|
@@ -1,1339 +1,997 @@
|
|
|
-///
|
|
|
-/// @file nmie.cc
|
|
|
-/// @author Ladutenko Konstantin <kostyfisik at gmail (.) com>
|
|
|
-/// @date Tue Sep 3 00:38:27 2013
|
|
|
-/// @copyright 2013 Ladutenko Konstantin
|
|
|
-///
|
|
|
-/// nmie is free software: you can redistribute it and/or modify
|
|
|
-/// it under the terms of the GNU General Public License as published by
|
|
|
-/// the Free Software Foundation, either version 3 of the License, or
|
|
|
-/// (at your option) any later version.
|
|
|
-///
|
|
|
-/// nmie-wrapper is distributed in the hope that it will be useful,
|
|
|
-/// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
-/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
-/// GNU General Public License for more details.
|
|
|
-///
|
|
|
-/// You should have received a copy of the GNU General Public License
|
|
|
-/// along with nmie-wrapper. If not, see <http://www.gnu.org/licenses/>.
|
|
|
-///
|
|
|
-/// nmie uses nmie.c from scattnlay by Ovidio Pena
|
|
|
-/// <ovidio@bytesfall.com> . He has an additional condition to
|
|
|
-/// his library:
|
|
|
-// The only additional condition is that we expect that all publications //
|
|
|
-// describing work using this software , or all commercial products //
|
|
|
+//**********************************************************************************//
|
|
|
+// Copyright (C) 2009-2015 Ovidio Pena <ovidio@bytesfall.com> //
|
|
|
+// //
|
|
|
+// This file is part of scattnlay //
|
|
|
+// //
|
|
|
+// This program is free software: you can redistribute it and/or modify //
|
|
|
+// it under the terms of the GNU General Public License as published by //
|
|
|
+// the Free Software Foundation, either version 3 of the License, or //
|
|
|
+// (at your option) any later version. //
|
|
|
+// //
|
|
|
+// This program is distributed in the hope that it will be useful, //
|
|
|
+// but WITHOUT ANY WARRANTY; without even the implied warranty of //
|
|
|
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
|
|
|
+// GNU General Public License for more details. //
|
|
|
+// //
|
|
|
+// The only additional remark is that we expect that all publications //
|
|
|
+// describing work using this software, or all commercial products //
|
|
|
// using it, cite the following reference: //
|
|
|
// [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
|
|
|
// a multilayered sphere," Computer Physics Communications, //
|
|
|
// vol. 180, Nov. 2009, pp. 2348-2354. //
|
|
|
-///
|
|
|
-/// @brief Wrapper class around nMie function for ease of use
|
|
|
-///
|
|
|
+// //
|
|
|
+// You should have received a copy of the GNU General Public License //
|
|
|
+// along with this program. If not, see <http://www.gnu.org/licenses/>. //
|
|
|
+//**********************************************************************************//
|
|
|
+
|
|
|
+//**********************************************************************************//
|
|
|
+// This library implements the algorithm for a multilayered sphere described by: //
|
|
|
+// [1] W. Yang, "Improved recursive algorithm for light scattering by a //
|
|
|
+// multilayered sphere,” Applied Optics, vol. 42, Mar. 2003, pp. 1710-1720. //
|
|
|
+// //
|
|
|
+// You can find the description of all the used equations in: //
|
|
|
+// [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by //
|
|
|
+// a multilayered sphere," Computer Physics Communications, //
|
|
|
+// vol. 180, Nov. 2009, pp. 2348-2354. //
|
|
|
+// //
|
|
|
+// Hereinafter all equations numbers refer to [2] //
|
|
|
+//**********************************************************************************//
|
|
|
+#include <math.h>
|
|
|
+#include <stdlib.h>
|
|
|
+#include <stdio.h>
|
|
|
#include "nmie.h"
|
|
|
-#include <array>
|
|
|
-#include <algorithm>
|
|
|
-#include <cstdio>
|
|
|
-#include <cstdlib>
|
|
|
-#include <stdexcept>
|
|
|
-#include <vector>
|
|
|
-
|
|
|
-namespace nmie {
|
|
|
- //helpers
|
|
|
- template<class T> inline T pow2(const T value) {return value*value;}
|
|
|
- //#define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
|
|
|
- int round(double x) {
|
|
|
- return x >= 0 ? (int)(x + 0.5):(int)(x - 0.5);
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- //emulate C call.
|
|
|
- int nMie_wrapper(int L, const std::vector<double>& x, const std::vector<std::complex<double> >& m,
|
|
|
- int nTheta, const std::vector<double>& Theta,
|
|
|
- double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
|
|
|
- std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
-
|
|
|
- if (x.size() != L || m.size() != L)
|
|
|
- throw std::invalid_argument("Declared number of layers do not fit x and m!");
|
|
|
- if (Theta.size() != nTheta)
|
|
|
- throw std::invalid_argument("Declared number of sample for Theta is not correct!");
|
|
|
- try {
|
|
|
- MultiLayerMie multi_layer_mie;
|
|
|
- multi_layer_mie.SetWidthSP(x);
|
|
|
- multi_layer_mie.SetIndexSP(m);
|
|
|
- multi_layer_mie.SetAngles(Theta);
|
|
|
-
|
|
|
- multi_layer_mie.RunMieCalculations();
|
|
|
-
|
|
|
- *Qext = multi_layer_mie.GetQext();
|
|
|
- *Qsca = multi_layer_mie.GetQsca();
|
|
|
- *Qabs = multi_layer_mie.GetQabs();
|
|
|
- *Qbk = multi_layer_mie.GetQbk();
|
|
|
- *Qpr = multi_layer_mie.GetQpr();
|
|
|
- *g = multi_layer_mie.GetAsymmetryFactor();
|
|
|
- *Albedo = multi_layer_mie.GetAlbedo();
|
|
|
- S1 = multi_layer_mie.GetS1();
|
|
|
- S2 = multi_layer_mie.GetS2();
|
|
|
- multi_layer_mie.GetFailed();
|
|
|
- } catch( const std::invalid_argument& ia ) {
|
|
|
- // Will catch if multi_layer_mie fails or other errors.
|
|
|
- std::cerr << "Invalid argument: " << ia.what() << std::endl;
|
|
|
- throw std::invalid_argument(ia);
|
|
|
- return -1;
|
|
|
- }
|
|
|
-
|
|
|
- return 0;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::GetFailed() {
|
|
|
- double faild_x = 9.42477796076938;
|
|
|
- //double faild_x = 9.42477796076937;
|
|
|
- std::complex<double> z(faild_x, 0.0);
|
|
|
- std::vector<int> nmax_local_array = {20, 100, 500, 2500};
|
|
|
- for (auto nmax_local : nmax_local_array) {
|
|
|
- std::vector<std::complex<double> > D1_failed(nmax_local +1);
|
|
|
- // Downward recurrence for D1 - equations (16a) and (16b)
|
|
|
- D1_failed[nmax_local] = std::complex<double>(0.0, 0.0);
|
|
|
- const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;
|
|
|
- for (int n = nmax_local; n > 0; n--) {
|
|
|
- D1_failed[n - 1] = double(n)*zinv - 1.0/(D1_failed[n] + double(n)*zinv);
|
|
|
- }
|
|
|
- printf("Faild D1[0] from reccurence (z = %16.14f, nmax = %d): %g\n",
|
|
|
- faild_x, nmax_local, D1_failed[0].real());
|
|
|
- }
|
|
|
- printf("Faild D1[0] from continued fraction (z = %16.14f): %g\n", faild_x,
|
|
|
- calcD1confra(0,z).real());
|
|
|
- //D1[nmax_] = calcD1confra(nmax_, z);
|
|
|
-
|
|
|
-
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- double MultiLayerMie::GetQext() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result reques!");
|
|
|
- return Qext_;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- double MultiLayerMie::GetQabs() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result reques!");
|
|
|
- return Qabs_;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- std::vector<double> MultiLayerMie::GetQabs_channel() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result reques!");
|
|
|
- return Qabs_ch_;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- std::vector<double> MultiLayerMie::GetQabs_channel_normalized() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result reques!");
|
|
|
- std::vector<double> NACS(nmax_-1, 0.0);
|
|
|
- double x2 = pow2(size_parameter_.back());
|
|
|
- for (int i = 0; i < nmax_ - 1; ++i) {
|
|
|
- const int n = i+1;
|
|
|
- NACS[i] = Qsca_ch_[i]*x2/(2.0*(2.0*static_cast<double>(n)+1));
|
|
|
- // if (NACS[i] > 0.250000001)
|
|
|
- // throw std::invalid_argument("Unexpected normalized absorption cross-section value!");
|
|
|
- }
|
|
|
- return NACS;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- double MultiLayerMie::GetQsca() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result reques!");
|
|
|
- return Qsca_;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- std::vector<double> MultiLayerMie::GetQsca_channel() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result reques!");
|
|
|
- return Qsca_ch_;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- double MultiLayerMie::GetQbk() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result reques!");
|
|
|
- return Qbk_;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- double MultiLayerMie::GetQpr() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result reques!");
|
|
|
- return Qpr_;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- double MultiLayerMie::GetAsymmetryFactor() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result reques!");
|
|
|
- return asymmetry_factor_;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- double MultiLayerMie::GetAlbedo() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result reques!");
|
|
|
- return albedo_;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- std::vector<std::complex<double> > MultiLayerMie::GetS1() {
|
|
|
- return S1_;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- std::vector<std::complex<double> > MultiLayerMie::GetS2() {
|
|
|
- return S2_;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::AddTargetLayer(double width, std::complex<double> layer_index) {
|
|
|
- if (width <= 0)
|
|
|
- throw std::invalid_argument("Layer width should be positive!");
|
|
|
- target_width_.push_back(width);
|
|
|
- target_index_.push_back(layer_index);
|
|
|
- } // end of void MultiLayerMie::AddTargetLayer(...)
