|  | @@ -72,7 +72,7 @@ namespace nmie {
 | 
	
		
			
				|  |  |        S1 = multi_layer_mie.GetS1();
 | 
	
		
			
				|  |  |        S2 = multi_layer_mie.GetS2();
 | 
	
		
			
				|  |  |        //multi_layer_mie.GetFailed();
 | 
	
		
			
				|  |  | -    } catch( const std::invalid_argument& ia ) {
 | 
	
		
			
				|  |  | +    } catch(const std::invalid_argument& ia) {
 | 
	
		
			
				|  |  |        // Will catch if  multi_layer_mie fails or other errors.
 | 
	
		
			
				|  |  |        std::cerr << "Invalid argument: " << ia.what() << std::endl;
 | 
	
		
			
				|  |  |        throw std::invalid_argument(ia);
 | 
	
	
		
			
				|  | @@ -86,16 +86,16 @@ namespace nmie {
 | 
	
		
			
				|  |  |    // ********************************************************************** //
 | 
	
		
			
				|  |  |    int nField(const int L, const int pl, const std::vector<double>& x, const std::vector<std::complex<double> >& m, const int nmax, const int ncoord, const std::vector<double>& Xp_vec, const std::vector<double>& Yp_vec, const std::vector<double>& Zp_vec,  std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
 | 
	
		
			
				|  |  |      if (x.size() != L || m.size() != L)
 | 
	
		
			
				|  |  | -        throw std::invalid_argument("Declared number of layers do not fit x and m!");
 | 
	
		
			
				|  |  | +      throw std::invalid_argument("Declared number of layers do not fit x and m!");
 | 
	
		
			
				|  |  |      if (Xp_vec.size() != ncoord || Yp_vec.size() != ncoord || Zp_vec.size() != ncoord
 | 
	
		
			
				|  |  | -	|| E.size() != ncoord || H.size() != ncoord )
 | 
	
		
			
				|  |  | +        || E.size() != ncoord || H.size() != ncoord)
 | 
	
		
			
				|  |  |        throw std::invalid_argument("Declared number of coords do not fit Xp, Yp, Zp, E, or H!");
 | 
	
		
			
				|  |  |      for (auto f:E)
 | 
	
		
			
				|  |  | -      if ( f.size() != 3)
 | 
	
		
			
				|  |  | -	throw std::invalid_argument("Field E is not 3D!");
 | 
	
		
			
				|  |  | +      if (f.size() != 3)
 | 
	
		
			
				|  |  | +        throw std::invalid_argument("Field E is not 3D!");
 | 
	
		
			
				|  |  |      for (auto f:H)
 | 
	
		
			
				|  |  | -      if ( f.size() != 3)
 | 
	
		
			
				|  |  | -	throw std::invalid_argument("Field H is not 3D!");
 | 
	
		
			
				|  |  | +      if (f.size() != 3)
 | 
	
		
			
				|  |  | +        throw std::invalid_argument("Field H is not 3D!");
 | 
	
		
			
				|  |  |      try {
 | 
	
		
			
				|  |  |        MultiLayerMie multi_layer_mie;  
 | 
	
		
			
				|  |  |        //multi_layer_mie.SetPEC(pl);
 | 
	
	
		
			
				|  | @@ -106,11 +106,11 @@ namespace nmie {
 | 
	
		
			
				|  |  |        E = multi_layer_mie.GetFieldE();
 | 
	
		
			
				|  |  |        H = multi_layer_mie.GetFieldH();
 | 
	
		
			
				|  |  |        //multi_layer_mie.GetFailed();
 | 
	
		
			
				|  |  | -    } catch( const std::invalid_argument& ia ) {
 | 
	
		
			
				|  |  | +    } catch(const std::invalid_argument& ia) {
 | 
	
		
			
				|  |  |        // Will catch if  multi_layer_mie fails or other errors.
 | 
	
		
			
				|  |  |        std::cerr << "Invalid argument: " << ia.what() << std::endl;
 | 
	
		
			
				|  |  |        throw std::invalid_argument(ia);
 | 
	
		
			
				|  |  | -      return -1;
 | 
	
		
			
				|  |  | +      return - 1;
 | 
	
		
			
				|  |  |      }  
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      return 0;
 | 
	
	
		
			
				|  | @@ -124,18 +124,18 @@ namespace nmie {
 | 
	
		
			
				|  |  |      std::complex<double> z(faild_x, 0.0);
 | 
	
		
			
				|  |  |      std::vector<int> nmax_local_array = {20, 100, 500, 2500};
 | 
	
		
			
				|  |  |      for (auto nmax_local : nmax_local_array) {
 | 
	
		
			
				|  |  | -      std::vector<std::complex<double> > D1_failed(nmax_local +1);
 | 
	
		
			
				|  |  | +      std::vector<std::complex<double> > D1_failed(nmax_local + 1);
 | 
	
		
			
				|  |  |        // Downward recurrence for D1 - equations (16a) and (16b)
 | 
	
		
			
				|  |  |        D1_failed[nmax_local] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  |        const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;
 | 
	
		
			
				|  |  |        for (int n = nmax_local; n > 0; n--) {
 | 
	
		
			
				|  |  | -	D1_failed[n - 1] = double(n)*zinv - 1.0/(D1_failed[n] + double(n)*zinv);
 | 
	
		
			
				|  |  | +        D1_failed[n - 1] = double(n)*zinv - 1.0/(D1_failed[n] + double(n)*zinv);
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  |        printf("Faild D1[0] from reccurence (z = %16.14f, nmax = %d): %g\n",
 | 
	
		
			
				|  |  | -	     faild_x, nmax_local, D1_failed[0].real());
 | 
	
		
			
				|  |  | +             faild_x, nmax_local, D1_failed[0].real());
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |      printf("Faild D1[0] from continued fraction (z = %16.14f): %g\n", faild_x,
 | 
	
		
			
				|  |  | -	   calcD1confra(0,z).real());
 | 
	
		
			
				|  |  | +           calcD1confra(0,z).real());
 | 
	
		
			
				|  |  |      //D1[nmax_] = calcD1confra(nmax_, z);
 | 
	
		
			
				|  |  |    
 | 
	
		
			
				|  |  |      
 | 
	
	
		
			
				|  | @@ -170,13 +170,13 @@ namespace nmie {
 | 
	
		
			
				|  |  |    std::vector<double> MultiLayerMie::GetQabs_channel_normalized() {
 | 
	
		
			
				|  |  |      if (!isMieCalculated_)
 | 
	
		
			
				|  |  |        throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | -    // std::vector<double> NACS(nmax_-1, 0.0);
 | 
	
		
			
				|  |  | +    // std::vector<double> NACS(nmax_ - 1, 0.0);
 | 
	
		
			
				|  |  |      // double x2 = pow2(size_parameter_.back());
 | 
	
		
			
				|  |  |      // for (int i = 0; i < nmax_ - 1; ++i) {
 | 
	
		
			
				|  |  | -    //   const int n = i+1;
 | 
	
		
			
				|  |  | -    //   NACS[i] = Qabs_ch_[i]*x2/(2.0*(2.0*static_cast<double>(n)+1));
 | 
	
		
			
				|  |  | +    //   const int n = i + 1;
 | 
	
		
			
				|  |  | +    //   NACS[i] = Qabs_ch_[i]*x2/(2.0*(2.0*static_cast<double>(n) + 1));
 | 
	
		
			
				|  |  |      //   // if (NACS[i] > 0.250000001)
 | 
	
		
			
				|  |  | -    //   // 	throw std::invalid_argument("Unexpected normalized absorption cross-section value!");
 | 
	
		
			
				|  |  | +    //   //         throw std::invalid_argument("Unexpected normalized absorption cross-section value!");
 | 
	
		
			
				|  |  |      // }
 | 
	
		
			
				|  |  |      //return NACS;    
 | 
	
		
			
				|  |  |      return Qabs_ch_norm_;
 | 
	
	
		
			
				|  | @@ -203,11 +203,11 @@ namespace nmie {
 | 
	
		
			
				|  |  |    std::vector<double> MultiLayerMie::GetQsca_channel_normalized() {
 | 
	
		
			
				|  |  |      if (!isMieCalculated_)
 | 
	
		
			
				|  |  |        throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  | -    // std::vector<double> NACS(nmax_-1, 0.0);
 | 
	
		
			
				|  |  | +    // std::vector<double> NACS(nmax_ - 1, 0.0);
 | 
	
		
			
				|  |  |      // double x2 = pow2(size_parameter_.back());
 | 
	
		
			
				|  |  |      // for (int i = 0; i < nmax_ - 1; ++i) {
 | 
	
		
			
				|  |  | -    //   const int n = i+1;
 | 
	
		
			
				|  |  | -    //   NACS[i] = Qsca_ch_[i]*x2/(2.0*(2.0*static_cast<double>(n)+1.0));
 | 
	
		
			
				|  |  | +    //   const int n = i + 1;
 | 
	
		
			
				|  |  | +    //   NACS[i] = Qsca_ch_[i]*x2/(2.0*(2.0*static_cast<double>(n) + 1.0));
 | 
	
		
			
				|  |  |      // }
 | 
	
		
			
				|  |  |      // return NACS;    
 | 
	
		
			
				|  |  |       return Qsca_ch_norm_;
 | 
	
	
		
			
				|  | @@ -323,7 +323,7 @@ namespace nmie {
 | 
	
		
			
				|  |  |          throw std::invalid_argument("Size parameter should be positive!");
 | 
	
		
			
				|  |  |        if (prev_size_parameter > layer_size_parameter) 
 | 
	
		
			
				|  |  |          throw std::invalid_argument
 | 
	
		
			
				|  |  | -	  ("Size parameter for next layer should be larger than the previous one!");
 | 
	
		
			
				|  |  | +          ("Size parameter for next layer should be larger than the previous one!");
 | 
	
		
			
				|  |  |        prev_size_parameter = layer_size_parameter;
 | 
	
		
			
				|  |  |        size_parameter_.push_back(layer_size_parameter);
 | 
	
		
			
				|  |  |      }
 | 
	
	
		
			
				|  | @@ -344,8 +344,7 @@ namespace nmie {
 | 
	
		
			
				|  |  |    void MultiLayerMie::SetFieldPointsSP(const std::vector< std::vector<double> >& coords_sp) {
 | 
	
		
			
				|  |  |      if (coords_sp.size() != 3)
 | 
	
		
			
				|  |  |        throw std::invalid_argument("Error! Wrong dimension of field monitor points!");
 | 
	
		
			
				|  |  | -    if (coords_sp[0].size() != coords_sp[1].size()
 | 
	
		
			
				|  |  | -	|| coords_sp[0].size() != coords_sp[2].size())
 | 
	
		
			
				|  |  | +    if (coords_sp[0].size() != coords_sp[1].size() || coords_sp[0].size() != coords_sp[2].size())
 | 
	
		
			
				|  |  |        throw std::invalid_argument("Error! Missing coordinates for field monitor points!");
 | 
	
		
			
				|  |  |      coords_sp_ = coords_sp;
 | 
	
		
			
				|  |  |      // for (int i = 0; i < coords_sp_[0].size(); ++i) {
 | 
	
	
		
			
				|  | @@ -379,11 +378,11 @@ namespace nmie {
 | 
	
		
			
				|  |  |      double radius = 0.0;
 | 
	
		
			
				|  |  |      for (auto width : target_width_) {
 | 
	
		
			
				|  |  |        radius += width;
 | 
	
		
			
				|  |  | -      size_parameter_.push_back(2*PI_*radius / wavelength_);
 | 
	
		
			
				|  |  | +      size_parameter_.push_back(2*PI_*radius/wavelength_);
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |      for (auto width : coating_width_) {
 | 
	
		
			
				|  |  |        radius += width;
 | 
	
		
			
				|  |  | -      size_parameter_.push_back(2*PI_*radius / wavelength_);
 | 
	
		
			
				|  |  | +      size_parameter_.push_back(2*PI_*radius/wavelength_);
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |      total_radius_ = radius;
 | 
	
		
			
				|  |  |    }  // end of void MultiLayerMie::GenerateSizeParameter();
 | 
	
	
		
			
				|  | @@ -413,14 +412,14 @@ namespace nmie {
 | 
	
		
			
				|  |  |      if (!isMieCalculated_)
 | 
	
		
			
				|  |  |        throw std::invalid_argument("You should run calculations before result request!");
 | 
	
		
			
				|  |  |      std::vector< std::vector<double> > spectra;
 | 
	
		
			
				|  |  | -    double step_WL = (to_WL - from_WL)/ static_cast<double>(samples);
 | 
	
