::abs(bj[n]));
|
|
@@ -1629,7 +1627,7 @@ c MM + 1 and - 1, alternately
|
|
}
|
|
}
|
|
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
for (int i = 0; i < 3; i++) {
|
|
- // electric field E [V m-1] = EF*E0
|
|
|
|
|
|
+ // electric field E [V m - 1] = EF*E0
|
|
E[i] = El[i];
|
|
E[i] = El[i];
|
|
H[i] = Hl[i];
|
|
H[i] = Hl[i];
|
|
printf("\n !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
|
|
printf("\n !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
|
|
@@ -1647,8 +1645,8 @@ c MM + 1 and - 1, alternately
|
|
// Input parameters: //
|
|
// Input parameters: //
|
|
// L: Number of layers //
|
|
// L: Number of layers //
|
|
// pl: Index of PEC layer. If there is none just send 0 (zero) //
|
|
// pl: Index of PEC layer. If there is none just send 0 (zero) //
|
|
- // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
|
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
|
|
|
+ // x: Array containing the size parameters of the layers [0..L - 1] //
|
|
|
|
+ // m: Array containing the relative refractive indexes of the layers [0..L - 1] //
|
|
// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
// calculations. Only use it if you know what you are doing, otherwise //
|
|
// calculations. Only use it if you know what you are doing, otherwise //
|
|
// set this parameter to 0 (zero) and the function will calculate it. //
|
|
// set this parameter to 0 (zero) and the function will calculate it. //
|
|
@@ -1675,7 +1673,7 @@ c MM + 1 and - 1, alternately
|
|
for (auto& f:E_field_) f.resize(3);
|
|
for (auto& f:E_field_) f.resize(3);
|
|
for (auto& f:H_field_) f.resize(3);
|
|
for (auto& f:H_field_) f.resize(3);
|
|
|
|
|
|
- for (int point = 0; point < total_points; ++point) {
|
|
|
|
|
|
+ for (int point = 0; point < total_points; ++point) {
|
|
const double& Xp = coords_sp_[0][point];
|
|
const double& Xp = coords_sp_[0][point];
|
|
const double& Yp = coords_sp_[1][point];
|
|
const double& Yp = coords_sp_[1][point];
|
|
const double& Zp = coords_sp_[2][point];
|
|
const double& Zp = coords_sp_[2][point];
|
|
@@ -1685,7 +1683,7 @@ c MM + 1 and - 1, alternately
|
|
Rho = std::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp));
|
|
Rho = std::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp));
|
|
// printf("Rho=%g\n", Rho);
|
|
// printf("Rho=%g\n", Rho);
|
|
// Avoid convergence problems due to Rho too small
|
|
// Avoid convergence problems due to Rho too small
|
|
- if (Rho < 1e-5) Rho = 1e-10;
|
|
|
|
|
|
+ if (Rho < 1e-10) Rho = 1e-10;
|
|
// If Rho=0 then Theta is undefined. Just set it to zero to avoid problems
|
|
// If Rho=0 then Theta is undefined. Just set it to zero to avoid problems
|
|
if (Rho == 0.0) Theta = 0.0;
|
|
if (Rho == 0.0) Theta = 0.0;
|
|
else Theta = std::acos(Zp/Rho);
|
|
else Theta = std::acos(Zp/Rho);
|
|
@@ -1707,11 +1705,11 @@ c MM + 1 and - 1, alternately
|
|
// Firstly the easiest case: the field outside the particle
|
|
// Firstly the easiest case: the field outside the particle
|
|
printf("rho=%g, outer=%g ", Rho, outer_size);
|
|
printf("rho=%g, outer=%g ", Rho, outer_size);
|
|
if (Rho >= outer_size) {
|
|
if (Rho >= outer_size) {
|
|
- fieldExt(Rho, Phi, Theta, Pi, Tau, Es, Hs);
|
|
|
|
- printf("\nFin E ext: %g,%g,%g Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
|
|
|
|
|
|
+ fieldExt(Rho, Phi, Theta, Pi, Tau, Es, Hs);
|
|
|
|
+ printf("\nFin E ext: %g,%g,%g Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
|
|
} else {
|
|
} else {
|
|
- fieldInt(Rho, Phi, Theta, Pi, Tau, Es, Hs);
|
|
|
|
- printf("\nFin E int: %g,%g,%g Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
|
|
|
|
|
|
+ fieldInt(Rho, Phi, Theta, Pi, Tau, Es, Hs);
|
|
|
|
+ printf("\nFin E int: %g,%g,%g Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
|
|
}
|
|
}
|
|
std::complex<double>& Ex = E_field_[point][0];
|
|
std::complex<double>& Ex = E_field_[point][0];
|
|
std::complex<double>& Ey = E_field_[point][1];
|
|
std::complex<double>& Ey = E_field_[point][1];
|
|
@@ -1721,18 +1719,18 @@ c MM + 1 and - 1, alternately
|
|
std::complex<double>& Hz = H_field_[point][2];
|
|
std::complex<double>& Hz = H_field_[point][2];
|
|
//Now, convert the fields back to cartesian coordinates
|
|
//Now, convert the fields back to cartesian coordinates
|
|
{
|
|
{
|
|
- using std::sin;
|
|
|
|
- using std::cos;
|
|
|
|
- Ex = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2];
|
|
|
|
- Ey = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2];
|
|
|
|
- Ez = cos(Theta)*Es[0] - sin(Theta)*Es[1];
|
|
|
|
|
|
+ using std::sin;
|
|
|
|
+ using std::cos;
|
|
|
|
+ Ex = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2];
|
|
|
|
+ Ey = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2];
|
|
|
|
+ Ez = cos(Theta)*Es[0] - sin(Theta)*Es[1];
|
|
|
|
|
|
- Hx = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2];
|
|
|
|
- Hy = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2];
|
|
|
|
- Hz = cos(Theta)*Hs[0] - sin(Theta)*Hs[1];
|
|
|
|
|
|
+ Hx = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2];
|
|
|
|
+ Hy = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2];
|
|
|
|
+ Hz = cos(Theta)*Hs[0] - sin(Theta)*Hs[1];
|
|
}
|
|
}
|
|
printf("Cart E: %g,%g,%g Rho=%g\n", std::abs(Ex), std::abs(Ey),std::abs(Ez),
|
|
printf("Cart E: %g,%g,%g Rho=%g\n", std::abs(Ex), std::abs(Ey),std::abs(Ez),
|
|
- Rho);
|
|
|
|
|
|
+ Rho);
|
|
} // end of for all field coordinates
|
|
} // end of for all field coordinates
|
|
|
|
|
|
} // end of void MultiLayerMie::RunFieldCalculations()
|
|
} // end of void MultiLayerMie::RunFieldCalculations()
|