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::SetTargetPEC(double radius) {
|
|
|
- isMieCalculated_ = false;
|
|
|
- if (target_width_.size() != 0 || target_index_.size() != 0)
|
|
|
- throw std::invalid_argument("Error! Define PEC target radius before any other layers!");
|
|
|
- // Add layer of any index...
|
|
|
- AddTargetLayer(radius, std::complex<double>(0.0, 0.0));
|
|
|
- // ... and mark it as PEC
|
|
|
- SetPEC(0.0);
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::SetCoatingIndex(std::vector<std::complex<double> > index) {
|
|
|
- isMieCalculated_ = false;
|
|
|
- coating_index_.clear();
|
|
|
- for (auto value : index) coating_index_.push_back(value);
|
|
|
- } // end of void MultiLayerMie::SetCoatingIndex(std::vector<complex> index);
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::SetAngles(const std::vector<double>& angles) {
|
|
|
- isMieCalculated_ = false;
|
|
|
- theta_ = angles;
|
|
|
- // theta_.clear();
|
|
|
- // for (auto value : angles) theta_.push_back(value);
|
|
|
- } // end of SetAngles()
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::SetCoatingWidth(std::vector<double> width) {
|
|
|
- isMieCalculated_ = false;
|
|
|
- coating_width_.clear();
|
|
|
- for (auto w : width)
|
|
|
- if (w <= 0)
|
|
|
- throw std::invalid_argument("Coating width should be positive!");
|
|
|
- else coating_width_.push_back(w);
|
|
|
- }
|
|
|
- // end of void MultiLayerMie::SetCoatingWidth(...);
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::SetWidthSP(const std::vector<double>& size_parameter) {
|
|
|
- isMieCalculated_ = false;
|
|
|
- size_parameter_.clear();
|
|
|
- double prev_size_parameter = 0.0;
|
|
|
- for (auto layer_size_parameter : size_parameter) {
|
|
|
- if (layer_size_parameter <= 0.0)
|
|
|
- throw std::invalid_argument("Size parameter should be positive!");
|
|
|
- if (prev_size_parameter > layer_size_parameter)
|
|
|
- throw std::invalid_argument
|
|
|
- ("Size parameter for next layer should be larger than the previous one!");
|
|
|
- prev_size_parameter = layer_size_parameter;
|
|
|
- size_parameter_.push_back(layer_size_parameter);
|
|
|
- }
|
|
|
- }
|
|
|
- // end of void MultiLayerMie::SetWidthSP(...);
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::SetIndexSP(const std::vector< std::complex<double> >& index) {
|
|
|
- isMieCalculated_ = false;
|
|
|
- //index_.clear();
|
|
|
- index_ = index;
|
|
|
- // for (auto value : index) index_.push_back(value);
|
|
|
- } // end of void MultiLayerMie::SetIndexSP(...);
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::SetPEC(int layer_position) {
|
|
|
- isMieCalculated_ = false;
|
|
|
- if (layer_position < 0)
|
|
|
- throw std::invalid_argument("Error! Layers are numbered from 0!");
|
|
|
- PEC_layer_position_ = layer_position;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::SetMaxTermsNumber(int nmax) {
|
|
|
- isMieCalculated_ = false;
|
|
|
- nmax_preset_ = nmax;
|
|
|
- //debug
|
|
|
- printf("Setting max terms: %d\n", nmax_preset_);
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::GenerateSizeParameter() {
|
|
|
- size_parameter_.clear();
|
|
|
- double radius = 0.0;
|
|
|
- for (auto width : target_width_) {
|
|
|
- radius += width;
|
|
|
- size_parameter_.push_back(2*PI*radius / wavelength_);
|
|
|
+
|
|
|
+#define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
|
|
|
+
|
|
|
+const double PI=3.14159265358979323846;
|
|
|
+// light speed [m s-1]
|
|
|
+double const cc = 2.99792458e8;
|
|
|
+// assume non-magnetic (MU=MU0=const) [N A-2]
|
|
|
+double const mu = 4.0*PI*1.0e-7;
|
|
|
+
|
|
|
+// Calculate Nstop - equation (17)
|
|
|
+int Nstop(double xL) {
|
|
|
+ int result;
|
|
|
+
|
|
|
+ if (xL <= 8) {
|
|
|
+ result = round(xL + 4*pow(xL, 1.0/3.0) + 1);
|
|
|
+ } else if (xL <= 4200) {
|
|
|
+ result = round(xL + 4.05*pow(xL, 1.0/3.0) + 2);
|
|
|
+ } else {
|
|
|
+ result = round(xL + 4*pow(xL, 1.0/3.0) + 2);
|
|
|
+ }
|
|
|
+
|
|
|
+ return result;
|
|
|
+}
|
|
|
+
|
|
|
+//**********************************************************************************//
|
|
|
+int Nmax(int L, int fl, int pl,
|
|
|
+ std::vector<double> x,
|
|
|
+ std::vector<std::complex<double> > m) {
|
|
|
+ int i, result, ri, riM1;
|
|
|
+ result = Nstop(x[L - 1]);
|
|
|
+ for (i = fl; i < L; i++) {
|
|
|
+ if (i > pl) {
|
|
|
+ ri = round(std::abs(x[i]*m[i]));
|
|
|
+ } else {
|
|
|
+ ri = 0;
|
|
|
}
|
|
|
- for (auto width : coating_width_) {
|
|
|
- radius += width;
|
|
|
- size_parameter_.push_back(2*PI*radius / wavelength_);
|
|
|
+ if (result < ri) {
|
|
|
+ result = ri;
|
|
|
}
|
|
|
- total_radius_ = radius;
|
|
|
- } // end of void MultiLayerMie::GenerateSizeParameter();
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::GenerateIndex() {
|
|
|
- index_.clear();
|
|
|
- for (auto index : target_index_) index_.push_back(index);
|
|
|
- for (auto index : coating_index_) index_.push_back(index);
|
|
|
- } // end of void MultiLayerMie::GenerateIndex();
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- double MultiLayerMie::GetTotalRadius() {
|
|
|
- if (total_radius_ == 0) GenerateSizeParameter();
|
|
|
- return total_radius_;
|
|
|
- } // end of double MultiLayerMie::GetTotalRadius();
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- std::vector< std::vector<double> >
|
|
|
- MultiLayerMie::GetSpectra(double from_WL, double to_WL, int samples) {
|
|
|
- std::vector< std::vector<double> > spectra;
|
|
|
- double step_WL = (to_WL - from_WL)/ static_cast<double>(samples);
|
|
|
- double wavelength_backup = wavelength_;
|
|
|
- long fails = 0;
|
|
|
- for (double WL = from_WL; WL < to_WL; WL += step_WL) {
|
|
|
- wavelength_ = WL;
|
|
|
- try {
|
|
|
- RunMieCalculations();
|
|
|
- } catch( const std::invalid_argument& ia ) {
|
|
|
- fails++;
|
|
|
- continue;
|
|
|
- }
|
|
|
- //printf("%3.1f ",WL);
|
|
|
- spectra.push_back(std::vector<double>({wavelength_, Qext_, Qsca_, Qabs_, Qbk_}));
|
|
|
- } // end of for each WL in spectra
|
|
|
- printf("Spectrum has %li fails\n",fails);
|
|
|
- wavelength_ = wavelength_backup;
|
|
|
- return spectra;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::ClearTarget() {
|
|
|
- target_width_.clear();
|
|
|
- target_index_.clear();
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::ClearCoating() {
|
|
|
- coating_width_.clear();
|
|
|
- coating_index_.clear();
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::ClearLayers() {
|
|
|
- ClearTarget();
|
|
|
- ClearCoating();
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::ClearAllDesign() {
|
|
|
- ClearLayers();
|
|
|
- size_parameter_.clear();
|
|
|
- index_.clear();
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // Computational core
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // Calculate Nstop - equation (17)
|
|
|
- //
|
|
|
- void MultiLayerMie::Nstop() {
|
|
|
- const double& xL = size_parameter_.back();
|
|
|
- if (xL <= 8) {
|
|
|
- nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 1);
|
|
|
- } else if (xL <= 4200) {
|
|
|
- nmax_ = round(xL + 4.05*pow(xL, 1.0/3.0) + 2);
|
|
|
+
|
|
|
+ if ((i > fl) && ((i - 1) > pl)) {
|
|
|
+ riM1 = round(std::abs(x[i - 1]* m[i]));
|
|
|
} else {
|
|
|
- nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 2);
|
|
|
- }
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::Nmax(int first_layer) {
|
|
|
- int ri, riM1;