		
			
				|  |  | +    double step_WL = (to_WL - from_WL)/static_cast<double>(samples);
 | 
	
		
			
				|  |  |      double wavelength_backup = wavelength_;
 | 
	
		
			
				|  |  |      long fails = 0;
 | 
	
		
			
				|  |  |      for (double WL = from_WL; WL < to_WL; WL += step_WL) {
 | 
	
		
			
				|  |  |        wavelength_ = WL;
 | 
	
		
			
				|  |  |        try {
 | 
	
		
			
				|  |  |          RunMieCalculations();
 | 
	
		
			
				|  |  | -      } catch( const std::invalid_argument& ia ) {
 | 
	
		
			
				|  |  | +      } catch(const std::invalid_argument& ia) {
 | 
	
		
			
				|  |  |          fails++;
 | 
	
		
			
				|  |  |          continue;
 | 
	
		
			
				|  |  |        }
 | 
	
	
		
			
				|  | @@ -493,15 +492,15 @@ namespace nmie {
 | 
	
		
			
				|  |  |      Nstop();  // Set initial nmax_ value
 | 
	
		
			
				|  |  |      for (int i = first_layer; i < x.size(); i++) {
 | 
	
		
			
				|  |  |        if (i > PEC_layer_position_) 
 | 
	
		
			
				|  |  | -	ri = round(std::abs(x[i]*m[i]));
 | 
	
		
			
				|  |  | +        ri = round(std::abs(x[i]*m[i]));
 | 
	
		
			
				|  |  |        else 
 | 
	
		
			
				|  |  | -	ri = 0;      
 | 
	
		
			
				|  |  | +        ri = 0;      
 | 
	
		
			
				|  |  |        nmax_ = std::max(nmax_, ri);
 | 
	
		
			
				|  |  |        // first layer is pec, if pec is present
 | 
	
		
			
				|  |  |        if ((i > first_layer) && ((i - 1) > PEC_layer_position_)) 
 | 
	
		
			
				|  |  | -	riM1 = round(std::abs(x[i - 1]* m[i]));
 | 
	
		
			
				|  |  | +        riM1 = round(std::abs(x[i - 1]* m[i]));
 | 
	
		
			
				|  |  |        else 
 | 
	
		
			
				|  |  | -	riM1 = 0;      
 | 
	
		
			
				|  |  | +        riM1 = 0;      
 | 
	
		
			
				|  |  |        nmax_ = std::max(nmax_, riM1);
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |      nmax_ += 15;  // Final nmax_ value
 | 
	
	
		
			
				|  | @@ -521,7 +520,7 @@ namespace nmie {
 | 
	
		
			
				|  |  |    // The implementation follows the algorithm by I.J. Thompson and A.R. Barnett,      //
 | 
	
		
			
				|  |  |    // Comp. Phys. Comm. 47 (1987) 245-257.                                             //
 | 
	
		
			
				|  |  |    //                                                                                  //
 | 
	
		
			
				|  |  | -  // Complex spherical Bessel functions from n=0..nmax_-1 for z in the upper half      //
 | 
	
		
			
				|  |  | +  // Complex spherical Bessel functions from n=0..nmax_ - 1 for z in the upper half      //
 | 
	
		
			
				|  |  |    // plane (Im(z) > -3).                                                              //
 | 
	
		
			
				|  |  |    //                                                                                  //
 | 
	
		
			
				|  |  |    //     j[n]   = j/n(z)                Regular solution: j[0]=sin(z)/z               //
 | 
	
	
		
			
				|  | @@ -533,10 +532,10 @@ namespace nmie {
 | 
	
		
			
				|  |  |    // Using complex CF1, and trigonometric forms for n=0 solutions.                    //
 | 
	
		
			
				|  |  |    //**********************************************************************************//
 | 
	
		
			
				|  |  |    void MultiLayerMie::sbesjh(std::complex<double> z,
 | 
	
		
			
				|  |  | -			     std::vector<std::complex<double> >& jn,
 | 
	
		
			
				|  |  | -			     std::vector<std::complex<double> >& jnp,
 | 
	
		
			
				|  |  | -			     std::vector<std::complex<double> >& h1n,
 | 
	
		
			
				|  |  | -			     std::vector<std::complex<double> >& h1np) {
 | 
	
		
			
				|  |  | +                             std::vector<std::complex<double> >& jn,
 | 
	
		
			
				|  |  | +                             std::vector<std::complex<double> >& jnp,
 | 
	
		
			
				|  |  | +                             std::vector<std::complex<double> >& h1n,
 | 
	
		
			
				|  |  | +                             std::vector<std::complex<double> >& h1np) {
 | 
	
		
			
				|  |  |      const int limit = 20000;
 | 
	
		
			
				|  |  |      const double accur = 1.0e-12;
 | 
	
		
			
				|  |  |      const double tm30 = 1e-30;
 | 
	
	
		
			
				|  | @@ -565,12 +564,12 @@ namespace nmie {
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |        absc = std::abs(std::real(d)) + std::abs(std::imag(d));
 | 
	
		
			
				|  |  |        if (absc < tm30) {
 | 
	
		
			
				|  |  | -	d = tm30;
 | 
	
		
			
				|  |  | +        d = tm30;
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |        absc = std::abs(std::real(c)) + std::abs(std::imag(c));
 | 
	
		
			
				|  |  |        if (absc < tm30) {
 | 
	
		
			
				|  |  | -	c = tm30;
 | 
	
		
			
				|  |  | +        c = tm30;
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |        d = 1.0/d;
 | 
	
	
		
			
				|  | @@ -581,8 +580,8 @@ namespace nmie {
 | 
	
		
			
				|  |  |        absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |        if (absc < accur) {
 | 
	
		
			
				|  |  | -	// We have obtained the desired accuracy
 | 
	
		
			
				|  |  | -	break;
 | 
	
		
			
				|  |  | +        // We have obtained the desired accuracy
 | 
	
		
			
				|  |  | +        break;
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |  
 | 
	
	
		
			
				|  | @@ -613,18 +612,18 @@ namespace nmie {
 | 
	
		
			
				|  |  |        jn[n] = jn0*(w*jn[n]);
 | 
	
		
			
				|  |  |        jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
 | 
	
		
			
				|  |  |        if (n != 0) {
 | 
	
		
			
				|  |  | -	h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
 | 
	
		
			
				|  |  | +        h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -	// check if hankel is increasing (upward stable)
 | 
	
		
			
				|  |  | -	if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
 | 
	
		
			
				|  |  | -	  jndb = z;
 | 
	
		
			
				|  |  | -	  h1nldb = h1n[n];
 | 
	
		
			
				|  |  | -	  h1nbdb = h1n[n - 1];
 | 
	
		
			
				|  |  | -	}
 | 
	
		
			
				|  |  | +        // check if hankel is increasing (upward stable)
 | 
	
		
			
				|  |  | +        if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
 | 
	
		
			
				|  |  | +          jndb = z;
 | 
	
		
			
				|  |  | +          h1nldb = h1n[n];
 | 
	
		
			
				|  |  | +          h1nbdb = h1n[n - 1];
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -	pl += zi;
 | 
	
		
			
				|  |  | +        pl += zi;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -	h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
 | 
	
		
			
				|  |  | +        h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |    }
 | 
	
	
		
			
				|  | @@ -642,9 +641,9 @@ namespace nmie {
 | 
	
		
			
				|  |  |    //   bd: Logarithmic derivative                                                     //
 | 
	
		
			
				|  |  |    //**********************************************************************************//
 | 
	
		
			
				|  |  |    void MultiLayerMie::sphericalBessel(std::complex<double> z,
 | 
	
		
			
				|  |  | -				      std::vector<std::complex<double> >& bj,
 | 
	
		
			
				|  |  | -				      std::vector<std::complex<double> >& by,
 | 
	
		
			
				|  |  | -				      std::vector<std::complex<double> >& bd) {
 | 
	
		
			
				|  |  | +                                      std::vector<std::complex<double> >& bj,
 | 
	
		
			
				|  |  | +                                      std::vector<std::complex<double> >& by,
 | 
	
		
			
				|  |  | +                                      std::vector<std::complex<double> >& bd) {
 | 
	
		
			
				|  |  |      std::vector<std::complex<double> > jn(nmax_), jnp(nmax_), h1n(nmax_), h1np(nmax_);
 | 
	
		
			
				|  |  |      sbesjh(z, jn, jnp, h1n, h1np);
 | 
	
		
			
				|  |  |  
 | 
	
	
		
			
				|  | @@ -664,8 +663,8 @@ namespace nmie {
 | 
	
		
			
				|  |  |      //   by[1] = by[0]*3.0/z-bessely_0;//bj2
 | 
	
		
			
				|  |  |      // }
 | 
	
		
			
				|  |  |      // for (int n = 2; n < nmax_; n++) {
 | 
	
		
			
				|  |  | -    //   bj[n] = (2.0*n-1.0)/z*bj[n-1] - bj[n];
 | 
	
		
			
				|  |  | -    //   by[n] = (2.0*n-1.0)/z*by[n-1] - by[n];
 | 
	
		
			
				|  |  | +    //   bj[n] = (2.0*n - 1.0)/z*bj[n - 1] - bj[n];
 | 
	
		
			
				|  |  | +    //   by[n] = (2.0*n - 1.0)/z*by[n - 1] - by[n];
 | 
	
		
			
				|  |  |      // }
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |    // ********************************************************************** //
 | 
	
	
		
			
				|  | @@ -673,8 +672,8 @@ namespace nmie {
 | 
	
		
			
				|  |  |    // ********************************************************************** //
 | 
	
		
			
				|  |  |    // Calculate an - equation (5)
 | 
	
		
			
				|  |  |    std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
 | 
	
		
			
				|  |  | -					      std::complex<double> PsiXL, std::complex<double> ZetaXL,
 | 
	
		
			
				|  |  | -					      std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
 | 
	
		
			
				|  |  | +                                              std::complex<double> PsiXL, std::complex<double> ZetaXL,
 | 
	
		
			
				|  |  | +                                              std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
 | 
	
		
			
				|  |  |      std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
 | 
	
	
		
			
				|  | @@ -686,8 +685,8 @@ namespace nmie {
 | 
	
		
			
				|  |  |    // ********************************************************************** //
 | 
	
		
			
				|  |  |    // Calculate bn - equation (6)
 | 
	
		
			
				|  |  |    std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
 | 
	
		
			
				|  |  | -					      std::complex<double> PsiXL, std::complex<double> ZetaXL,
 | 
	
		
			
				|  |  | -					      std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
 | 
	
		
			
				|  |  | +                                              std::complex<double> PsiXL, std::complex<double> ZetaXL,
 | 
	
		
			
				|  |  | +                                              std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
 | 
	
		
			
				|  |  |      std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
 | 
	
	
		
			
				|  | @@ -699,7 +698,7 @@ namespace nmie {
 | 
	
		
			
				|  |  |    // ********************************************************************** //
 | 
	
		
			
				|  |  |    // Calculates S1 - equation (25a)
 | 
	
		
			
				|  |  |    std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,
 | 
	
		
			
				|  |  | -					      double Pi, double Tau) {
 | 
	
		
			
				|  |  | +                                              double Pi, double Tau) {
 | 
	
		
			
				|  |  |      return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |    // ********************************************************************** //
 | 
	
	
		
			
				|  | @@ -707,7 +706,7 @@ namespace nmie {
 | 
	
		
			
				|  |  |    // ********************************************************************** //
 | 
	
		
			
				|  |  |    // Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
 | 
	
		
			
				|  |  |    std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,
 | 
	
		
			
				|  |  | -					      double Pi, double Tau) {
 | 
	
		
			
				|  |  | +                                              double Pi, double Tau) {
 | 
	
		
			
				|  |  |      return calc_S1(n, an, bn, Tau, Pi);
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |    //**********************************************************************************//
 | 
	
	
		
			
				|  | @@ -723,10 +722,10 @@ namespace nmie {
 | 
	
		
			
				|  |  |    //   Psi, Zeta: Riccati-Bessel functions                                            //
 | 
	
		
			
				|  |  |    //**********************************************************************************//
 | 
	
		
			
				|  |  |    void MultiLayerMie::calcPsiZeta(std::complex<double> z,
 | 
	
		
			
				|  |  | -				  std::vector<std::complex<double> > D1,
 | 
	
		
			
				|  |  | -				  std::vector<std::complex<double> > D3,
 | 
	
		
			
				|  |  | -				  std::vector<std::complex<double> >& Psi,
 | 
	
		
			
				|  |  | -				  std::vector<std::complex<double> >& Zeta) {
 | 
	
		
			
				|  |  | +                                  std::vector<std::complex<double> > D1,
 | 
	
		
			
				|  |  | +                                  std::vector<std::complex<double> > D3,
 | 
	
		
			
				|  |  | +                                  std::vector<std::complex<double> >& Psi,
 | 
	
		
			
				|  |  | +                                  std::vector<std::complex<double> >& Zeta) {
 | 
	
		
			
				|  |  |      //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
 | 
	
		
			
				|  |  |      //Psi[0] = std::complex<double>(std::sin(x), 0);
 | 
	
		
			
				|  |  |      std::complex<double> c_i(0.0, 1.0);
 | 
	
	
		
			
				|  | @@ -758,33 +757,33 @@ c     a_k
 | 
	
		
			
				|  |  |  c    CAPT     Factor used in Lentz iteration for A (Eq. R27)
 | 
	
		
			
				|  |  |  c     T_k
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -c    CNUMER   Numerator   in capT  ( Eq. R28A )
 | 
	
		
			
				|  |  | +c    CNUMER   Numerator   in capT  (Eq. R28A)
 | 
	
		
			
				|  |  |  c     N_k
 | 
	
		
			
				|  |  | -c    CDENOM   Denominator in capT  ( Eq. R28B )
 | 
	
		
			
				|  |  | +c    CDENOM   Denominator in capT  (Eq. R28B)
 | 
	
		
			
				|  |  |  c     D_k
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  c    CDTD     Product of two successive denominators of capT factors
 | 
	