|
|
|
- const std::vector<double>& x = size_parameter_;
|
|
|
- const std::vector<std::complex<double> >& m = index_;
|
|
|
- Nstop(); // Set initial nmax_ value
|
|
|
- for (int i = first_layer; i < x.size(); i++) {
|
|
|
- if (i > PEC_layer_position_)
|
|
|
- ri = round(std::abs(x[i]*m[i]));
|
|
|
- else
|
|
|
- ri = 0;
|
|
|
- nmax_ = std::max(nmax_, ri);
|
|
|
- // first layer is pec, if pec is present
|
|
|
- if ((i > first_layer) && ((i - 1) > PEC_layer_position_))
|
|
|
- riM1 = round(std::abs(x[i - 1]* m[i]));
|
|
|
- else
|
|
|
- riM1 = 0;
|
|
|
- nmax_ = std::max(nmax_, riM1);
|
|
|
+ riM1 = 0;
|
|
|
+ }
|
|
|
+ if (result < riM1) {
|
|
|
+ result = riM1;
|
|
|
}
|
|
|
- nmax_ += 15; // Final nmax_ value
|
|
|
}
|
|
|
- //**********************************************************************************//
|
|
|
- // This function calculates the spherical Bessel (jn) and Hankel (h1n) functions //
|
|
|
- // and their derivatives for a given complex value z. See pag. 87 B&H. //
|
|
|
- // //
|
|
|
- // Input parameters: //
|
|
|
- // z: Real argument to evaluate jn and h1n //
|
|
|
- // nmax_: Maximum number of terms to calculate jn and h1n //
|
|
|
- // //
|
|
|
- // Output parameters: //
|
|
|
- // jn, h1n: Spherical Bessel and Hankel functions //
|
|
|
- // jnp, h1np: Derivatives of the spherical Bessel and Hankel functions //
|
|
|
- // //
|
|
|
- // The implementation follows the algorithm by I.J. Thompson and A.R. Barnett, //
|
|
|
- // Comp. Phys. Comm. 47 (1987) 245-257. //
|
|
|
- // //
|
|
|
- // Complex spherical Bessel functions from n=0..nmax_-1 for z in the upper half //
|
|
|
- // plane (Im(z) > -3). //
|
|
|
- // //
|
|
|
- // j[n] = j/n(z) Regular solution: j[0]=sin(z)/z //
|
|
|
- // j'[n] = d[j/n(z)]/dz //
|
|
|
- // h1[n] = h[0]/n(z) Irregular Hankel function: //
|
|
|
- // h1'[n] = d[h[0]/n(z)]/dz h1[0] = j0(z) + i*y0(z) //
|
|
|
- // = (sin(z)-i*cos(z))/z //
|
|
|
- // = -i*exp(i*z)/z //
|
|
|
- // Using complex CF1, and trigonometric forms for n=0 solutions. //
|
|
|
- //**********************************************************************************//
|
|
|
- void MultiLayerMie::sbesjh(std::complex<double> z,
|
|
|
- std::vector<std::complex<double> >& jn,
|
|
|
- std::vector<std::complex<double> >& jnp,
|
|
|
- std::vector<std::complex<double> >& h1n,
|
|
|
- std::vector<std::complex<double> >& h1np) {
|
|
|
- const int limit = 20000;
|
|
|
- const double accur = 1.0e-12;
|
|
|
- const double tm30 = 1e-30;
|
|
|
-
|
|
|
- double absc;
|
|
|
- std::complex<double> zi, w;
|
|
|
- std::complex<double> pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb;
|
|
|
-
|
|
|
- absc = std::abs(std::real(z)) + std::abs(std::imag(z));
|
|
|
- if ((absc < accur) || (std::imag(z) < -3.0)) {
|
|
|
- throw std::invalid_argument("TODO add error description for condition if ((absc < accur) || (std::imag(z) < -3.0))");
|
|
|
+ return result + 15;
|
|
|
+}
|
|
|
+
|
|
|
+//**********************************************************************************//
|
|
|
+// This function calculates the spherical Bessel (jn) and Hankel (h1n) functions //
|
|
|
+// and their derivatives for a given complex value z. See pag. 87 B&H. //
|
|
|
+// //
|
|
|
+// Input parameters: //
|
|
|
+// z: Real argument to evaluate jn and h1n //
|
|
|
+// nmax: Maximum number of terms to calculate jn and h1n //
|
|
|
+// //
|
|
|
+// Output parameters: //
|
|
|
+// jn, h1n: Spherical Bessel and Hankel functions //
|
|
|
+// jnp, h1np: Derivatives of the spherical Bessel and Hankel functions //
|
|
|
+// //
|
|
|
+// The implementation follows the algorithm by I.J. Thompson and A.R. Barnett, //
|
|
|
+// Comp. Phys. Comm. 47 (1987) 245-257. //
|
|
|
+// //
|
|
|
+// Complex spherical Bessel functions from n=0..nmax-1 for z in the upper half //
|
|
|
+// plane (Im(z) > -3). //
|
|
|
+// //
|
|
|
+// j[n] = j/n(z) Regular solution: j[0]=sin(z)/z //
|
|
|
+// j'[n] = d[j/n(z)]/dz //
|
|
|
+// h1[n] = h[0]/n(z) Irregular Hankel function: //
|
|
|
+// h1'[n] = d[h[0]/n(z)]/dz h1[0] = j0(z) + i*y0(z) //
|
|
|
+// = (sin(z)-i*cos(z))/z //
|
|
|
+// = -i*exp(i*z)/z //
|
|
|
+// Using complex CF1, and trigonometric forms for n=0 solutions. //
|
|
|
+//**********************************************************************************//
|
|
|
+int sbesjh(std::complex<double> z, int nmax, std::vector<std::complex<double> >& jn, std::vector<std::complex<double> >& jnp, std::vector<std::complex<double> >& h1n, std::vector<std::complex<double> >& h1np) {
|
|
|
+
|
|
|
+ const int limit = 20000;
|
|
|
+ double const accur = 1.0e-12;
|
|
|
+ double const tm30 = 1e-30;
|
|
|
+
|
|
|
+ int n;
|
|
|
+ double absc;
|
|
|
+ std::complex<double> zi, w;
|
|
|
+ std::complex<double> pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb;
|
|
|
+
|
|
|
+ absc = std::abs(std::real(z)) + std::abs(std::imag(z));
|
|
|
+ if ((absc < accur) || (std::imag(z) < -3.0)) {
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+
|
|
|
+ zi = 1.0/z;
|
|
|
+ w = zi + zi;
|
|
|
+
|
|
|
+ pl = double(nmax)*zi;
|
|
|
+
|
|
|
+ f = pl + zi;
|
|
|
+ b = f + f + zi;
|
|
|
+ d = 0.0;
|
|
|
+ c = f;
|
|
|
+ for (n = 0; n < limit; n++) {
|
|
|
+ d = b - d;
|
|
|
+ c = b - 1.0/c;
|
|
|
+
|
|
|
+ absc = std::abs(std::real(d)) + std::abs(std::imag(d));
|
|
|
+ if (absc < tm30) {
|
|
|
+ d = tm30;
|
|
|
}
|
|
|
|
|
|
- zi = 1.0/z;
|
|
|
- w = zi + zi;
|
|
|
+ absc = std::abs(std::real(c)) + std::abs(std::imag(c));
|
|
|
+ if (absc < tm30) {
|
|
|
+ c = tm30;
|
|
|
+ }
|
|
|
|
|
|
- pl = double(nmax_)*zi;
|
|
|
+ d = 1.0/d;
|
|
|
+ del = d*c;
|
|
|
+ f = f*del;
|
|
|
+ b += w;
|
|
|
|
|
|
- f = pl + zi;
|
|
|
- b = f + f + zi;
|
|
|
- d = 0.0;
|
|
|
- c = f;
|
|
|
- for (int n = 0; n < limit; n++) {
|
|
|
- d = b - d;
|
|
|
- c = b - 1.0/c;
|
|
|
+ absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
|
|
|
|
|
|
- absc = std::abs(std::real(d)) + std::abs(std::imag(d));
|
|
|
- if (absc < tm30) {
|
|
|
- d = tm30;
|
|
|
- }
|
|
|
+ if (absc < accur) {
|
|
|
+ // We have obtained the desired accuracy
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
|
|
|
- absc = std::abs(std::real(c)) + std::abs(std::imag(c));
|
|
|
- if (absc < tm30) {
|
|
|
- c = tm30;
|
|
|
- }
|
|
|
+ if (absc > accur) {
|
|
|
+ // We were not able to obtain the desired accuracy
|
|
|
+ return -2;
|
|
|
+ }
|
|
|
|
|
|
- d = 1.0/d;
|
|
|
- del = d*c;
|
|
|
- f = f*del;
|
|
|
- b += w;
|
|
|
+ jn[nmax - 1] = tm30;
|
|
|
+ jnp[nmax - 1] = f*jn[nmax - 1];
|
|
|
|
|
|
- absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
|
|
|
+ // Downward recursion to n=0 (N.B. Coulomb Functions)
|
|
|
+ for (n = nmax - 2; n >= 0; n--) {
|
|
|
+ jn[n] = pl*jn[n + 1] + jnp[n + 1];
|
|
|
+ jnp[n] = pl*jn[n] - jn[n + 1];
|
|
|
+ pl = pl - zi;
|
|
|
+ }
|
|
|
|
|
|
- if (absc < accur) {
|
|
|
- // We have obtained the desired accuracy
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
+ // Calculate the n=0 Bessel Functions
|
|
|
+ jn0 = zi*std::sin(z);
|
|
|
+ h1n[0] = std::exp(std::complex<double>(0.0, 1.0)*z)*zi*(-std::complex<double>(0.0, 1.0));
|
|
|
+ h1np[0] = h1n[0]*(std::complex<double>(0.0, 1.0) - zi);
|
|
|
|
|
|
- if (absc > accur) {
|
|
|
- throw std::invalid_argument("We were not able to obtain the desired accuracy");
|
|
|
- }
|
|
|
+ // Rescale j[n], j'[n], converting to spherical Bessel functions.
|
|
|
+ // Recur h1[n], h1'[n] as spherical Bessel functions.
|
|
|
+ w = 1.0/jn[0];
|
|
|
+ pl = zi;
|
|
|
+ for (n = 0; n < nmax; n++) {
|
|
|
+ jn[n] = jn0*(w*jn[n]);
|
|
|
+ jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
|
|
|
+ if (n != 0) {
|
|
|
+ h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
|
|
|
|
|
|
- jn[nmax_ - 1] = tm30;
|
|
|
- jnp[nmax_ - 1] = f*jn[nmax_ - 1];
|
|
|
+ // check if hankel is increasing (upward stable)
|
|
|
+ if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
|
|
|
+ jndb = z;
|
|
|
+ h1nldb = h1n[n];
|
|
|
+ h1nbdb = h1n[n - 1];
|
|
|
+ }
|
|
|
|
|
|
- // Downward recursion to n=0 (N.B. Coulomb Functions)
|
|
|
- for (int n = nmax_ - 2; n >= 0; n--) {
|
|
|
- jn[n] = pl*jn[n + 1] + jnp[n + 1];
|
|
|
- jnp[n] = pl*jn[n] - jn[n + 1];
|
|
|
- pl = pl - zi;
|
|
|
- }
|
|
|
+ pl += zi;
|
|
|
|
|
|
- // Calculate the n=0 Bessel Functions
|
|
|
- jn0 = zi*std::sin(z);
|
|
|
- h1n[0] = std::exp(std::complex<double>(0.0, 1.0)*z)*zi*(-std::complex<double>(0.0, 1.0));
|
|
|
- h1np[0] = h1n[0]*(std::complex<double>(0.0, 1.0) - zi);
|
|
|
-
|
|
|
- // Rescale j[n], j'[n], converting to spherical Bessel functions.
|
|
|
- // Recur h1[n], h1'[n] as spherical Bessel functions.
|
|
|
- w = 1.0/jn[0];
|
|
|
- pl = zi;
|
|
|
- for (int n = 0; n < nmax_; n++) {
|
|
|
- jn[n] = jn0*(w*jn[n]);
|
|
|
- jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
|
|
|
- if (n != 0) {
|
|
|
- h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
|
|
|
-
|
|
|
- // check if hankel is increasing (upward stable)
|
|
|
- if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
|
|
|
- jndb = z;
|
|
|
- h1nldb = h1n[n];
|
|
|
- h1nbdb = h1n[n - 1];
|
|
|
- }
|
|
|
-
|
|
|
- pl += zi;
|
|
|
-
|
|
|
- h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
|
|
|
- }
|
|
|
+ h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- //**********************************************************************************//
|
|
|
- // This function calculates the spherical Bessel functions (bj and by) and the //
|
|
|
- // logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H. //
|
|
|
- // //
|
|
|
- // Input parameters: //
|
|
|
- // z: Complex argument to evaluate bj, by and bd //
|
|
|
- // nmax_: Maximum number of terms to calculate bj, by and bd //
|
|
|
- // //
|
|
|
- // Output parameters: //
|
|
|
- // bj, by: Spherical Bessel functions //
|
|
|
- // bd: Logarithmic derivative //
|
|
|
- //**********************************************************************************//
|
|
|
- void MultiLayerMie::sphericalBessel(std::complex<double> z,
|
|
|
- std::vector<std::complex<double> >& bj,
|
|
|
- std::vector<std::complex<double> >& by,
|
|
|
- std::vector<std::complex<double> >& bd) {
|
|
|
- std::vector<std::complex<double> > jn(nmax_), jnp(nmax_), h1n(nmax_), h1np(nmax_);
|
|
|
- sbesjh(z, jn, jnp, h1n, h1np);
|
|
|
-
|
|
|
- for (int n = 0; n < nmax_; n++) {
|
|
|
+ // success
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+//**********************************************************************************//
|
|
|
+// This function calculates the spherical Bessel functions (bj and by) and the //
|
|
|
+// logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H. //
|
|
|
+// //
|
|
|
+// Input parameters: //
|
|
|
+// z: Complex argument to evaluate bj, by and bd //
|
|
|
+// nmax: Maximum number of terms to calculate bj, by and bd //
|
|
|
+// //
|
|
|
+// Output parameters: //
|
|
|
+// bj, by: Spherical Bessel functions //
|
|
|
+// bd: Logarithmic derivative //
|
|
|
+//**********************************************************************************//
|
|
|
+void sphericalBessel(std::complex<double> z, int nmax, std::vector<std::complex<double> >& bj, std::vector<std::complex<double> >& by, std::vector<std::complex<double> >& bd) {
|
|
|
+
|
|
|
+ std::vector<std::complex<double> > jn, jnp, h1n, h1np;
|
|
|
+ jn.resize(nmax);
|
|
|
+ jnp.resize(nmax);
|
|
|
+ h1n.resize(nmax);
|
|
|
+ h1np.resize(nmax);
|
|
|
+
|
|
|
+ // TODO verify that the function succeeds
|
|
|
+ int ifail = sbesjh(z, nmax, jn, jnp, h1n, h1np);
|
|
|
+
|
|
|
+ for (int n = 0; n < nmax; n++) {
|
|
|
bj[n] = jn[n];
|
|
|
by[n] = (h1n[n] - jn[n])/std::complex<double>(0.0, 1.0);
|
|
|
bd[n] = jnp[n]/jn[n] + 1.0/z;
|
|
|
}
|
|
|
+}
|
|
|
+
|
|
|
+// external scattering field = incident + scattered
|
|
|
+// BH p.92 (4.37), 94 (4.45), 95 (4.50)
|
|
|
+// assume: medium is non-absorbing; refim = 0; Uabs = 0
|
|
|
+void fieldExt(int nmax, double Rho, double Phi, double Theta, std::vector<double> Pi, std::vector<double> Tau,
|
|
|
+ std::vector<std::complex<double> > an, std::vector<std::complex<double> > bn,
|
|
|
+ std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
|
|
|
+
|
|
|
+ int i, n;
|
|
|
+ double rn = 0.0;
|
|
|
+ std::complex<double> zn, xxip, encap;
|
|
|
+ std::vector<std::complex<double> > vm3o1n, vm3e1n, vn3o1n, vn3e1n;
|
|
|
+ vm3o1n.resize(3);
|
|
|
+ vm3e1n.resize(3);
|
|
|
+ vn3o1n.resize(3);
|
|
|
+ vn3e1n.resize(3);
|
|
|
+
|
|
|
+ std::vector<std::complex<double> > Ei, Hi, Es, Hs;
|
|
|
+ Ei.resize(3);
|
|
|
+ Hi.resize(3);
|
|
|
+ Es.resize(3);
|
|
|
+ Hs.resize(3);
|
|
|
+ for (i = 0; i < 3; i++) {
|
|
|
+ Ei[i] = std::complex<double>(0.0, 0.0);
|
|
|
+ Hi[i] = std::complex<double>(0.0, 0.0);
|
|
|
+ Es[i] = std::complex<double>(0.0, 0.0);
|
|
|
+ Hs[i] = std::complex<double>(0.0, 0.0);
|
|
|
+ }
|
|
|
+
|
|
|
+ std::vector<std::complex<double> > bj, by, bd;
|
|
|
+ bj.resize(nmax);
|
|
|
+ by.resize(nmax);
|
|
|
+ bd.resize(nmax);
|
|
|
+
|
|
|
+ // Calculate spherical Bessel and Hankel functions
|
|
|
+ sphericalBessel(Rho, nmax, bj, by, bd);
|
|
|
+
|
|
|
+ for (n = 0; n < nmax; n++) {
|
|
|
+ rn = double(n + 1);
|
|
|
+
|
|
|
+ zn = bj[n] + std::complex<double>(0.0, 1.0)*by[n];
|
|
|
+ xxip = Rho*(bj[n] + std::complex<double>(0.0, 1.0)*by[n]) - rn*zn;
|
|
|
+
|
|
|
+ vm3o1n[0] = std::complex<double>(0.0, 0.0);
|
|
|
+ vm3o1n[1] = std::cos(Phi)*Pi[n]*zn;
|
|
|
+ vm3o1n[2] = -(std::sin(Phi)*Tau[n]*zn);
|
|
|
+ vm3e1n[0] = std::complex<double>(0.0, 0.0);
|
|
|
+ vm3e1n[1] = -(std::sin(Phi)*Pi[n]*zn);
|
|
|
+ vm3e1n[2] = -(std::cos(Phi)*Tau[n]*zn);
|
|
|
+ vn3o1n[0] = std::sin(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
|
|
|
+ vn3o1n[1] = std::sin(Phi)*Tau[n]*xxip/Rho;
|
|
|
+ vn3o1n[2] = std::cos(Phi)*Pi[n]*xxip/Rho;
|
|
|
+ vn3e1n[0] = std::cos(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
|
|
|
+ vn3e1n[1] = std::cos(Phi)*Tau[n]*xxip/Rho;
|
|
|
+ vn3e1n[2] = -(std::sin(Phi)*Pi[n]*xxip/Rho);
|
|
|
+
|
|
|
+ // scattered field: BH p.94 (4.45)
|
|
|
+ encap = std::pow(std::complex<double>(0.0, 1.0), rn)*(2.0*rn + 1.0)/(rn*(rn + 1.0));
|
|
|
+ for (i = 0; i < 3; i++) {
|
|
|
+ Es[i] = Es[i] + encap*(std::complex<double>(0.0, 1.0)*an[n]*vn3e1n[i] - bn[n]*vm3o1n[i]);
|
|
|
+ Hs[i] = Hs[i] + encap*(std::complex<double>(0.0, 1.0)*bn[n]*vn3o1n[i] + an[n]*vm3e1n[i]);
|
|
|
+ }
|
|
|
}
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // Calculate an - equation (5)
|
|
|
- std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