		
			
				|  |  | -c                 ( Eq. R34C )
 | 
	
		
			
				|  |  | +c                 (Eq. R34C)
 | 
	
		
			
				|  |  |  c     xi_1
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  c    CNTN     Product of two successive numerators of capT factors
 | 
	
		
			
				|  |  | -c                 ( Eq. R34B )
 | 
	
		
			
				|  |  | +c                 (Eq. R34B)
 | 
	
		
			
				|  |  |  c     xi_2
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  c    EPS1     Ill-conditioning criterion
 | 
	
		
			
				|  |  |  c    EPS2     Convergence criterion
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -c    KK       Subscript k of cAk  ( Eq. R25B )
 | 
	
		
			
				|  |  | +c    KK       Subscript k of cAk  (Eq. R25B)
 | 
	
		
			
				|  |  |  c     k
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -c    KOUNT    Iteration counter ( used to prevent infinite looping )
 | 
	
		
			
				|  |  | +c    KOUNT    Iteration counter (used to prevent infinite looping)
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  c    MAXIT    Max. allowed no. of iterations
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  | +c    MM + 1  and - 1, alternately
 | 
	
		
			
				|  |  |  */
 | 
	
		
			
				|  |  |    std::complex<double> MultiLayerMie::calcD1confra(const int N, const std::complex<double> z) {
 | 
	
		
			
				|  |  | -  // NTMR -> nmax_ -1  \\TODO nmax_ ?
 | 
	
		
			
				|  |  | +  // NTMR -> nmax_ - 1  \\TODO nmax_ ?
 | 
	
		
			
				|  |  |      //int N = nmax_ - 1;
 | 
	
		
			
				|  |  |      int KK, KOUNT, MAXIT = 10000, MM;
 | 
	
		
			
				|  |  |      //    double EPS1=1.0e-2;
 | 
	
	
		
			
				|  | @@ -793,49 +792,49 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |      std::complex<double> one = std::complex<double>(1.0,0.0);
 | 
	
		
			
				|  |  |      std::complex<double> ZINV = one/z;
 | 
	
		
			
				|  |  |  // c                                 ** Eq. R25a
 | 
	
		
			
				|  |  | -    std::complex<double> CONFRA = static_cast<std::complex<double> >(N+1)*ZINV;   //debug ZINV
 | 
	
		
			
				|  |  | -    MM = -1; 
 | 
	
		
			
				|  |  | +    std::complex<double> CONFRA = static_cast<std::complex<double> >(N + 1)*ZINV;   //debug ZINV
 | 
	
		
			
				|  |  | +    MM = - 1; 
 | 
	
		
			
				|  |  |      KK = 2*N +3; //debug 3
 | 
	
		
			
				|  |  |  // c                                 ** Eq. R25b, k=2
 | 
	
		
			
				|  |  |      CAK    = static_cast<std::complex<double> >(MM*KK) * ZINV; //debug -3 ZINV
 | 
	
		
			
				|  |  |      CDENOM = CAK;
 | 
	
		
			
				|  |  | -    CNUMER = CDENOM + one / CONFRA; //-3zinv+z
 | 
	
		
			
				|  |  | +    CNUMER = CDENOM + one/CONFRA; //-3zinv+z
 | 
	
		
			
				|  |  |      KOUNT  = 1;
 | 
	
		
			
				|  |  |      //10 CONTINUE
 | 
	
		
			
				|  |  |      do {      ++KOUNT;
 | 
	
		
			
				|  |  |        if (KOUNT > MAXIT) {
 | 
	
		
			
				|  |  | -	printf("re(%g):im(%g)\t\n", CONFRA.real(), CONFRA.imag());
 | 
	
		
			
				|  |  | -	throw std::invalid_argument("ConFra--Iteration failed to converge!\n");
 | 
	
		
			
				|  |  | +        printf("re(%g):im(%g)\t\n", CONFRA.real(), CONFRA.imag());
 | 
	
		
			
				|  |  | +        throw std::invalid_argument("ConFra--Iteration failed to converge!\n");
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  | -      MM *= -1;      KK += 2;  //debug  mm=1 kk=5
 | 
	
		
			
				|  |  | +      MM *= - 1;      KK += 2;  //debug  mm=1 kk=5
 | 
	
		
			
				|  |  |        CAK = static_cast<std::complex<double> >(MM*KK) * ZINV; //    ** Eq. R25b //debug 5zinv
 | 
	
		
			
				|  |  |       //  //c ** Eq. R32    Ill-conditioned case -- stride two terms instead of one
 | 
	
		
			
				|  |  | -     //  if (std::abs( CNUMER / CAK ) >= EPS1 ||  std::abs( CDENOM / CAK ) >= EPS1) {
 | 
	
		
			
				|  |  | -     // 	//c                       ** Eq. R34
 | 
	
		
			
				|  |  | -     // 	CNTN   = CAK * CNUMER + 1.0;
 | 
	
		
			
				|  |  | -     // 	CDTD   = CAK * CDENOM + 1.0;
 | 
	
		
			
				|  |  | -     // 	CONFRA = ( CNTN / CDTD ) * CONFRA; // ** Eq. R33
 | 
	
		
			
				|  |  | -     // 	MM  *= -1;	KK  += 2;
 | 
	
		
			
				|  |  | -     // 	CAK = static_cast<std::complex<double> >(MM*KK) * ZINV; // ** Eq. R25b
 | 
	
		
			
				|  |  | -     // 	//c                        ** Eq. R35
 | 
	
		
			
				|  |  | -     // 	CNUMER = CAK + CNUMER / CNTN;
 | 
	
		
			
				|  |  | -     // 	CDENOM = CAK + CDENOM / CDTD;
 | 
	
		
			
				|  |  | -     // 	++KOUNT;
 | 
	
		
			
				|  |  | -     // 	//GO TO  10
 | 
	
		
			
				|  |  | -     // 	continue;
 | 
	
		
			
				|  |  | +     //  if (std::abs(CNUMER/CAK) >= EPS1 ||  std::abs(CDENOM/CAK) >= EPS1) {
 | 
	
		
			
				|  |  | +     //         //c                       ** Eq. R34
 | 
	
		
			
				|  |  | +     //         CNTN   = CAK * CNUMER + 1.0;
 | 
	
		
			
				|  |  | +     //         CDTD   = CAK * CDENOM + 1.0;
 | 
	
		
			
				|  |  | +     //         CONFRA = (CNTN/CDTD) * CONFRA; // ** Eq. R33
 | 
	
		
			
				|  |  | +     //         MM  *= - 1;        KK  += 2;
 | 
	
		
			
				|  |  | +     //         CAK = static_cast<std::complex<double> >(MM*KK) * ZINV; // ** Eq. R25b
 | 
	
		
			
				|  |  | +     //         //c                        ** Eq. R35
 | 
	
		
			
				|  |  | +     //         CNUMER = CAK + CNUMER/CNTN;
 | 
	
		
			
				|  |  | +     //         CDENOM = CAK + CDENOM/CDTD;
 | 
	
		
			
				|  |  | +     //         ++KOUNT;
 | 
	
		
			
				|  |  | +     //         //GO TO  10
 | 
	
		
			
				|  |  | +     //         continue;
 | 
	
		
			
				|  |  |       // } else { //c                           *** Well-conditioned case
 | 
	
		
			
				|  |  |        {
 | 
	
		
			
				|  |  | -	CAPT   = CNUMER / CDENOM; // ** Eq. R27 //debug (-3zinv + z)/(-3zinv)
 | 
	
		
			
				|  |  | -	// printf("re(%g):im(%g)**\t", CAPT.real(), CAPT.imag());
 | 
	
		
			
				|  |  | +        CAPT   = CNUMER/CDENOM; // ** Eq. R27 //debug (-3zinv + z)/(-3zinv)
 | 
	
		
			
				|  |  | +        // printf("re(%g):im(%g)**\t", CAPT.real(), CAPT.imag());
 | 
	
		
			
				|  |  |         CONFRA = CAPT * CONFRA; // ** Eq. R26
 | 
	
		
			
				|  |  |         //if (N == 0) {output=true;printf(" re:");prn(CONFRA.real());printf(" im:"); prn(CONFRA.imag());output=false;};
 | 
	
		
			
				|  |  |         //c                                  ** Check for convergence; Eq. R31
 | 
	
		
			
				|  |  | -       if ( std::abs(CAPT.real() - 1.0) >= EPS2 ||  std::abs(CAPT.imag()) >= EPS2 ) {
 | 
	
		
			
				|  |  | +       if (std::abs(CAPT.real() - 1.0) >= EPS2 ||  std::abs(CAPT.imag()) >= EPS2) {
 | 
	
		
			
				|  |  |  //c                                        ** Eq. R30
 | 
	
		
			
				|  |  | -	 CNUMER = CAK + one/CNUMER;
 | 
	
		
			
				|  |  | -	 CDENOM = CAK + one/CDENOM;
 | 
	
		
			
				|  |  | -	 continue;
 | 
	
		
			
				|  |  | -	 //GO TO  10
 | 
	
		
			
				|  |  | +         CNUMER = CAK + one/CNUMER;
 | 
	
		
			
				|  |  | +         CDENOM = CAK + one/CDENOM;
 | 
	
		
			
				|  |  | +         continue;
 | 
	
		
			
				|  |  | +         //GO TO  10
 | 
	
		
			
				|  |  |         }  // end of if < eps2
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  |        break;
 | 
	
	
		
			
				|  | @@ -856,8 +855,8 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |    //   D1, D3: Logarithmic derivatives of the Riccati-Bessel functions                //
 | 
	
		
			
				|  |  |    //**********************************************************************************//
 | 
	
		
			
				|  |  |    void MultiLayerMie::calcD1D3(const std::complex<double> z,
 | 
	
		
			
				|  |  | -			       std::vector<std::complex<double> >& D1,
 | 
	
		
			
				|  |  | -			       std::vector<std::complex<double> >& D3) {
 | 
	
		
			
				|  |  | +                               std::vector<std::complex<double> >& D1,
 | 
	
		
			
				|  |  | +                               std::vector<std::complex<double> >& D3) {
 | 
	
		
			
				|  |  |      // Downward recurrence for D1 - equations (16a) and (16b)
 | 
	
		
			
				|  |  |      D1[nmax_] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  |      //D1[nmax_] = calcD1confra(nmax_, z);
 | 
	
	
		
			
				|  | @@ -867,21 +866,21 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |      // prn((D1[nmax_] + double(nmax_)*zinv).real());
 | 
	
		
			
				|  |  |      for (int n = nmax_; n > 0; n--) {
 | 
	
		
			
				|  |  |        D1[n - 1] = double(n)*zinv - 1.0/(D1[n] + double(n)*zinv);
 | 
	
		
			
				|  |  | -      //D1[n-1] = calcD1confra(n-1, z);
 | 
	
		
			
				|  |  | -      // printf(" D:");prn((D1[n-1]).real()); printf("\t diff:");
 | 
	
		
			
				|  |  | +      //D1[n - 1] = calcD1confra(n - 1, z);
 | 
	
		
			
				|  |  | +      // printf(" D:");prn((D1[n - 1]).real()); printf("\t diff:");
 | 
	
		
			
				|  |  |        // prn((D1[n] + double(n)*zinv).real());
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |      //     printf("\n\n"); iformat=0;
 | 
	
		
			
				|  |  | -    if (std::abs(D1[0]) > 100000.0 )
 | 
	
		
			
				|  |  | +    if (std::abs(D1[0]) > 100000.0)
 | 
	
		
			
				|  |  |        throw std::invalid_argument
 | 
	
		
			
				|  |  | -	("Unstable D1! Please, try to change input parameters!\n");
 | 
	
		
			
				|  |  | +        ("Unstable D1! Please, try to change input parameters!\n");
 | 
	
		
			
				|  |  |      // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
 | 
	
		
			
				|  |  |      PsiZeta_[0] = 0.5*(1.0 - std::complex<double>(std::cos(2.0*z.real()), std::sin(2.0*z.real()))
 | 
	
		
			
				|  |  | -		       *std::exp(-2.0*z.imag()));
 | 
	
		
			
				|  |  | +                       *std::exp(-2.0*z.imag()));
 | 
	
		
			
				|  |  |      D3[0] = std::complex<double>(0.0, 1.0);
 | 
	
		
			
				|  |  |      for (int n = 1; n <= nmax_; n++) {
 | 
	
		
			
				|  |  |        PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<double>(n)*zinv - D1[n - 1])
 | 
	
		
			
				|  |  | -	*(static_cast<double>(n)*zinv- D3[n - 1]);
 | 
	
		
			
				|  |  | +        *(static_cast<double>(n)*zinv- D3[n - 1]);
 | 
	
		
			
				|  |  |        D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta_[n];
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |    }
 | 
	
	
		
			
				|  | @@ -890,7 +889,7 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |    // Equations (26a) - (26c)                                                          //
 | 
	
		
			
				|  |  |    //                                                                                  //
 | 
	
		
			
				|  |  |    // Input parameters:                                                                //
 | 
	
		
			
				|  |  | -  //   nmax_: Maximum number of terms to calculate Pi and Tau                          //
 | 
	