|
|
|
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
-
|
|
|
- std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
|
|
|
- std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
|
|
|
-
|
|
|
- return Num/Denom;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // Calculate bn - equation (6)
|
|
|
- std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
|
|
|
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
-
|
|
|
- std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
|
|
|
- std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
|
|
|
-
|
|
|
- return Num/Denom;
|
|
|
+
|
|
|
+ // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
|
|
|
+ // basis unit vectors = er, etheta, ephi
|
|
|
+ std::complex<double> eifac = std::exp(std::complex<double>(0.0, 1.0)*Rho*std::cos(Theta));
|
|
|
+
|
|
|
+ Ei[0] = eifac*std::sin(Theta)*std::cos(Phi);
|
|
|
+ Ei[1] = eifac*std::cos(Theta)*std::cos(Phi);
|
|
|
+ Ei[2] = -(eifac*std::sin(Phi));
|
|
|
+
|
|
|
+ // magnetic field
|
|
|
+ double hffact = 1.0/(cc*mu);
|
|
|
+ for (i = 0; i < 3; i++) {
|
|
|
+ Hs[i] = hffact*Hs[i];
|
|
|
+ }
|
|
|
+
|
|
|
+ // incident H field: BH p.26 (2.43), p.89 (4.21)
|
|
|
+ std::complex<double> hffacta = hffact;
|
|
|
+ std::complex<double> hifac = eifac*hffacta;
|
|
|
+
|
|
|
+ Hi[0] = hifac*std::sin(Theta)*std::sin(Phi);
|
|
|
+ Hi[1] = hifac*std::cos(Theta)*std::sin(Phi);
|
|
|
+ Hi[2] = hifac*std::cos(Phi);
|
|
|
+
|
|
|
+ for (i = 0; i < 3; i++) {
|
|
|
+ // electric field E [V m-1] = EF*E0
|
|
|
+ E[i] = Ei[i] + Es[i];
|
|
|
+ H[i] = Hi[i] + Hs[i];
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// Calculate an - equation (5)
|
|
|
+std::complex<double> calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
|
|
|
+ std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
+ std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
+
|
|
|
+ std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
|
|
|
+ std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
|
|
|
+
|
|
|
+ return Num/Denom;
|
|
|
+}
|
|
|
+
|
|
|
+// Calculate bn - equation (6)
|
|
|
+std::complex<double> calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
|
|
|
+ std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
+ std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
+
|
|
|
+ std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
|
|
|
+ std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
|
|
|
+
|
|
|
+ return Num/Denom;
|
|
|
+}
|
|
|
+
|
|
|
+// Calculates S1 - equation (25a)
|
|
|
+std::complex<double> calc_S1(int n, std::complex<double> an, std::complex<double> bn,
|
|
|
+ double Pi, double Tau) {
|
|
|
+
|
|
|
+ return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
|
|
|
+}
|
|
|
+
|
|
|
+// Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
|
|
|
+std::complex<double> calc_S2(int n, std::complex<double> an, std::complex<double> bn,
|
|
|
+ double Pi, double Tau) {
|
|
|
+
|
|
|
+ return calc_S1(n, an, bn, Tau, Pi);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+//**********************************************************************************//
|
|
|
+// This function calculates the Riccati-Bessel functions (Psi and Zeta) for a //
|
|
|
+// real argument (x). //
|
|
|
+// Equations (20a) - (21b) //
|
|
|
+// //
|
|
|
+// Input parameters: //
|
|
|
+// x: Real argument to evaluate Psi and Zeta //
|
|
|
+// nmax: Maximum number of terms to calculate Psi and Zeta //
|
|
|
+// //
|
|
|
+// Output parameters: //
|
|
|
+// Psi, Zeta: Riccati-Bessel functions //
|
|
|
+//**********************************************************************************//
|
|
|
+void calcPsiZeta(double x, int nmax,
|
|
|
+ std::vector<std::complex<double> > D1,
|
|
|
+ std::vector<std::complex<double> > D3,
|
|
|
+ std::vector<std::complex<double> >& Psi,
|
|
|
+ std::vector<std::complex<double> >& Zeta) {
|
|
|
+
|
|
|
+ int n;
|
|
|
+
|
|
|
+ //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
|
|
|
+ Psi[0] = std::complex<double>(sin(x), 0);
|
|
|
+ Zeta[0] = std::complex<double>(sin(x), -cos(x));
|
|
|
+ for (n = 1; n <= nmax; n++) {
|
|
|
+ Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
|
|
|
+ Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+//**********************************************************************************//
|
|
|
+// This function calculates the logarithmic derivatives of the Riccati-Bessel //
|
|
|
+// functions (D1 and D3) for a complex argument (z). //
|
|
|
+// Equations (16a), (16b) and (18a) - (18d) //
|
|
|
+// //
|
|
|
+// Input parameters: //
|
|
|
+// z: Complex argument to evaluate D1 and D3 //
|
|
|
+// nmax: Maximum number of terms to calculate D1 and D3 //
|
|
|
+// //
|
|
|
+// Output parameters: //
|
|
|
+// D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
|
|
|
+//**********************************************************************************//
|
|
|
+void calcD1D3(std::complex<double> z, int nmax,
|
|
|
+ std::vector<std::complex<double> >& D1,
|
|
|
+ std::vector<std::complex<double> >& D3) {
|
|
|
+
|
|
|
+ int n;
|
|
|
+ std::complex<double> nz, PsiZeta;
|
|
|
+
|
|
|
+ // Downward recurrence for D1 - equations (16a) and (16b)
|
|
|
+ D1[nmax] = std::complex<double>(0.0, 0.0);
|
|
|
+ for (n = nmax; n > 0; n--) {
|
|
|
+ nz = double(n)/z;
|
|
|
+ D1[n - 1] = nz - 1.0/(D1[n] + nz);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
|
|
|
+ PsiZeta = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag()));
|
|
|
+ D3[0] = std::complex<double>(0.0, 1.0);
|
|
|
+ for (n = 1; n <= nmax; n++) {
|
|
|
+ nz = double(n)/z;
|
|
|
+ PsiZeta = PsiZeta*(nz - D1[n - 1])*(nz - D3[n - 1]);
|
|
|
+ D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+//**********************************************************************************//
|
|
|
+// This function calculates Pi and Tau for all values of Theta. //
|
|
|
+// Equations (26a) - (26c) //
|
|
|
+// //
|
|
|
+// Input parameters: //
|
|
|
+// nmax: Maximum number of terms to calculate Pi and Tau //
|
|
|
+// nTheta: Number of scattering angles //
|
|
|
+// Theta: Array containing all the scattering angles where the scattering //
|
|
|
+// amplitudes will be calculated //
|
|
|
+// //
|
|
|
+// Output parameters: //
|
|
|
+// Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
|
|
|
+//**********************************************************************************//
|
|
|
+void calcPiTau(int nmax, double Theta, std::vector<double>& Pi, std::vector<double>& Tau) {
|
|
|
+
|
|
|
+ int n;
|
|
|
+ //****************************************************//
|
|
|
+ // Equations (26a) - (26c) //
|
|
|
+ //****************************************************//
|
|
|
+ // Initialize Pi and Tau
|
|
|
+ Pi[0] = 1.0;
|
|
|
+ Tau[0] = cos(Theta);
|
|
|
+ // Calculate the actual values
|
|
|
+ if (nmax > 1) {
|
|
|
+ Pi[1] = 3*Tau[0]*Pi[0];
|
|
|
+ Tau[1] = 2*Tau[0]*Pi[1] - 3*Pi[0];
|
|
|
+ for (n = 2; n < nmax; n++) {
|
|
|
+ Pi[n] = ((n + n + 1)*Tau[0]*Pi[n - 1] - (n + 1)*Pi[n - 2])/n;
|
|
|
+ Tau[n] = (n + 1)*Tau[0]*Pi[n] - (n + 2)*Pi[n - 1];
|
|
|
+ }
|
|
|
}
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // Calculates S1 - equation (25a)
|
|
|
- std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,
|
|
|
- double Pi, double Tau) {
|
|
|
- return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
|
|
|
+}
|
|
|
+
|
|
|
+//**********************************************************************************//
|
|
|
+// This function calculates the scattering coefficients required to calculate //
|
|
|
+// both the near- and far-field parameters. //
|
|
|
+// //
|
|
|
+// Input parameters: //
|
|
|
+// L: Number of layers //
|
|
|
+// pl: Index of PEC layer. If there is none just send -1 //
|
|
|
+// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+// calculations. Only use it if you know what you are doing, otherwise //
|
|
|
+// set this parameter to -1 and the function will calculate it. //
|
|
|
+// //
|
|
|
+// Output parameters: //
|
|
|
+// an, bn: Complex scattering amplitudes //
|
|
|
+// //
|
|
|
+// Return value: //
|
|
|
+// Number of multipolar expansion terms used for the calculations //
|
|
|
+//**********************************************************************************//
|
|
|
+int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
|
|
|
+ std::vector<std::complex<double> >& an, std::vector<std::complex<double> >& bn) {
|
|
|
+ //************************************************************************//
|
|
|
+ // Calculate the index of the first layer. It can be either 0 (default) //
|
|
|
+ // or the index of the outermost PEC layer. In the latter case all layers //
|
|
|
+ // below the PEC are discarded. //
|
|
|
+ //************************************************************************//
|
|
|
+
|
|
|
+ int fl = (pl > 0) ? pl : 0;
|
|
|
+
|
|
|
+ if (nmax <= 0) {
|
|
|
+ nmax = Nmax(L, fl, pl, x, m);
|
|
|
+ }
|
|
|
+
|
|
|
+ std::complex<double> z1, z2;
|
|
|
+ std::complex<double> Num, Denom;
|
|
|
+ std::complex<double> G1, G2;
|
|
|
+ std::complex<double> Temp;
|
|
|
+
|
|
|
+ int n, l;
|
|
|
+
|
|
|
+ //**************************************************************************//
|
|
|
+ // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
|
|
|
+ // means that index = layer number - 1 or index = n - 1. The only exception //
|
|
|
+ // are the arrays for representing D1, D3 and Q because they need a value //
|
|
|
+ // for the index 0 (zero), hence it is important to consider this shift //
|
|
|
+ // between different arrays. The change was done to optimize memory usage. //
|
|
|
+ //**************************************************************************//
|
|
|
+
|
|
|
+ // Allocate memory to the arrays
|
|
|
+ std::vector<std::vector<std::complex<double> > > D1_mlxl, D1_mlxlM1;
|
|
|
+ D1_mlxl.resize(L);
|
|
|
+ D1_mlxlM1.resize(L);
|
|
|
+
|
|
|
+ std::vector<std::vector<std::complex<double> > > D3_mlxl, D3_mlxlM1;
|
|
|
+ D3_mlxl.resize(L);
|
|
|
+ D3_mlxlM1.resize(L);
|
|
|
+
|
|
|
+ std::vector<std::vector<std::complex<double> > > Q;
|
|
|
+ Q.resize(L);
|
|
|
+
|
|
|
+ std::vector<std::vector<std::complex<double> > > Ha, Hb;
|
|
|
+ Ha.resize(L);
|
|
|
+ Hb.resize(L);
|
|
|
+
|
|
|
+ for (l = 0; l < L; l++) {
|
|
|
+ D1_mlxl[l].resize(nmax + 1);
|
|
|
+ D1_mlxlM1[l].resize(nmax + 1);
|
|
|
+
|
|
|
+ D3_mlxl[l].resize(nmax + 1);
|
|
|
+ D3_mlxlM1[l].resize(nmax + 1);
|
|
|
+
|
|
|
+ Q[l].resize(nmax + 1);
|
|
|
+
|
|
|
+ Ha[l].resize(nmax);
|
|
|
+ Hb[l].resize(nmax);
|
|
|
+ }
|
|
|
+
|
|
|
+ an.resize(nmax);
|
|
|
+ bn.resize(nmax);
|
|
|
+
|
|
|
+ std::vector<std::complex<double> > D1XL, D3XL;
|
|
|
+ D1XL.resize(nmax + 1);
|
|
|
+ D3XL.resize(nmax + 1);
|
|
|
+
|
|
|
+
|
|
|
+ std::vector<std::complex<double> > PsiXL, ZetaXL;
|
|
|
+ PsiXL.resize(nmax + 1);
|
|
|
+ ZetaXL.resize(nmax + 1);
|
|
|
+
|
|
|
+ //*************************************************//
|
|
|
+ // Calculate D1 and D3 for z1 in the first layer //
|
|
|
+ //*************************************************//
|
|
|
+ if (fl == pl) { // PEC layer
|
|
|
+ for (n = 0; n <= nmax; n++) {
|
|
|
+ D1_mlxl[fl][n] = std::complex<double>(0.0, -1.0);
|
|
|
+ D3_mlxl[fl][n] = std::complex<double>(0.0, 1.0);
|
|
|
+ }
|
|
|
+ } else { // Regular layer
|
|
|
+ z1 = x[fl]* m[fl];
|
|
|
+
|
|
|
+ // Calculate D1 and D3
|
|
|
+ calcD1D3(z1, nmax, D1_mlxl[fl], D3_mlxl[fl]);
|
|
|
}
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
|
|
|
- std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,
|
|
|
- double Pi, double Tau) {
|
|
|
- return calc_S1(n, an, bn, Tau, Pi);
|
|
|
+
|
|
|
+ //******************************************************************//
|
|
|
+ // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
|
|
|
+ //******************************************************************//
|
|
|
+ for (n = 0; n < nmax; n++) {
|
|
|
+ Ha[fl][n] = D1_mlxl[fl][n + 1];
|
|
|
+ Hb[fl][n] = D1_mlxl[fl][n + 1];
|
|
|
}
|
|
|
- //**********************************************************************************//
|
|
|
- // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a //
|
|
|
- // real argument (x). //
|
|
|
- // Equations (20a) - (21b) //
|
|
|
- // //
|
|
|
- // Input parameters: //
|
|
|
- // x: Real argument to evaluate Psi and Zeta //
|
|
|
- // nmax: Maximum number of terms to calculate Psi and Zeta //
|
|
|
- // //
|
|
|
- // Output parameters: //
|
|
|
- // Psi, Zeta: Riccati-Bessel functions //
|
|
|
- //**********************************************************************************//
|
|
|
- void MultiLayerMie::calcPsiZeta(double x,
|
|
|
- std::vector<std::complex<double> > D1,
|
|
|
- std::vector<std::complex<double> > D3,
|
|
|
- std::vector<std::complex<double> >& Psi,
|
|
|
- std::vector<std::complex<double> >& Zeta) {
|
|
|
- //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
|
|
|
- Psi[0] = std::complex<double>(sin(x), 0);
|
|
|
- Zeta[0] = std::complex<double>(sin(x), -cos(x));
|
|
|
- for (int n = 1; n <= nmax_; n++) {
|
|
|
- Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
|
|
|
- Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
|
|
|
+
|
|
|
+ //*****************************************************//
|
|
|
+ // Iteration from the second layer to the last one (L) //
|
|
|
+ //*****************************************************//
|
|
|
+ for (l = fl + 1; l < L; l++) {
|
|
|
+ //************************************************************//
|
|
|
+ //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L //
|
|
|
+ //************************************************************//
|
|
|
+ z1 = x[l]*m[l];
|
|
|
+ z2 = x[l - 1]*m[l];
|
|
|
+
|
|
|
+ //Calculate D1 and D3 for z1
|
|
|
+ calcD1D3(z1, nmax, D1_mlxl[l], D3_mlxl[l]);
|
|
|
+
|
|
|
+ //Calculate D1 and D3 for z2
|
|
|
+ calcD1D3(z2, nmax, D1_mlxlM1[l], D3_mlxlM1[l]);
|
|
|
+
|
|
|
+ //*********************************************//
|
|
|
+ //Calculate Q, Ha and Hb in the layers fl+1..L //
|
|
|
+ //*********************************************//
|
|
|
+
|
|
|
+ // Upward recurrence for Q - equations (19a) and (19b)
|
|
|
+ Num = exp(-2.0*(z1.imag() - z2.imag()))*std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