		
			
				|  |  | +  //   nmax_: Maximum number of terms to calculate Pi and Tau                         //
 | 
	
		
			
				|  |  |    //   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  |    //   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  |    //          amplitudes will be calculated                                           //
 | 
	
	
		
			
				|  | @@ -899,35 +898,35 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |    //   Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c)   //
 | 
	
		
			
				|  |  |    //**********************************************************************************//
 | 
	
		
			
				|  |  |    void MultiLayerMie::calcSinglePiTau(const double& costheta, std::vector<double>& Pi,
 | 
	
		
			
				|  |  | -				      std::vector<double>& Tau) {
 | 
	
		
			
				|  |  | +                                      std::vector<double>& Tau) {
 | 
	
		
			
				|  |  |      //****************************************************//
 | 
	
		
			
				|  |  |      // Equations (26a) - (26c)                            //
 | 
	
		
			
				|  |  |      //****************************************************//
 | 
	
		
			
				|  |  |      for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  |        if (n == 0) {
 | 
	
		
			
				|  |  | -	// Initialize Pi and Tau
 | 
	
		
			
				|  |  | -	Pi[n] = 1.0;
 | 
	
		
			
				|  |  | -	Tau[n] = (n + 1)*costheta; 
 | 
	
		
			
				|  |  | +        // Initialize Pi and Tau
 | 
	
		
			
				|  |  | +        Pi[n] = 1.0;
 | 
	
		
			
				|  |  | +        Tau[n] = (n + 1)*costheta; 
 | 
	
		
			
				|  |  |        } else {
 | 
	
		
			
				|  |  | -	// Calculate the actual values
 | 
	
		
			
				|  |  | -	Pi[n] = ((n == 1) ? ((n + n + 1)*costheta*Pi[n - 1]/n)
 | 
	
		
			
				|  |  | -		 : (((n + n + 1)*costheta*Pi[n - 1]
 | 
	
		
			
				|  |  | -		     - (n + 1)*Pi[n - 2])/n));
 | 
	
		
			
				|  |  | -	Tau[n] = (n + 1)*costheta*Pi[n] - (n + 2)*Pi[n - 1];
 | 
	
		
			
				|  |  | +        // Calculate the actual values
 | 
	
		
			
				|  |  | +        Pi[n] = ((n == 1) ? ((n + n + 1)*costheta*Pi[n - 1]/n)
 | 
	
		
			
				|  |  | +                 : (((n + n + 1)*costheta*Pi[n - 1]
 | 
	
		
			
				|  |  | +                     - (n + 1)*Pi[n - 2])/n));
 | 
	
		
			
				|  |  | +        Tau[n] = (n + 1)*costheta*Pi[n] - (n + 2)*Pi[n - 1];
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |    }  // end of void MultiLayerMie::calcPiTau(...)
 | 
	
		
			
				|  |  |    void MultiLayerMie::calcAllPiTau(std::vector< std::vector<double> >& Pi,
 | 
	
		
			
				|  |  | -				std::vector< std::vector<double> >& Tau) {
 | 
	
		
			
				|  |  | +                                   std::vector< std::vector<double> >& Tau) {
 | 
	
		
			
				|  |  |      std::vector<double> costheta(theta_.size(), 0.0);
 | 
	
		
			
				|  |  | -    for (int t = 0; t < theta_.size(); t++) {	
 | 
	
		
			
				|  |  | +    for (int t = 0; t < theta_.size(); t++) {
 | 
	
		
			
				|  |  |        costheta[t] = std::cos(theta_[t]);
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |      // Do not join upper and lower 'for' to a single one!  It will slow
 | 
	
		
			
				|  |  |      // down the code!!! (For about 0.5-2.0% of runtime, it is probably
 | 
	
		
			
				|  |  |      // due to increased cache missing rate originated from the
 | 
	
		
			
				|  |  |      // recurrence in calcPiTau...)
 | 
	
		
			
				|  |  | -    for (int t = 0; t < theta_.size(); t++) {	
 | 
	
		
			
				|  |  | +    for (int t = 0; t < theta_.size(); t++) {
 | 
	
		
			
				|  |  |        calcSinglePiTau(costheta[t], Pi[t], Tau[t]);
 | 
	
		
			
				|  |  |        //calcSinglePiTau(std::cos(theta_[t]), Pi[t], Tau[t]); // It is slow!!
 | 
	
		
			
				|  |  |      }
 | 
	
	
		
			
				|  | @@ -952,19 +951,19 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |    //   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  |    //**********************************************************************************//
 | 
	
		
			
				|  |  |    void MultiLayerMie::ScattCoeffs(std::vector<std::complex<double> >& an,
 | 
	
		
			
				|  |  | -				  std::vector<std::complex<double> >& bn) {
 | 
	
		
			
				|  |  | +                                  std::vector<std::complex<double> >& bn) {
 | 
	
		
			
				|  |  |      const std::vector<double>& x = size_parameter_;
 | 
	
		
			
				|  |  |      const std::vector<std::complex<double> >& m = index_;
 | 
	
		
			
				|  |  |      const int& pl = PEC_layer_position_;
 | 
	
		
			
				|  |  |      const int L = index_.size();
 | 
	
		
			
				|  |  |      //************************************************************************//
 | 
	
		
			
				|  |  | -    // Calculate the index of the first layer. It can be either 0
 | 
	
		
			
				|  |  | -    // (default) // or the index of the outermost PEC layer. In the
 | 
	
		
			
				|  |  | -    // latter case all layers // below the PEC are discarded.  //
 | 
	
		
			
				|  |  | -    // ************************************************************************//
 | 
	
		
			
				|  |  | +    // Calculate the index of the first layer. It can be either 0 (default)   //
 | 
	
		
			
				|  |  | +    // or the index of the outermost PEC layer. In the latter case all layers //
 | 
	
		
			
				|  |  | +    // below the PEC are discarded.                                           //
 | 
	
		
			
				|  |  | +    // ***********************************************************************//
 | 
	
		
			
				|  |  |      // TODO, is it possible for PEC to have a zero index? If yes than
 | 
	
		
			
				|  |  |      // is should be:
 | 
	
		
			
				|  |  | -    // int fl = (pl > -1) ? pl : 0;
 | 
	
		
			
				|  |  | +    // int fl = (pl > - 1) ? pl : 0;
 | 
	
		
			
				|  |  |      // This will give the same result, however, it corresponds the
 | 
	
		
			
				|  |  |      // logic - if there is PEC, than first layer is PEC.
 | 
	
		
			
				|  |  |      int fl = (pl > 0) ? pl : 0;
 | 
	
	
		
			
				|  | @@ -1001,8 +1000,8 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |      //*************************************************//
 | 
	
		
			
				|  |  |      if (fl == pl) {  // PEC layer
 | 
	
		
			
				|  |  |        for (int n = 0; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | -	D1_mlxl[n] = std::complex<double>(0.0, -1.0);
 | 
	
		
			
				|  |  | -	D3_mlxl[n] = std::complex<double>(0.0, 1.0);
 | 
	
		
			
				|  |  | +        D1_mlxl[n] = std::complex<double>(0.0, - 1.0);
 | 
	
		
			
				|  |  | +        D3_mlxl[n] = std::complex<double>(0.0, 1.0);
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  |      } else { // Regular layer
 | 
	
		
			
				|  |  |        z1 = x[fl]* m[fl];
 | 
	
	
		
			
				|  | @@ -1011,7 +1010,7 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |      // do { \
 | 
	
		
			
				|  |  |      //   ++iformat;\
 | 
	
		
			
				|  |  | -    //   if (iformat%5 == 0) printf("%24.16e",z1.real());	\
 | 
	
		
			
				|  |  | +    //   if (iformat%5 == 0) printf("%24.16e",z1.real());
 | 
	
		
			
				|  |  |      // } while (false);
 | 
	
		
			
				|  |  |      //******************************************************************//
 | 
	
		
			
				|  |  |      // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
 | 
	
	
		
			
				|  | @@ -1027,7 +1026,7 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |      std::complex<double> G1, G2;
 | 
	
		
			
				|  |  |      for (int l = fl + 1; l < L; l++) {
 | 
	
		
			
				|  |  |        //************************************************************//
 | 
	
		
			
				|  |  | -      //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L     //
 | 
	
		
			
				|  |  | +      //Calculate D1 and D3 for z1 and z2 in the layers fl + 1..L     //
 | 
	
		
			
				|  |  |        //************************************************************//
 | 
	
		
			
				|  |  |        z1 = x[l]*m[l];
 | 
	
		
			
				|  |  |        z2 = x[l - 1]*m[l];
 | 
	
	
		
			
				|  | @@ -1036,50 +1035,50 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |        //Calculate D1 and D3 for z2
 | 
	
		
			
				|  |  |        calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
 | 
	
		
			
				|  |  |        // prn(z1.real());
 | 
	
		
			
				|  |  | -      // for ( auto i : D1_mlxl) { prn(i.real());
 | 
	
		
			
				|  |  | +      // for (auto i : D1_mlxl) { prn(i.real());
 | 
	
		
			
				|  |  |        //   // prn(i.imag());
 | 
	
		
			
				|  |  | -      // 	} printf("\n");
 | 
	
		
			
				|  |  | +      //         } printf("\n");
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |        //*********************************************//
 | 
	
		
			
				|  |  | -      //Calculate Q, Ha and Hb in the layers fl+1..L //
 | 
	
		
			
				|  |  | +      //Calculate Q, Ha and Hb in the layers fl + 1..L //
 | 
	
		
			
				|  |  |        //*********************************************//
 | 
	
		
			
				|  |  |        // Upward recurrence for Q - equations (19a) and (19b)
 | 
	
		
			
				|  |  |        Num = std::exp(-2.0*(z1.imag() - z2.imag()))
 | 
	
		
			
				|  |  | -	* std::complex<double>(std::cos(-2.0*z2.real()) - std::exp(-2.0*z2.imag()), std::sin(-2.0*z2.real()));
 | 
	
		
			
				|  |  | +        * std::complex<double>(std::cos(-2.0*z2.real()) - std::exp(-2.0*z2.imag()), std::sin(-2.0*z2.real()));
 | 
	
		
			
				|  |  |        Denom = std::complex<double>(std::cos(-2.0*z1.real()) - std::exp(-2.0*z1.imag()), std::sin(-2.0*z1.real()));
 | 
	
		
			
				|  |  |        Q[l][0] = Num/Denom;
 | 
	
		
			
				|  |  |        for (int n = 1; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | -	Num = (z1*D1_mlxl[n] + double(n))*(double(n) - z1*D3_mlxl[n - 1]);
 | 
	
		
			
				|  |  | -	Denom = (z2*D1_mlxlM1[n] + double(n))*(double(n) - z2*D3_mlxlM1[n - 1]);
 | 
	
		
			
				|  |  | -	Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
 | 
	
		
			
				|  |  | +        Num = (z1*D1_mlxl[n] + double(n))*(double(n) - z1*D3_mlxl[n - 1]);
 | 
	
		
			
				|  |  | +        Denom = (z2*D1_mlxlM1[n] + double(n))*(double(n) - z2*D3_mlxlM1[n - 1]);
 | 
	
		
			
				|  |  | +        Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  |        // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
 | 
	
		
			
				|  |  |        for (int n = 1; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | -	//Ha
 | 
	
		
			
				|  |  | -	if ((l - 1) == pl) { // The layer below the current one is a PEC layer
 | 
	
		
			
				|  |  | -	  G1 = -D1_mlxlM1[n];
 | 
	
		
			
				|  |  | -	  G2 = -D3_mlxlM1[n];
 | 
	
		
			
				|  |  | -	} else {
 | 
	
		
			
				|  |  | -	  G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
 | 
	
		
			
				|  |  | -	  G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
 | 
	
		
			
				|  |  | -	}  // end of if PEC
 | 
	
		
			
				|  |  | -	Temp = Q[l][n]*G1;
 | 
	
		
			
				|  |  | -	Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
 | 
	
		
			
				|  |  | -	Denom = G2 - Temp;
 | 
	
		
			
				|  |  | -	Ha[l][n - 1] = Num/Denom;
 | 
	
		
			
				|  |  | -	//Hb
 | 
	
		
			
				|  |  | -	if ((l - 1) == pl) { // The layer below the current one is a PEC layer
 | 
	
		
			
				|  |  | -	  G1 = Hb[l - 1][n - 1];
 | 
	
		
			
				|  |  | -	  G2 = Hb[l - 1][n - 1];
 | 
	
		
			
				|  |  | -	} else {
 | 
	
		
			
				|  |  | -	  G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
 | 
	
		
			
				|  |  | -	  G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
 | 
	
		
			
				|  |  | -	}  // end of if PEC
 | 
	
		
			
				|  |  | +        //Ha
 | 
	
		
			
				|  |  | +        if ((l - 1) == pl) { // The layer below the current one is a PEC layer
 | 
	
		
			
				|  |  | +          G1 = -D1_mlxlM1[n];
 | 
	
		
			
				|  |  | +          G2 = -D3_mlxlM1[n];
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +          G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
 | 
	
		
			
				|  |  | +          G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
 | 
	
		
			
				|  |  | +        }  // end of if PEC
 | 
	
		
			
				|  |  | +        Temp = Q[l][n]*G1;
 | 
	
		
			
				|  |  | +        Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
 | 
	
		
			
				|  |  | +        Denom = G2 - Temp;
 | 
	
		
			
				|  |  | +        Ha[l][n - 1] = Num/Denom;
 | 
	
		
			
				|  |  | +        //Hb
 | 
	
		
			
				|  |  | +        if ((l - 1) == pl) { // The layer below the current one is a PEC layer
 | 
	
		
			
				|  |  | +          G1 = Hb[l - 1][n - 1];
 | 
	
		
			
				|  |  | +          G2 = Hb[l - 1][n - 1];
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +          G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
 | 
	
		
			
				|  |  | +          G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
 | 
	
		
			
				|  |  | +        }  // end of if PEC
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -	Temp = Q[l][n]*G1;
 | 
	
		
			
				|  |  | -	Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
 | 
	
		
			
				|  |  | -	Denom = (G2- Temp);
 | 
	
		
			
				|  |  | -	Hb[l][n - 1] = (Num/ Denom);
 | 
	
		
			
				|  |  | +        Temp = Q[l][n]*G1;
 | 
	
		
			
				|  |  | +        Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
 | 
	
		
			
				|  |  | +        Denom = (G2- Temp);
 | 
	
		
			
				|  |  | +        Hb[l][n - 1] = (Num/ Denom);
 | 
	
		
			
				|  |  |        }  // end of for Ha and Hb terms
 | 
	
		
			
				|  |  |      }  // end of for layers iteration
 | 
	
		
			
				|  |  |      //**************************************//
 | 
	
	
		
			
				|  | @@ -1087,7 +1086,7 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |      //**************************************//
 | 
	
		
			
				|  |  |      // Calculate D1XL and D3XL
 | 
	
		
			
				|  |  |      calcD1D3(x[L - 1],  D1XL, D3XL);
 | 
	
		
			
				|  |  | -    //printf("%5.20f\n",Ha[L-1][0].real());
 | 
	
		
			
				|  |  | +    //printf("%5.20f\n",Ha[L - 1][0].real());
 | 
	
		
			
				|  |  |      // Calculate PsiXL and ZetaXL
 | 
	
		
			
				|  |  |      calcPsiZeta(x[L - 1], D1XL, D3XL, PsiXL, ZetaXL);
 | 
	
		
			
				|  |  |      //*********************************************************************//
 | 
	
	
		
			
				|  | @@ -1102,11 +1101,11 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |        //there is only one PEC layer (ie, for a simple PEC sphere).          //
 | 
	
		
			
				|  |  |        //********************************************************************//
 | 
	
		
			
				|  |  |        if (pl < (L - 1)) {
 | 
	
		
			
				|  |  | -	an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | -	bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | +        an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | +        bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  |        } else {
 | 
	
		
			
				|  |  | -	an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | -	bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
 | 
	
		
			
				|  |  | +        an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | +        bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  |      }  // end of for an and bn terms
 | 
	
		
			
				|  |  |    }  // end of void MultiLayerMie::ScattCoeffs(...)
 | 
	
	
		
			
				|  | @@ -1128,18 +1127,18 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |      Qabs_ch_.clear();
 | 
	
		
			
				|  |  |      Qbk_ch_.clear();
 | 
	
		
			
				|  |  |      Qpr_ch_.clear();
 | 
	
		
			
				|  |  | -    Qsca_ch_.resize(nmax_-1);
 | 
	
		
			
				|  |  | -    Qext_ch_.resize(nmax_-1);
 | 
	
		
			
				|  |  | -    Qabs_ch_.resize(nmax_-1);
 | 
	
		
			
				|  |  | -    Qbk_ch_.resize(nmax_-1);
 | 
	
		
			
				|  |  | -    Qpr_ch_.resize(nmax_-1);
 | 
	
		
			
				|  |  | -    Qsca_ch_norm_.resize(nmax_-1);
 | 
	
		
			
				|  |  | -    Qext_ch_norm_.resize(nmax_-1);
 | 
	
		
			
				|  |  | -    Qabs_ch_norm_.resize(nmax_-1);
 | 
	
		
			
				|  |  | -    Qbk_ch_norm_.resize(nmax_-1);
 | 
	
		
			
				|  |  | -    Qpr_ch_norm_.resize(nmax_-1);
 | 
	
		
			
				|  |  | +    Qsca_ch_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  | +    Qext_ch_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  | +    Qabs_ch_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  | +    Qbk_ch_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  | +    Qpr_ch_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  | +    Qsca_ch_norm_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  | +    Qext_ch_norm_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  | +    Qabs_ch_norm_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  | +    Qbk_ch_norm_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  | +    Qpr_ch_norm_.resize(nmax_ - 1);
 | 
	
		
			
				|  |  |      // Initialize the scattering amplitudes
 | 
	
		
			
				|  |  | -    std::vector<std::complex<double> >	tmp1(theta_.size(),std::complex<double>(0.0, 0.0));
 | 
	
		
			
				|  |  | +    std::vector<std::complex<double> >        tmp1(theta_.size(),std::complex<double>(0.0, 0.0));
 | 
	
		
			
				|  |  |      S1_.swap(tmp1);
 | 
	
		
			
				|  |  |      S2_ = S1_;
 | 
	
		
			
				|  |  |    }
 | 
	
	
		
			
				|  | @@ -1163,15 +1162,15 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |    //                                                                                  //
 | 
	
		
			
				|  |  |    // Input parameters:                                                                //
 | 
	
		
			
				|  |  |    //   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | -  //   pl: Index of PEC layer. If there is none just send -1                          //
 | 
	
		
			
				|  |  | -  //   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | -  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +  //   pl: Index of PEC layer. If there is none just send - 1                          //
 | 
	
		
			
				|  |  | +  //   x: Array containing the size parameters of the layers [0..L - 1]                 //
 | 
	
		
			
				|  |  | +  //   m: Array containing the relative refractive indexes of the layers [0..L - 1]     //
 | 
	
		
			
				|  |  |    //   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  |    //   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  |    //          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  |    //   nmax_: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  |    //         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | -  //         set this parameter to -1 and the function will calculate it              //
 | 
	
		
			
				|  |  | +  //         set this parameter to - 1 and the function will calculate it              //
 | 
	
		
			
				|  |  |    //                                                                                  //
 | 
	
		
			
				|  |  |    // Output parameters:                                                               //
 | 
	
		
			
				|  |  |    //   Qext: Efficiency factor for extinction                                         //
 | 
	
	
		
			
				|  | @@ -1222,11 +1221,11 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |        Qext_ += Qext_ch_[i];
 | 
	
		
			
				|  |  |        // Equation (28)
 | 
	
		
			
				|  |  |        Qsca_ch_norm_[i] = (an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
 | 
	
		
			
				|  |  | -			  + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
 | 
	
		
			
				|  |  | +                          + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
 | 
	
		
			
				|  |  |        Qsca_ch_[i] = (n + n + 1.0)*Qsca_ch_norm_[i];
 | 
	
		
			
				|  |  |        Qsca_ += Qsca_ch_[i];
 | 
	
		
			
				|  |  |        // Qsca_ch_[i] += (n + n + 1)*(an_[i].real()*an_[i].real() + an_[i].imag()*an_[i].imag()
 | 
	
		
			
				|  |  | -      // 			    + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
 | 
	
		
			
				|  |  | +      //                             + bn_[i].real()*bn_[i].real() + bn_[i].imag()*bn_[i].imag());
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |        // Equation (29) TODO We must check carefully this equation. If we
 | 
	
		
			
				|  |  |        // remove the typecast to double then the result changes. Which is
 | 
	
	
		
			
				|  | @@ -1234,7 +1233,7 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |        // give double, without cast (n + n + 1)/(n*(n + 1)) will be
 | 
	
		
			
				|  |  |        // rounded to integer. Tig (2015/02/24)
 | 
	
		
			
				|  |  |        Qpr_ch_[i]=((n*(n + 2)/(n + 1))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real())
 | 
	
		
			
				|  |  | -	       + ((double)(n + n + 1)/(n*(n + 1)))*(an_[i]*std::conj(bn_[i])).real());
 | 
	
		
			
				|  |  | +               + ((double)(n + n + 1)/(n*(n + 1)))*(an_[i]*std::conj(bn_[i])).real());
 | 
	
		
			
				|  |  |        Qpr_ += Qpr_ch_[i];
 | 
	
		
			
				|  |  |        // Equation (33)      
 | 
	
		
			
				|  |  |        Qbktmp_ch[i] = (double)(n + n + 1)*(1 - 2*(n % 2))*(an_[i]- bn_[i]);
 | 
	
	
		
			
				|  | @@ -1242,8 +1241,8 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |        // Calculate the scattering amplitudes (S1 and S2)    //
 | 
	
		
			
				|  |  |        // Equations (25a) - (25b)                            //
 | 
	
		
			
				|  |  |        for (int t = 0; t < theta_.size(); t++) {
 | 
	
		
			
				|  |  | -	S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[t][i], Tau[t][i]);
 | 
	
		
			
				|  |  | -	S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[t][i], Tau[t][i]);
 | 
	
		
			
				|  |  | +        S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[t][i], Tau[t][i]);
 | 
	
		
			
				|  |  | +        S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[t][i], Tau[t][i]);
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |      double x2 = pow2(x.back());
 | 
	
	
		
			
				|  | @@ -1261,15 +1260,15 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |        Qabs_ch_norm_[i] = Qext_ch_norm_[i] - Qsca_ch_norm_[i];
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |      
 | 
	
		
			
				|  |  | -    albedo_ = Qsca_ / Qext_;                              // Equation (31)
 | 
	
		
			
				|  |  | -    asymmetry_factor_ = (Qext_ - Qpr_) / Qsca_;                          // Equation (32)
 | 
	
		
			
				|  |  | +    albedo_ = Qsca_/Qext_;                              // Equation (31)
 | 
	
		
			
				|  |  | +    asymmetry_factor_ = (Qext_ - Qpr_)/Qsca_;                          // Equation (32)
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2;    // Equation (33)
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      isMieCalculated_ = true;
 | 
	
		
			
				|  |  |      nmax_used_ = nmax_;
 | 
	
		
			
				|  |  |      printf("Run Mie result: Qext = %g, Qsca = %g, Qabs = %g, Qbk = %g \n",
 | 
	
		
			
				|  |  | -    	   GetQext(), GetQsca(), GetQabs(), GetQbk() );
 | 
	
		
			
				|  |  | +               GetQext(), GetQsca(), GetQabs(), GetQbk());
 | 
	
		
			
				|  |  |      //return nmax;
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |    
 | 
	
	
		
			
				|  | @@ -1284,10 +1283,10 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |      //     for n = [0..nmax_) and for l=[L..0)
 | 
	
		
			
				|  |  |      // TODO: to decrease cache miss outer loop is with n and inner with reversed l
 | 
	
		
			
				|  |  |      // at the moment outer is forward l and inner in n
 | 
	
		
			
				|  |  | -    al_n_.resize(L+1);
 | 
	
		
			
				|  |  | -    bl_n_.resize(L+1);
 | 
	
		
			
				|  |  | -    cl_n_.resize(L+1);
 | 
	
		
			
				|  |  | -    dl_n_.resize(L+1);
 | 
	
		
			
				|  |  | +    al_n_.resize(L + 1);
 | 
	
		
			
				|  |  | +    bl_n_.resize(L + 1);
 | 
	
		
			
				|  |  | +    cl_n_.resize(L + 1);
 | 
	
		
			
				|  |  | +    dl_n_.resize(L + 1);
 | 
	
		
			
				|  |  |      for (auto& element:al_n_) element.resize(nmax_);
 | 
	
		
			
				|  |  |      for (auto& element:bl_n_) element.resize(nmax_);
 | 
	
		
			
				|  |  |      for (auto& element:cl_n_) element.resize(nmax_);
 | 
	
	
		
			
				|  | @@ -1295,7 +1294,7 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |      std::complex<double> c_one(1.0, 0.0);
 | 
	
		
			
				|  |  |      std::complex<double> c_zero(0.0, 0.0);
 | 
	
		
			
				|  |  |      // Yang, paragraph under eq. A3
 | 
	
		
			
				|  |  | -    // a^(L+1)_n = a_n, d^(L+1) = 1 ...
 | 
	
		
			
				|  |  | +    // a^(L + 1)_n = a_n, d^(L + 1) = 1 ...
 | 
	
		
			
				|  |  |      for (int i = 0; i < nmax_; ++i) {
 | 
	
		
			
				|  |  |        al_n_[L][i] = an_[i];
 | 
	
		
			
				|  |  |        bl_n_[L][i] = bn_[i];
 | 
	
	
		
			
				|  | @@ -1314,23 +1313,23 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |      ScattCoeffsLayerdInit();
 | 
	
		
			
				|  |  |      const int L = index_.size();
 | 
	
		
			
				|  |  |      std::vector<std::complex<double> > z(L), z1(L);
 | 
	
		
			
				|  |  | -    for (int i = 0; i<L-1; ++i) {
 | 
	
		
			
				|  |  | +    for (int i = 0; i < L - 1; ++i) {
 | 
	
		
			
				|  |  |        z[i]  =size_parameter_[i]*index_[i];
 | 
	
		
			
				|  |  | -      z1[i]=size_parameter_[i]*index_[i+1];
 | 
	
		
			
				|  |  | +      z1[i]=size_parameter_[i]*index_[i + 1];
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | -    z[L-1]  =size_parameter_[L-1]*index_[L-1];
 | 
	
		
			
				|  |  | -    z1[L-1]  =size_parameter_[L-1];
 | 
	
		
			
				|  |  | +    z[L - 1]  =size_parameter_[L - 1]*index_[L - 1];
 | 
	
		
			
				|  |  | +    z1[L - 1]  =size_parameter_[L - 1];
 | 
	
		
			
				|  |  |      std::vector< std::vector<std::complex<double> > > D1z(L), D1z1(L), D3z(L), D3z1(L);
 | 
	
		
			
				|  |  |      std::vector< std::vector<std::complex<double> > > Psiz(L), Psiz1(L), Zetaz(L), Zetaz1(L);
 | 
	
		
			
				|  |  |      for (int l = 0; l < L; ++l) {
 | 
	
		
			
				|  |  | -      D1z[l].resize(nmax_ +1);
 | 
	
		
			
				|  |  | -      D1z1[l].resize(nmax_ +1);
 | 
	
		
			
				|  |  | -      D3z[l].resize(nmax_ +1);
 | 
	
		
			
				|  |  | -      D3z1[l].resize(nmax_ +1);
 | 
	
		
			
				|  |  | -      Psiz[l].resize(nmax_ +1);
 | 
	
		
			
				|  |  | -      Psiz1[l].resize(nmax_ +1);
 | 
	
		
			
				|  |  | -      Zetaz[l].resize(nmax_ +1);
 | 
	
		
			
				|  |  | -      Zetaz1[l].resize(nmax_ +1);
 | 
	
		
			
				|  |  | +      D1z[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | +      D1z1[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | +      D3z[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | +      D3z1[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | +      Psiz[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | +      Psiz1[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | +      Zetaz[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | +      Zetaz1[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |      for (int l = 0; l < L; ++l) {
 | 
	
		
			
				|  |  |        calcD1D3(z[l],D1z[l],D3z[l]);
 | 
	
	
		
			
				|  | @@ -1340,41 +1339,41 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |      auto& m = index_;
 | 
	
		
			
				|  |  |      std::vector< std::complex<double> > m1(L);
 | 
	
		
			
				|  |  | -    for (int l = 0; l < L-1; ++l) m1[l] = m[l+1];
 | 
	
		
			
				|  |  | -    m1[L-1] = std::complex<double> (1.0, 0.0);
 | 
	
		
			
				|  |  | +    for (int l = 0; l < L - 1; ++l) m1[l] = m[l + 1];
 | 
	
		
			
				|  |  | +    m1[L - 1] = std::complex<double> (1.0, 0.0);
 | 
	
		
			
				|  |  |      // for (auto zz : m) printf ("m[i]=%g \n\n ", zz.real());
 | 
	
		
			
				|  |  | -    for (int l = L-1; l >= 0; --l) {
 | 
	
		
			
				|  |  | +    for (int l = L - 1; l >= 0; --l) {
 | 
	
		
			
				|  |  |        for (int n = 0; n < nmax_; ++n) {
 | 
	
		
			
				|  |  | -	// al_n
 | 
	
		
			
				|  |  | -	auto denom = m1[l]*Zetaz[l][n+1] * ( D1z[l][n+1] - D3z[l][n+1] );
 | 
	
		
			
				|  |  | -	al_n_[l][n] = D1z[l][n+1]* m1[l]
 | 
	
		
			
				|  |  | -	  *(al_n_[l+1][n]*Zetaz1[l][n+1] - dl_n_[l+1][n]*Psiz1[l][n+1])
 | 
	
		
			
				|  |  | -	  - m[l]*(-D1z1[l][n+1]*dl_n_[l+1][n]*Psiz1[l][n+1]
 | 
	
		
			
				|  |  | -		  +D3z1[l][n+1]*al_n_[l+1][n]*Zetaz1[l][n+1]);
 | 
	
		
			
				|  |  | -	al_n_[l][n] /= denom;
 | 
	
		
			
				|  |  | -	// if (n<2) printf( "denom[%d][%d]:%g \n", l, n,
 | 
	
		
			
				|  |  | -	// 		  std::abs(Psiz[l][n+1]));
 | 
	
		
			
				|  |  | -	// dl_n
 | 
	
		
			
				|  |  | -	denom = m1[l]*Psiz[l][n+1] * ( D1z[l][n+1] - D3z[l][n+1] );
 | 
	
		
			
				|  |  | -	dl_n_[l][n] = D3z[l][n+1]*m1[l]
 | 
	
		
			
				|  |  | -	  *(al_n_[l+1][n]*Zetaz1[l][n+1] - dl_n_[l+1][n]*Psiz1[l][n+1])
 | 
	
		
			
				|  |  | -	  - m[l]*(-D1z1[l][n+1]*dl_n_[l+1][n]*Psiz1[l][n+1]
 | 
	
		
			
				|  |  | -		  +D3z1[l][n+1]*al_n_[l+1][n]*Zetaz1[l][n+1]);
 | 
	
		
			
				|  |  | -	dl_n_[l][n] /= denom;
 | 
	
		
			
				|  |  | -	// bl_n
 | 
	
		
			
				|  |  | -	denom = m1[l]*Zetaz[l][n+1] * ( D1z[l][n+1] - D3z[l][n+1] );
 | 
	
		
			
				|  |  | -	bl_n_[l][n] = D1z[l][n+1]* m[l]
 | 
	
		
			
				|  |  | -	  *(bl_n_[l+1][n]*Zetaz1[l][n+1] - cl_n_[l+1][n]*Psiz1[l][n+1])
 | 
	
		
			
				|  |  | -	  - m1[l]*(-D1z1[l][n+1]*cl_n_[l+1][n]*Psiz1[l][n+1]
 | 
	
		
			
				|  |  | -		  +D3z1[l][n+1]*bl_n_[l+1][n]*Zetaz1[l][n+1]);
 | 
	
		
			
				|  |  | -	bl_n_[l][n] /= denom;
 | 
	
		
			
				|  |  | -	// cl_n
 | 
	
		
			
				|  |  | -	denom = m1[l]*Psiz[l][n+1] * ( D1z[l][n+1] - D3z[l][n+1] );
 | 
	
		
			
				|  |  | -	cl_n_[l][n] = D3z[l][n+1]*m[l]
 | 
	
		
			
				|  |  | -	  *(bl_n_[l+1][n]*Zetaz1[l][n+1] - cl_n_[l+1][n]*Psiz1[l][n+1])
 | 
	
		
			
				|  |  | -	  - m1[l]*(-D1z1[l][n+1]*cl_n_[l+1][n]*Psiz1[l][n+1]
 | 
	
		
			
				|  |  | -		  +D3z1[l][n+1]*bl_n_[l+1][n]*Zetaz1[l][n+1]);
 | 
	
		
			
				|  |  | -	cl_n_[l][n] /= denom;   
 | 
	
		
			
				|  |  | +        // al_n
 | 
	
		
			
				|  |  | +        auto denom = m1[l]*Zetaz[l][n + 1] * (D1z[l][n + 1] - D3z[l][n + 1]);
 | 
	
		
			
				|  |  | +        al_n_[l][n] = D1z[l][n + 1]* m1[l]
 | 
	
		
			
				|  |  | +          *(al_n_[l + 1][n]*Zetaz1[l][n + 1] - dl_n_[l + 1][n]*Psiz1[l][n + 1])
 | 
	
		
			
				|  |  | +          - m[l]*(-D1z1[l][n + 1]*dl_n_[l + 1][n]*Psiz1[l][n + 1]
 | 
	
		
			
				|  |  | +                  +D3z1[l][n + 1]*al_n_[l + 1][n]*Zetaz1[l][n + 1]);
 | 
	
		
			
				|  |  | +        al_n_[l][n] /= denom;
 | 
	
		
			
				|  |  | +        // if (n<2) printf("denom[%d][%d]:%g \n", l, n,
 | 
	
		
			
				|  |  | +        //                   std::abs(Psiz[l][n + 1]));
 | 
	
		
			
				|  |  | +        // dl_n
 | 
	
		
			
				|  |  | +        denom = m1[l]*Psiz[l][n + 1] * (D1z[l][n + 1] - D3z[l][n + 1]);
 | 
	
		
			
				|  |  | +        dl_n_[l][n] = D3z[l][n + 1]*m1[l]
 | 
	
		
			
				|  |  | +          *(al_n_[l + 1][n]*Zetaz1[l][n + 1] - dl_n_[l + 1][n]*Psiz1[l][n + 1])
 | 
	
		
			
				|  |  | +          - m[l]*(-D1z1[l][n + 1]*dl_n_[l + 1][n]*Psiz1[l][n + 1]
 | 
	
		
			
				|  |  | +                  +D3z1[l][n + 1]*al_n_[l + 1][n]*Zetaz1[l][n + 1]);
 | 
	
		
			
				|  |  | +        dl_n_[l][n] /= denom;
 | 
	
		
			
				|  |  | +        // bl_n
 | 
	
		
			
				|  |  | +        denom = m1[l]*Zetaz[l][n + 1] * (D1z[l][n + 1] - D3z[l][n + 1]);
 | 
	
		
			
				|  |  | +        bl_n_[l][n] = D1z[l][n + 1]* m[l]
 | 
	
		
			
				|  |  | +          *(bl_n_[l + 1][n]*Zetaz1[l][n + 1] - cl_n_[l + 1][n]*Psiz1[l][n + 1])
 | 
	
		
			
				|  |  | +          - m1[l]*(-D1z1[l][n + 1]*cl_n_[l + 1][n]*Psiz1[l][n + 1]
 | 
	
		
			
				|  |  | +                  +D3z1[l][n + 1]*bl_n_[l + 1][n]*Zetaz1[l][n + 1]);
 | 
	
		
			
				|  |  | +        bl_n_[l][n] /= denom;
 | 
	
		
			
				|  |  | +        // cl_n
 | 
	
		
			
				|  |  | +        denom = m1[l]*Psiz[l][n + 1] * (D1z[l][n + 1] - D3z[l][n + 1]);
 | 
	
		
			
				|  |  | +        cl_n_[l][n] = D3z[l][n + 1]*m[l]
 | 
	
		
			
				|  |  | +          *(bl_n_[l + 1][n]*Zetaz1[l][n + 1] - cl_n_[l + 1][n]*Psiz1[l][n + 1])
 | 
	
		
			
				|  |  | +          - m1[l]*(-D1z1[l][n + 1]*cl_n_[l + 1][n]*Psiz1[l][n + 1]
 | 
	
		
			
				|  |  | +                  +D3z1[l][n + 1]*bl_n_[l + 1][n]*Zetaz1[l][n + 1]);
 | 
	
		
			
				|  |  | +        cl_n_[l][n] /= denom;   
 | 
	
		
			
				|  |  |        }  // end of all n
 | 
	
		
			
				|  |  |      }  // end of for all l
 | 
	
		
			
				|  |  |      // Check the result and change  an__0 and bn__0 for exact zero
 | 
	
	
		
			
				|  | @@ -1388,34 +1387,34 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |      // for (int l = 0; l < L; ++l) {
 | 
	
		
			
				|  |  |      //   printf("l=%d --> ", l);
 | 
	
		
			
				|  |  |      //   for (int n = 0; n < nmax_ + 1; ++n) {
 | 
	
		
			
				|  |  | -    // 	if (n < 20) continue;
 | 
	
		
			
				|  |  | -    // 	printf("n=%d --> D1zn=%g, D3zn=%g, D1zn=%g, D3zn=%g || ",
 | 
	
		
			
				|  |  | -    // 	       n,
 | 
	
		
			
				|  |  | -    // 	       D1z[l][n].real(), D3z[l][n].real(),
 | 
	
		
			
				|  |  | -    // 	       D1z1[l][n].real(), D3z1[l][n].real());
 | 
	
		
			
				|  |  | +    //         if (n < 20) continue;
 | 
	
		
			
				|  |  | +    //         printf("n=%d --> D1zn=%g, D3zn=%g, D1zn=%g, D3zn=%g || ",
 | 
	
		
			
				|  |  | +    //                n,
 | 
	
		
			
				|  |  | +    //                D1z[l][n].real(), D3z[l][n].real(),
 | 
	
		
			
				|  |  | +    //                D1z1[l][n].real(), D3z1[l][n].real());
 | 
	
		
			
				|  |  |      //   }
 | 
	
		
			
				|  |  |      //   printf("\n\n");
 | 
	
		
			
				|  |  |      // }
 | 
	
		
			
				|  |  |      // for (int l = 0; l < L; ++l) {
 | 
	
		
			
				|  |  |      //   printf("l=%d --> ", l);
 | 
	
		
			
				|  |  |      //   for (int n = 0; n < nmax_ + 1; ++n) {
 | 
	
		
			
				|  |  | -    // 	printf("n=%d --> D1zn=%g, D3zn=%g, D1zn=%g, D3zn=%g || ",
 | 
	
		
			
				|  |  | -    // 	       n,
 | 
	
		
			
				|  |  | -    // 	       D1z[l][n].real(), D3z[l][n].real(),
 | 
	
		
			
				|  |  | -    // 	       D1z1[l][n].real(), D3z1[l][n].real());
 | 
	
		
			
				|  |  | +    //         printf("n=%d --> D1zn=%g, D3zn=%g, D1zn=%g, D3zn=%g || ",
 | 
	
		
			
				|  |  | +    //                n,
 | 
	
		
			
				|  |  | +    //                D1z[l][n].real(), D3z[l][n].real(),
 | 
	
		
			
				|  |  | +    //                D1z1[l][n].real(), D3z1[l][n].real());
 | 
	
		
			
				|  |  |      //   }
 | 
	
		
			
				|  |  |      //   printf("\n\n");
 | 
	
		
			
				|  |  |      // }
 | 
	
		
			
				|  |  | -    for (int i = 0; i < L+1; ++i) {
 | 
	
		
			
				|  |  | +    for (int i = 0; i < L + 1; ++i) {
 | 
	
		
			
				|  |  |        printf("Layer =%d ---> ", i);
 | 
	
		
			
				|  |  |        for (int n = 0; n < nmax_; ++n) {
 | 
	
		
			
				|  |  | -    	//	if (n < 20) continue;
 | 
	
		
			
				|  |  | -    	printf(" || n=%d --> a=%g,%g b=%g,%g c=%g,%g d=%g,%g",
 | 
	
		
			
				|  |  | -    	       n,
 | 
	
		
			
				|  |  | -    	       al_n_[i][n].real(), al_n_[i][n].imag(),
 | 
	
		
			
				|  |  | -	       bl_n_[i][n].real(), bl_n_[i][n].imag(),
 | 
	
		
			
				|  |  | -    	       cl_n_[i][n].real(), cl_n_[i][n].imag(),
 | 
	
		
			
				|  |  | -	       dl_n_[i][n].real(), dl_n_[i][n].imag());
 | 
	
		
			
				|  |  | +            //        if (n < 20) continue;
 | 
	
		
			
				|  |  | +            printf(" || n=%d --> a=%g,%g b=%g,%g c=%g,%g d=%g,%g",
 | 
	
		
			
				|  |  | +                   n,
 | 
	
		
			
				|  |  | +                   al_n_[i][n].real(), al_n_[i][n].imag(),
 | 
	
		
			
				|  |  | +                   bl_n_[i][n].real(), bl_n_[i][n].imag(),
 | 
	
		
			
				|  |  | +                   cl_n_[i][n].real(), cl_n_[i][n].imag(),
 | 
	
		
			
				|  |  | +                   dl_n_[i][n].real(), dl_n_[i][n].imag());
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  |        printf("\n\n");
 | 
	
		
			
				|  |  |      }
 | 
	
	
		
			
				|  | @@ -1431,15 +1430,14 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |      
 | 
	
		
			
				|  |  |      std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0);
 | 
	
		
			
				|  |  |      std::vector<std::complex<double> > vm3o1n(3), vm3e1n(3), vn3o1n(3), vn3e1n(3);
 | 
	
		
			
				|  |  | -    std::vector<std::complex<double> > Ei(3,c_zero), Hi(3,c_zero),
 | 
	
		
			
				|  |  | -      Es(3,c_zero), Hs(3,c_zero);
 | 
	
		
			
				|  |  | -    std::vector<std::complex<double> > bj(nmax_+1), by(nmax_+1), bd(nmax_+1);
 | 
	
		
			
				|  |  | +    std::vector<std::complex<double> > Ei(3,c_zero), Hi(3,c_zero), Es(3,c_zero), Hs(3,c_zero);
 | 
	
		
			
				|  |  | +    std::vector<std::complex<double> > bj(nmax_ + 1), by(nmax_ + 1), bd(nmax_ + 1);
 | 
	
		
			
				|  |  |      // Calculate spherical Bessel and Hankel functions
 | 
	
		
			
				|  |  |      printf("##########  layer OUT ############\n");
 | 
	
		
			
				|  |  |      sphericalBessel(Rho,bj, by, bd);    
 | 
	
		
			
				|  |  |      for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  |        double rn = static_cast<double>(n + 1);
 | 
	
		
			
				|  |  | -      std::complex<double> zn = bj[n+1] + c_i*by[n+1];
 | 
	
		
			
				|  |  | +      std::complex<double> zn = bj[n + 1] + c_i*by[n + 1];
 | 
	
		
			
				|  |  |        // using BH 4.12 and 4.50
 | 
	
		
			
				|  |  |        std::complex<double> xxip = Rho*(bj[n] + c_i*by[n]) - rn*zn;
 | 
	
		
			
				|  |  |        
 | 
	
	
		
			
				|  | @@ -1461,10 +1459,10 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |        // scattered field: BH p.94 (4.45)
 | 
	
		
			
				|  |  |        std::complex<double> encap = std::pow(c_i, rn)*(2.0*rn + 1.0)/(rn*rn + rn);
 | 
	
		
			
				|  |  |        for (int i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | -	Es[i] = Es[i] + encap*(c_i*an_[n]*vn3e1n[i] - bn_[n]*vm3o1n[i]);
 | 
	
		
			
				|  |  | -	Hs[i] = Hs[i] + encap*(c_i*bn_[n]*vn3o1n[i] + an_[n]*vm3e1n[i]);
 | 
	
		
			
				|  |  | -	//if (n<3) printf(" E[%d]=%g ", i,std::abs(Es[i]));
 | 
	
		
			
				|  |  | -	if (n<3) printf(" !!=%d=== %g ", i,std::abs(Es[i]));
 | 
	
		
			
				|  |  | +        Es[i] = Es[i] + encap*(c_i*an_[n]*vn3e1n[i] - bn_[n]*vm3o1n[i]);
 | 
	
		
			
				|  |  | +        Hs[i] = Hs[i] + encap*(c_i*bn_[n]*vn3o1n[i] + an_[n]*vm3e1n[i]);
 | 
	
		
			
				|  |  | +        //if (n<3) printf(" E[%d]=%g ", i,std::abs(Es[i]));
 | 
	
		
			
				|  |  | +        if (n<3) printf(" !!=%d=== %g ", i,std::abs(Es[i]));
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |      
 | 
	
	
		
			
				|  | @@ -1497,7 +1495,7 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |      
 | 
	
		
			
				|  |  |      for (int i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | -      // electric field E [V m-1] = EF*E0
 | 
	
		
			
				|  |  | +      // electric field E [V m - 1] = EF*E0
 | 
	
		
			
				|  |  |        E[i] = Ei[i] + Es[i];
 | 
	
		
			
				|  |  |        H[i] = Hi[i] + Hs[i];
 | 
	
		
			
				|  |  |        // printf("ext E[%d]=%g",i,std::abs(E[i]));
 | 
	
	
		
			
				|  | @@ -1508,18 +1506,18 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |    // ********************************************************************** //
 | 
	
		
			
				|  |  |    void MultiLayerMie::fieldInt(const double Rho, const double Phi, const double Theta, const  std::vector<double>& Pi, const std::vector<double>& Tau, std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H)  {
 | 
	
		
			
				|  |  |      // printf("field int Qext = %g, Qsca = %g, Qabs = %g, Qbk = %g, \n",
 | 
	
		
			
				|  |  | -    // 	   GetQext(), GetQsca(), GetQabs(), GetQbk() );
 | 
	
		
			
				|  |  | +    //            GetQext(), GetQsca(), GetQabs(), GetQbk());
 | 
	
		
			
				|  |  |      
 | 
	
		
			
				|  |  |      std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);
 | 
	
		
			
				|  |  |      std::vector<std::complex<double> > vm3o1n(3), vm3e1n(3), vn3o1n(3), vn3e1n(3);
 | 
	
		
			
				|  |  |      std::vector<std::complex<double> > vm1o1n(3), vm1e1n(3), vn1o1n(3), vn1e1n(3);
 | 
	
		
			
				|  |  |      std::vector<std::complex<double> > El(3,c_zero),Ei(3,c_zero), Hl(3,c_zero);
 | 
	
		
			
				|  |  | -    std::vector<std::complex<double> > bj(nmax_+1), by(nmax_+1), bd(nmax_+1);
 | 
	
		
			
				|  |  | +    std::vector<std::complex<double> > bj(nmax_ + 1), by(nmax_ + 1), bd(nmax_ + 1);
 | 
	
		
			
				|  |  |      int layer=0;  // layer number
 | 
	
		
			
				|  |  |      std::complex<double> index_l;
 | 
	
		
			
				|  |  | -    for (int i = 0; i < size_parameter_.size()-1; ++i) {
 | 
	
		
			
				|  |  | -      if (size_parameter_[i] < Rho && Rho <= size_parameter_[i+1]) {
 | 
	
		
			
				|  |  | -	layer=i;
 | 
	
		
			
				|  |  | +    for (int i = 0; i < size_parameter_.size() - 1; ++i) {
 | 
	
		
			
				|  |  | +      if (size_parameter_[i] < Rho && Rho <= size_parameter_[i + 1]) {
 | 
	
		
			
				|  |  | +        layer=i;
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |      if (Rho > size_parameter_.back()) {
 | 
	
	
		
			
				|  | @@ -1542,7 +1540,7 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |      for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  |        double rn = static_cast<double>(n + 1);
 | 
	
		
			
				|  |  |        std::complex<double> znm1 = bj[n] + c_i*by[n];
 | 
	
		
			
				|  |  | -      std::complex<double> zn = bj[n+1] + c_i*by[n+1];
 | 
	
		
			
				|  |  | +      std::complex<double> zn = bj[n + 1] + c_i*by[n + 1];
 | 
	
		
			
				|  |  |        //if (n<3) printf("\nbesselh = %g,%g", zn.real(), zn.imag()); //!
 | 
	
		
			
				|  |  |        // using BH 4.12 and 4.50
 | 
	
		
			
				|  |  |        std::complex<double> xxip = Rho*(bj[n] + c_i*by[n]) - rn*zn;
 | 
	
	
		
			
				|  | @@ -1554,8 +1552,8 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |        vm3o1n[1] = cos(Phi)*Pi[n]*zn;
 | 
	
		
			
				|  |  |        vm3o1n[2] = -sin(Phi)*Tau[n]*zn;
 | 
	
		
			
				|  |  |        // if (n<3)  printf("\nRE  vm3o1n[0]%g   vm3o1n[1]%g    vm3o1n[2]%g   \nIM vm3o1n[0]%g   vm3o1n[1]%g    vm3o1n[2]%g",
 | 
	
		
			
				|  |  | -      // 	     vm3o1n[0].real(),   vm3o1n[1].real(),    vm3o1n[2].real(),
 | 
	
		
			
				|  |  | -      // 	     vm3o1n[0].imag(),   vm3o1n[1].imag(),    vm3o1n[2].imag());
 | 
	
		
			
				|  |  | +      //              vm3o1n[0].real(),   vm3o1n[1].real(),    vm3o1n[2].real(),
 | 
	
		
			
				|  |  | +      //              vm3o1n[0].imag(),   vm3o1n[1].imag(),    vm3o1n[2].imag());
 | 
	
		
			
				|  |  |        vm3e1n[0] = c_zero;
 | 
	
		
			
				|  |  |        vm3e1n[1] = -sin(Phi)*Pi[n]*zn;
 | 
	
		
			
				|  |  |        vm3e1n[2] = -cos(Phi)*Tau[n]*zn;
 | 
	
	
		
			
				|  | @@ -1566,13 +1564,13 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |        vn3e1n[1] = cos(Phi)*Tau[n]*xxip/Rho;
 | 
	
		
			
				|  |  |        vn3e1n[2] = -sin(Phi)*Pi[n]*xxip/Rho;
 | 
	
		
			
				|  |  |        // if (n<3)  printf("\nRE  vn3e1n[0]%g   vn3e1n[1]%g    vn3e1n[2]%g   \nIM vn3e1n[0]%g   vn3e1n[1]%g    vn3e1n[2]%g",
 | 
	
		
			
				|  |  | -      // 	     vn3e1n[0].real(),   vn3e1n[1].real(),    vn3e1n[2].real(),
 | 
	
		
			
				|  |  | -      // 	     vn3e1n[0].imag(),   vn3e1n[1].imag(),    vn3e1n[2].imag());
 | 
	
		
			
				|  |  | +      //              vn3e1n[0].real(),   vn3e1n[1].real(),    vn3e1n[2].real(),
 | 
	
		
			
				|  |  | +      //              vn3e1n[0].imag(),   vn3e1n[1].imag(),    vn3e1n[2].imag());
 | 
	
		
			
				|  |  |        
 | 
	
		
			
				|  |  |        znm1 = bj[n];
 | 
	
		
			
				|  |  | -      zn = bj[n+1];
 | 
	
		
			
				|  |  | +      zn = bj[n + 1];
 | 
	
		
			
				|  |  |        // znm1 = (bj[n] + c_i*by[n]).real();
 | 
	
		
			
				|  |  | -      // zn = (bj[n+1] + c_i*by[n+1]).real();
 | 
	
		
			
				|  |  | +      // zn = (bj[n + 1] + c_i*by[n + 1]).real();
 | 
	
		
			
				|  |  |        xxip = Rho*(bj[n]) - rn*zn;
 | 
	
		
			
				|  |  |        if (n<3)printf("\nbesselj = %g,%g", zn.real(), zn.imag()); //!
 | 
	
		
			
				|  |  |        vm1o1n[0] = c_zero;
 | 
	
	
		
			
				|  | @@ -1585,38 +1583,38 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |        vn1o1n[1] = sin(Phi)*Tau[n]*xxip/Rho;
 | 
	
		
			
				|  |  |        vn1o1n[2] = cos(Phi)*Pi[n]*xxip/Rho;
 | 
	
		
			
				|  |  |        // if (n<3) printf("\nvn1o1n[2](%g) = cos(Phi)(%g)*Pi[n](%g)*xxip(%g)/Rho(%g)",
 | 
	
		
			
				|  |  | -      // 		      std::abs(vn1o1n[2]), cos(Phi),Pi[n],std::abs(xxip),Rho);
 | 
	
		
			
				|  |  | +      //                       std::abs(vn1o1n[2]), cos(Phi),Pi[n],std::abs(xxip),Rho);
 | 
	
		
			
				|  |  |        vn1e1n[0] = cos(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
 | 
	
		
			
				|  |  |        vn1e1n[1] = cos(Phi)*Tau[n]*xxip/Rho;
 | 
	
		
			
				|  |  |        vn1e1n[2] = -sin(Phi)*Pi[n]*xxip/Rho;
 | 
	
		
			
				|  |  |        // if (n<3)  printf("\nRE  vm3o1n[0]%g   vm3o1n[1]%g    vm3o1n[2]%g   \nIM vm3o1n[0]%g   vm3o1n[1]%g    vm3o1n[2]%g",
 | 
	
		
			
				|  |  | -      // 	     vm3o1n[0].real(),   vm3o1n[1].real(),    vm3o1n[2].real(),
 | 
	
		
			
				|  |  | -      // 	     vm3o1n[0].imag(),   vm3o1n[1].imag(),    vm3o1n[2].imag());
 | 
	
		
			
				|  |  | +      //              vm3o1n[0].real(),   vm3o1n[1].real(),    vm3o1n[2].real(),
 | 
	
		
			
				|  |  | +      //              vm3o1n[0].imag(),   vm3o1n[1].imag(),    vm3o1n[2].imag());
 | 
	
		
			
				|  |  |        
 | 
	
		
			
				|  |  |        // scattered field: BH p.94 (4.45)
 | 
	
		
			
				|  |  |        std::complex<double> encap = std::pow(c_i, rn)*(2.0*rn + 1.0)/(rn*rn + rn);
 | 
	
		
			
				|  |  |        // if (n<3) printf("\n===== n=%d ======\n",n);
 | 
	
		
			
				|  |  |        for (int i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | -	// if (n<3 && i==0) printf("\nn=%d",n);
 | 
	
		
			
				|  |  | -	// if (n<3) printf("\nbefore !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
 | 
	
		
			
				|  |  | -	Ei[i] = encap*(
 | 
	
		
			
				|  |  | -		       cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]
 | 
	
		
			
				|  |  | -	  + c_i*al_n_[l][n]*vn3e1n[i] - bl_n_[l][n]*vm3o1n[i]
 | 
	
		
			
				|  |  | -		       );
 | 
	
		
			
				|  |  | -	El[i] = El[i] + encap*(cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]
 | 
	
		
			
				|  |  | -			       + c_i*al_n_[l][n]*vn3e1n[i] - bl_n_[l][n]*vm3o1n[i]);
 | 
	
		
			
				|  |  | -	Hl[i] = Hl[i] + encap*(-dl_n_[l][n]*vm1e1n[i] - c_i*cl_n_[l][n]*vn1o1n[i]
 | 
	
		
			
				|  |  | -			       + c_i*bl_n_[l][n]*vn3o1n[i] + al_n_[l][n]*vm3e1n[i]);
 | 
	
		
			
				|  |  | -	// printf("\n !Ei[%d]=%g,%g! ", i, Ei[i].real(), Ei[i].imag());
 | 
	
		
			
				|  |  | -	// if (n<3) printf("\n !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
 | 
	
		
			
				|  |  | -	// //printf(" ===%d=== %g ", i,std::abs(cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]));
 | 
	
		
			
				|  |  | -	// if (n<3) printf(" ===%d=== %g ", i,std::abs(//-dl_n_[l][n]*vm1e1n[i] 
 | 
	
		
			
				|  |  | -	// 					    //- c_i*cl_n_[l][n]*
 | 
	
		
			
				|  |  | -	// 					    vn1o1n[i]
 | 
	
		
			
				|  |  | -	// 					    // + c_i*bl_n_[l][n]*vn3o1n[i]
 | 
	
		
			
				|  |  | -	// 					    // + al_n_[l][n]*vm3e1n[i]
 | 
	
		
			
				|  |  | -	// 					    ));
 | 
	
		
			
				|  |  | -	// if (n<3) printf(" --- Ei[%d]=%g! ", i,std::abs(encap*(vm1o1n[i] - c_i*vn1e1n[i])));
 | 
	
		
			
				|  |  | +        // if (n<3 && i==0) printf("\nn=%d",n);
 | 
	
		
			
				|  |  | +        // if (n<3) printf("\nbefore !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
 | 
	
		
			
				|  |  | +        Ei[i] = encap*(
 | 
	
		
			
				|  |  | +                       cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]
 | 
	
		
			
				|  |  | +          + c_i*al_n_[l][n]*vn3e1n[i] - bl_n_[l][n]*vm3o1n[i]
 | 
	
		
			
				|  |  | +);
 | 
	
		
			
				|  |  | +        El[i] = El[i] + encap*(cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]
 | 
	
		
			
				|  |  | +                               + c_i*al_n_[l][n]*vn3e1n[i] - bl_n_[l][n]*vm3o1n[i]);
 | 
	
		
			
				|  |  | +        Hl[i] = Hl[i] + encap*(-dl_n_[l][n]*vm1e1n[i] - c_i*cl_n_[l][n]*vn1o1n[i]
 | 
	
		
			
				|  |  | +                               + c_i*bl_n_[l][n]*vn3o1n[i] + al_n_[l][n]*vm3e1n[i]);
 | 
	
		
			
				|  |  | +        // printf("\n !Ei[%d]=%g,%g! ", i, Ei[i].real(), Ei[i].imag());
 | 
	
		
			
				|  |  | +        // if (n<3) printf("\n !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
 | 
	
		
			
				|  |  | +        // //printf(" ===%d=== %g ", i,std::abs(cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]));
 | 
	
		
			
				|  |  | +        // if (n<3) printf(" ===%d=== %g ", i,std::abs(//-dl_n_[l][n]*vm1e1n[i] 
 | 
	
		
			
				|  |  | +        //                                             //- c_i*cl_n_[l][n]*
 | 
	
		
			
				|  |  | +        //                                             vn1o1n[i]
 | 
	
		
			
				|  |  | +        //                                             // + c_i*bl_n_[l][n]*vn3o1n[i]
 | 
	
		
			
				|  |  | +        //                                             // + al_n_[l][n]*vm3e1n[i]
 | 
	
		
			
				|  |  | +        //                      ));
 | 
	
		
			
				|  |  | +        // if (n<3) printf(" --- Ei[%d]=%g! ", i,std::abs(encap*(vm1o1n[i] - c_i*vn1e1n[i])));
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  |        //if (n<3) printf(" bj=%g \n", std::abs(bj[n]));
 | 
	
	
		
			
				|  | @@ -1629,7 +1627,7 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |      
 | 
	
		
			
				|  |  |      for (int i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | -      // electric field E [V m-1] = EF*E0
 | 
	
		
			
				|  |  | +      // electric field E [V m - 1] = EF*E0
 | 
	
		
			
				|  |  |        E[i] = El[i];
 | 
	
		
			
				|  |  |        H[i] = Hl[i];
 | 
	
		
			
				|  |  |        printf("\n !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
 | 
	
	
		
			
				|  | @@ -1647,8 +1645,8 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |    // Input parameters:                                                                //
 | 
	
		
			
				|  |  |    //   L: Number of layers                                                            //
 | 
	
		
			
				|  |  |    //   pl: Index of PEC layer. If there is none just send 0 (zero)                    //
 | 
	
		
			
				|  |  | -  //   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | -  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +  //   x: Array containing the size parameters of the layers [0..L - 1]                 //
 | 
	
		
			
				|  |  | +  //   m: Array containing the relative refractive indexes of the layers [0..L - 1]     //
 | 
	
		
			
				|  |  |    //   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  |    //         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  |    //         set this parameter to 0 (zero) and the function will calculate it.       //
 | 
	
	
		
			
				|  | @@ -1675,7 +1673,7 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |      for (auto& f:E_field_) f.resize(3);
 | 
	
		
			
				|  |  |      for (auto& f:H_field_) f.resize(3);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    for (int point = 0;	 point < total_points; ++point) {
 | 
	
		
			
				|  |  | +    for (int point = 0; point < total_points; ++point) {
 | 
	
		
			
				|  |  |        const double& Xp = coords_sp_[0][point];
 | 
	
		
			
				|  |  |        const double& Yp = coords_sp_[1][point];
 | 
	
		
			
				|  |  |        const double& Zp = coords_sp_[2][point];
 | 
	
	
		
			
				|  | @@ -1685,7 +1683,7 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |        Rho = std::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp));
 | 
	
		
			
				|  |  |        // printf("Rho=%g\n", Rho);
 | 
	
		
			
				|  |  |        // Avoid convergence problems due to Rho too small
 | 
	
		
			
				|  |  | -      if (Rho < 1e-5) Rho = 1e-10;
 | 
	
		
			
				|  |  | +      if (Rho < 1e-10) Rho = 1e-10;
 | 
	
		
			
				|  |  |        // If Rho=0 then Theta is undefined. Just set it to zero to avoid problems
 | 
	
		
			
				|  |  |        if (Rho == 0.0) Theta = 0.0;
 | 
	
		
			
				|  |  |        else Theta = std::acos(Zp/Rho);
 | 
	
	
		
			
				|  | @@ -1707,11 +1705,11 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |        // Firstly the easiest case: the field outside the particle
 | 
	
		
			
				|  |  |        printf("rho=%g, outer=%g  ", Rho, outer_size);
 | 
	
		
			
				|  |  |        if (Rho >= outer_size) {
 | 
	
		
			
				|  |  | -      fieldExt(Rho, Phi, Theta, Pi, Tau, Es, Hs);
 | 
	
		
			
				|  |  | -      printf("\nFin E ext: %g,%g,%g   Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]),	       Rho);
 | 
	
		
			
				|  |  | +        fieldExt(Rho, Phi, Theta, Pi, Tau, Es, Hs);
 | 
	
		
			
				|  |  | +        printf("\nFin E ext: %g,%g,%g   Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
 | 
	
		
			
				|  |  |        } else {
 | 
	
		
			
				|  |  | -      fieldInt(Rho, Phi, Theta, Pi, Tau, Es, Hs);      
 | 
	
		
			
				|  |  | -      printf("\nFin E int: %g,%g,%g   Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]),	       Rho);
 | 
	
		
			
				|  |  | +        fieldInt(Rho, Phi, Theta, Pi, Tau, Es, Hs);      
 | 
	
		
			
				|  |  | +        printf("\nFin E int: %g,%g,%g   Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  |        std::complex<double>& Ex = E_field_[point][0];
 | 
	
		
			
				|  |  |        std::complex<double>& Ey = E_field_[point][1];
 | 
	
	
		
			
				|  | @@ -1721,18 +1719,18 @@ c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  |        std::complex<double>& Hz = H_field_[point][2];
 | 
	
		
			
				|  |  |        //Now, convert the fields back to cartesian coordinates
 | 
	
		
			
				|  |  |        {
 | 
	
		
			
				|  |  | -	using std::sin;
 | 
	
		
			
				|  |  | -	using std::cos;
 | 
	
		
			
				|  |  | -	Ex = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2];
 | 
	
		
			
				|  |  | -	Ey = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2];
 | 
	
		
			
				|  |  | -	Ez = cos(Theta)*Es[0] - sin(Theta)*Es[1];
 | 
	
		
			
				|  |  | +        using std::sin;
 | 
	
		
			
				|  |  | +        using std::cos;
 | 
	
		
			
				|  |  | +        Ex = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2];
 | 
	
		
			
				|  |  | +        Ey = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2];
 | 
	
		
			
				|  |  | +        Ez = cos(Theta)*Es[0] - sin(Theta)*Es[1];
 | 
	
		
			
				|  |  |        
 | 
	
		
			
				|  |  | -	Hx = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2];
 | 
	
		
			
				|  |  | -	Hy = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2];
 | 
	
		
			
				|  |  | -	Hz = cos(Theta)*Hs[0] - sin(Theta)*Hs[1];
 | 
	
		
			
				|  |  | +        Hx = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2];
 | 
	
		
			
				|  |  | +        Hy = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2];
 | 
	
		
			
				|  |  | +        Hz = cos(Theta)*Hs[0] - sin(Theta)*Hs[1];
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  |        printf("Cart E: %g,%g,%g   Rho=%g\n", std::abs(Ex), std::abs(Ey),std::abs(Ez),
 | 
	
		
			
				|  |  | -	     Rho);
 | 
	
		
			
				|  |  | +             Rho);
 | 
	
		
			
				|  |  |      }  // end of for all field coordinates
 | 
	
		
			
				|  |  |      
 | 
	
		
			
				|  |  |    }  //  end of   void MultiLayerMie::RunFieldCalculations()
 |