|
|
|
+ Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
|
|
|
+ Q[l][0] = Num/Denom;
|
|
|
+
|
|
|
+ for (n = 1; n <= nmax; n++) {
|
|
|
+ Num = (z1*D1_mlxl[l][n] + double(n))*(double(n) - z1*D3_mlxl[l][n - 1]);
|
|
|
+ Denom = (z2*D1_mlxlM1[l][n] + double(n))*(double(n) - z2*D3_mlxlM1[l][n - 1]);
|
|
|
+
|
|
|
+ Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1])*Num)/Denom;
|
|
|
}
|
|
|
|
|
|
- }
|
|
|
- //**********************************************************************************//
|
|
|
- // Function CONFRA ported from MIEV0.f (Wiscombe,1979)
|
|
|
- // Ref. to NCAR Technical Notes, Wiscombe, 1979
|
|
|
- /*
|
|
|
-c Compute Bessel function ratio A-sub-N from its
|
|
|
-c continued fraction using Lentz method
|
|
|
-
|
|
|
-c ZINV = Reciprocal of argument of A
|
|
|
-
|
|
|
-
|
|
|
-c I N T E R N A L V A R I A B L E S
|
|
|
-c ------------------------------------
|
|
|
-
|
|
|
-c CAK Term in continued fraction expansion of A (Eq. R25)
|
|
|
-c a_k
|
|
|
-
|
|
|
-c CAPT Factor used in Lentz iteration for A (Eq. R27)
|
|
|
-c T_k
|
|
|
-
|
|
|
-c CNUMER Numerator in capT ( Eq. R28A )
|
|
|
-c N_k
|
|
|
-c CDENOM Denominator in capT ( Eq. R28B )
|
|
|
-c D_k
|
|
|
-
|
|
|
-c CDTD Product of two successive denominators of capT factors
|
|
|
-c ( Eq. R34C )
|
|
|
-c xi_1
|
|
|
-
|
|
|
-c CNTN Product of two successive numerators of capT factors
|
|
|
-c ( Eq. R34B )
|
|
|
-c xi_2
|
|
|
-
|
|
|
-c EPS1 Ill-conditioning criterion
|
|
|
-c EPS2 Convergence criterion
|
|
|
-
|
|
|
-c KK Subscript k of cAk ( Eq. R25B )
|
|
|
-c k
|
|
|
-
|
|
|
-c KOUNT Iteration counter ( used to prevent infinite looping )
|
|
|
-
|
|
|
-c MAXIT Max. allowed no. of iterations
|
|
|
-
|
|
|
-c MM + 1 and - 1, alternately
|
|
|
-*/
|
|
|
- std::complex<double> MultiLayerMie::calcD1confra(const int N, const std::complex<double> z) {
|
|
|
- // NTMR -> nmax_ -1 \\TODO nmax_ ?
|
|
|
- //int N = nmax_ - 1;
|
|
|
- int KK, KOUNT, MAXIT = 10000, MM;
|
|
|
- // double EPS1=1.0e-2;
|
|
|
- double EPS2=1.0e-8;
|
|
|
- std::complex<double> CAK, CAPT, CDENOM, CDTD, CNTN, CNUMER;
|
|
|
- std::complex<double> one = std::complex<double>(1.0,0.0);
|
|
|
- std::complex<double> ZINV = one/z;
|
|
|
-// c ** Eq. R25a
|
|
|
- std::complex<double> CONFRA = static_cast<std::complex<double> >(N+1)*ZINV; //debug ZINV
|
|
|
- MM = -1;
|
|
|
- KK = 2*N +3; //debug 3
|
|
|
-// c ** Eq. R25b, k=2
|
|
|
- CAK = static_cast<std::complex<double> >(MM*KK) * ZINV; //debug -3 ZINV
|
|
|
- CDENOM = CAK;
|
|
|
- CNUMER = CDENOM + one / CONFRA; //-3zinv+z
|
|
|
- KOUNT = 1;
|
|
|
- //10 CONTINUE
|
|
|
- do { ++KOUNT;
|
|
|
- if (KOUNT > MAXIT) {
|
|
|
- printf("re(%g):im(%g)\t\n", CONFRA.real(), CONFRA.imag());
|
|
|
- throw std::invalid_argument("ConFra--Iteration failed to converge!\n");
|
|
|
+ // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
|
|
|
+ for (n = 1; n <= nmax; n++) {
|
|
|
+ //Ha
|
|
|
+ if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
+ G1 = -D1_mlxlM1[l][n];
|
|
|
+ G2 = -D3_mlxlM1[l][n];
|
|
|
+ } else {
|
|
|
+ G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[l][n]);
|
|
|
+ G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[l][n]);
|
|
|
}
|
|
|
- MM *= -1; KK += 2; //debug mm=1 kk=5
|
|
|
- CAK = static_cast<std::complex<double> >(MM*KK) * ZINV; // ** Eq. R25b //debug 5zinv
|
|
|
- // //c ** Eq. R32 Ill-conditioned case -- stride two terms instead of one
|
|
|
- // if (std::abs( CNUMER / CAK ) >= EPS1 || std::abs( CDENOM / CAK ) >= EPS1) {
|
|
|
- // //c ** Eq. R34
|
|
|
- // CNTN = CAK * CNUMER + 1.0;
|
|
|
- // CDTD = CAK * CDENOM + 1.0;
|
|
|
- // CONFRA = ( CNTN / CDTD ) * CONFRA; // ** Eq. R33
|
|
|
- // MM *= -1; KK += 2;
|
|
|
- // CAK = static_cast<std::complex<double> >(MM*KK) * ZINV; // ** Eq. R25b
|
|
|
- // //c ** Eq. R35
|
|
|
- // CNUMER = CAK + CNUMER / CNTN;
|
|
|
- // CDENOM = CAK + CDENOM / CDTD;
|
|
|
- // ++KOUNT;
|
|
|
- // //GO TO 10
|
|
|
- // continue;
|
|
|
- // } else { //c *** Well-conditioned case
|
|
|
- {
|
|
|
- CAPT = CNUMER / CDENOM; // ** Eq. R27 //debug (-3zinv + z)/(-3zinv)
|
|
|
- // printf("re(%g):im(%g)**\t", CAPT.real(), CAPT.imag());
|
|
|
- CONFRA = CAPT * CONFRA; // ** Eq. R26
|
|
|
- //if (N == 0) {output=true;printf(" re:");prn(CONFRA.real());printf(" im:"); prn(CONFRA.imag());output=false;};
|
|
|
- //c ** Check for convergence; Eq. R31
|
|
|
- if ( std::abs(CAPT.real() - 1.0) >= EPS2 || std::abs(CAPT.imag()) >= EPS2 ) {
|
|
|
-//c ** Eq. R30
|
|
|
- CNUMER = CAK + one/CNUMER;
|
|
|
- CDENOM = CAK + one/CDENOM;
|
|
|
- continue;
|
|
|
- //GO TO 10
|
|
|
- } // end of if < eps2
|
|
|
+
|
|
|
+ Temp = Q[l][n]*G1;
|
|
|
+
|
|
|
+ Num = (G2*D1_mlxl[l][n]) - (Temp*D3_mlxl[l][n]);
|
|
|
+ Denom = G2 - Temp;
|
|
|
+
|
|
|
+ Ha[l][n - 1] = Num/Denom;
|
|
|
+
|
|
|
+ //Hb
|
|
|
+ if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
+ G1 = Hb[l - 1][n - 1];
|
|
|
+ G2 = Hb[l - 1][n - 1];
|
|
|
+ } else {
|
|
|
+ G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[l][n]);
|
|
|
+ G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[l][n]);
|
|
|
}
|
|
|
- break;
|
|
|
- } while(1);
|
|
|
- //if (N == 0) printf(" return confra for z=(%g,%g)\n", ZINV.real(), ZINV.imag());
|
|
|
- return CONFRA;
|
|
|
- }
|
|
|
- //**********************************************************************************//
|
|
|
- // This function calculates the logarithmic derivatives of the Riccati-Bessel //
|
|
|
- // functions (D1 and D3) for a complex argument (z). //
|
|
|
- // Equations (16a), (16b) and (18a) - (18d) //
|
|
|
- // //
|
|
|
- // Input parameters: //
|
|
|
- // z: Complex argument to evaluate D1 and D3 //
|
|
|
- // nmax_: Maximum number of terms to calculate D1 and D3 //
|
|
|
- // //
|
|
|
- // Output parameters: //
|
|
|
- // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
|
|
|
- //**********************************************************************************//
|
|
|
- void MultiLayerMie::calcD1D3(const std::complex<double> z,
|
|
|
- std::vector<std::complex<double> >& D1,
|
|
|
- std::vector<std::complex<double> >& D3) {
|
|
|
- // Downward recurrence for D1 - equations (16a) and (16b)
|
|
|
- D1[nmax_] = std::complex<double>(0.0, 0.0);
|
|
|
- //D1[nmax_] = calcD1confra(nmax_, z);
|
|
|
- const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;
|
|
|
-
|
|
|
- // printf(" D:");prn((D1[nmax_]).real()); printf("\t diff:");
|
|
|
- // prn((D1[nmax_] + double(nmax_)*zinv).real());
|
|
|
- for (int n = nmax_; n > 0; n--) {
|
|
|
- D1[n - 1] = double(n)*zinv - 1.0/(D1[n] + double(n)*zinv);
|
|
|
- //D1[n-1] = calcD1confra(n-1, z);
|
|
|
- // printf(" D:");prn((D1[n-1]).real()); printf("\t diff:");
|
|
|
- // prn((D1[n] + double(n)*zinv).real());
|
|
|
+
|
|
|
+ Temp = Q[l][n]*G1;
|
|
|
+
|
|
|
+ Num = (G2*D1_mlxl[l][n]) - (Temp* D3_mlxl[l][n]);
|
|
|
+ Denom = (G2- Temp);
|
|
|
+
|
|
|
+ Hb[l][n - 1] = (Num/ Denom);
|
|
|
}
|
|
|
- // printf("\n\n"); iformat=0;
|
|
|
- if (std::abs(D1[0]) > 100000.0 )
|
|
|
- throw std::invalid_argument
|
|
|
- ("Unstable D1! Please, try to change input parameters!\n");
|
|
|
- // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
|
|
|
- PsiZeta_[0] = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))
|
|
|
- *exp(-2.0*z.imag()));
|
|
|
- D3[0] = std::complex<double>(0.0, 1.0);
|
|
|
- for (int n = 1; n <= nmax_; n++) {
|
|
|
- PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<double>(n)*zinv - D1[n - 1])
|
|
|
- *(static_cast<double>(n)*zinv- D3[n - 1]);
|
|
|
- D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta_[n];
|
|
|
+ }
|
|
|
+
|
|
|
+ //**************************************//
|
|
|
+ //Calculate D1, D3, Psi and Zeta for XL //
|
|
|
+ //**************************************//
|
|
|
+
|
|
|
+ // Calculate D1XL and D3XL
|
|
|
+ calcD1D3(x[L - 1], nmax, D1XL, D3XL);
|
|
|
+
|
|
|
+ // Calculate PsiXL and ZetaXL
|
|
|
+ calcPsiZeta(x[L - 1], nmax, D1XL, D3XL, PsiXL, ZetaXL);
|
|
|
+
|
|
|
+ //*********************************************************************//
|
|
|
+ // Finally, we calculate the scattering coefficients (an and bn) and //
|
|
|
+ // the angular functions (Pi and Tau). Note that for these arrays the //
|
|
|
+ // first layer is 0 (zero), in future versions all arrays will follow //
|
|
|
+ // this convention to save memory. (13 Nov, 2014) //
|
|
|
+ //*********************************************************************//
|
|
|
+ for (n = 0; n < nmax; n++) {
|
|
|
+ //********************************************************************//
|
|
|
+ //Expressions for calculating an and bn coefficients are not valid if //
|
|
|
+ //there is only one PEC layer (ie, for a simple PEC sphere). //
|
|
|
+ //********************************************************************//
|
|
|
+ if (pl < (L - 1)) {
|
|
|
+ an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
+ bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
+ } else {
|
|
|
+ an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
+ bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
|
|
|
}
|
|
|
}
|
|
|
- //**********************************************************************************//
|
|
|
- // This function calculates Pi and Tau for all values of Theta. //
|
|
|
- // Equations (26a) - (26c) //
|
|
|
- // //
|
|
|
- // Input parameters: //
|
|
|
- // nmax_: Maximum number of terms to calculate Pi and Tau //
|
|
|
- // nTheta: Number of scattering angles //
|
|
|
- // Theta: Array containing all the scattering angles where the scattering //
|
|
|
- // amplitudes will be calculated //
|
|
|
- // //
|
|
|
- // Output parameters: //
|
|
|
- // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
|
|
|
- //**********************************************************************************//
|
|
|
- void MultiLayerMie::calcPiTau(std::vector< std::vector<double> >& Pi,
|
|
|
- std::vector< std::vector<double> >& Tau) {
|
|
|
+
|
|
|
+ return nmax;
|
|
|
+}
|
|
|
+
|
|
|
+//**********************************************************************************//
|
|
|
+// This function calculates the actual scattering parameters and amplitudes //
|
|
|
+// //
|
|
|
+// Input parameters: //
|
|
|
+// L: Number of layers //
|
|
|
+// pl: Index of PEC layer. If there is none just send -1 //
|
|
|
+// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+// nTheta: Number of scattering angles //
|
|
|
+// Theta: Array containing all the scattering angles where the scattering //
|
|
|
+// amplitudes will be calculated //
|
|
|
+// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+// calculations. Only use it if you know what you are doing, otherwise //
|
|
|
+// set this parameter to -1 and the function will calculate it //
|
|
|
+// //
|
|
|
+// Output parameters: //
|
|
|
+// Qext: Efficiency factor for extinction //
|
|
|
+// Qsca: Efficiency factor for scattering //
|
|
|
+// Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
+// Qbk: Efficiency factor for backscattering //
|
|
|
+// Qpr: Efficiency factor for the radiation pressure //
|
|
|
+// g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
+// Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
+// S1, S2: Complex scattering amplitudes //
|
|
|
+// //
|
|
|
+// Return value: //
|
|
|
+// Number of multipolar expansion terms used for the calculations //
|
|
|
+//**********************************************************************************//
|
|
|
+
|
|
|
+int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
+ int nTheta, std::vector<double> Theta, int nmax,
|
|
|
+ double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
|
|
|
+ std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
+
|
|
|
+ int i, n, t;
|
|
|
+ std::vector<std::complex<double> > an, bn;
|
|
|
+ std::complex<double> Qbktmp;
|
|
|
+
|
|
|
+ // Calculate scattering coefficients
|
|
|
+ nmax = ScattCoeffs(L, pl, x, m, nmax, an, bn);
|
|
|
+
|
|
|
+ std::vector<double> Pi, Tau;
|
|
|
+ Pi.resize(nmax);
|
|
|
+ Tau.resize(nmax);
|
|
|
+
|
|
|
+ double x2 = x[L - 1]*x[L - 1];
|
|
|
+
|
|
|
+ // Initialize the scattering parameters
|
|
|
+ *Qext = 0;
|
|
|
+ *Qsca = 0;
|
|
|
+ *Qabs = 0;
|
|
|
+ *Qbk = 0;
|
|
|
+ Qbktmp = std::complex<double>(0.0, 0.0);
|
|
|
+ *Qpr = 0;
|
|
|
+ *g = 0;
|
|
|
+ *Albedo = 0;
|
|
|
+
|
|
|
+ // Initialize the scattering amplitudes
|
|
|
+ for (t = 0; t < nTheta; t++) {
|
|
|
+ S1[t] = std::complex<double>(0.0, 0.0);
|
|
|
+ S2[t] = std::complex<double>(0.0, 0.0);
|
|
|
+ }
|
|
|
+
|
|
|
+ // By using downward recurrence we avoid loss of precision due to float rounding errors
|
|
|
+ // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
|
|
|
+ // http://en.wikipedia.org/wiki/Loss_of_significance
|
|
|
+ for (i = nmax - 2; i >= 0; i--) {
|
|
|
+ n = i + 1;
|
|
|
+ // Equation (27)
|
|
|
+ *Qext += (n + n + 1)*(an[i].real() + bn[i].real());
|
|
|
+ // Equation (28)
|
|
|
+ *Qsca += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag() + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag());
|
|
|
+ // Equation (29) TODO We must check carefully this equation. If we
|
|
|
+ // remove the typecast to double then the result changes. Which is
|
|
|
+ // the correct one??? Ovidio (2014/12/10) With cast ratio will
|
|
|
+ // give double, without cast (n + n + 1)/(n*(n + 1)) will be
|
|
|
+ // rounded to integer. Tig (2015/02/24)
|
|
|
+ *Qpr += ((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real());
|
|
|
+ // Equation (33)
|
|
|
+ Qbktmp = Qbktmp + (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]);
|
|
|
+
|
|
|
//****************************************************//
|
|
|
- // Equations (26a) - (26c) //
|
|
|
+ // Calculate the scattering amplitudes (S1 and S2) //
|
|
|
+ // Equations (25a) - (25b) //
|
|
|
//****************************************************//
|
|
|
- std::vector<double> costheta(theta_.size(), 0.0);
|
|
|
- for (int t = 0; t < theta_.size(); t++) {
|
|
|
- costheta[t] = cos(theta_[t]);
|
|
|
- }
|
|
|
- for (int n = 0; n < nmax_; n++) {
|
|
|
- for (int t = 0; t < theta_.size(); t++) {
|
|
|
- if (n == 0) {
|
|
|
- // Initialize Pi and Tau
|
|
|
- Pi[n][t] = 1.0;
|
|
|
- Tau[n][t] = (n + 1)*costheta[t];
|
|
|
- } else {
|
|
|
- // Calculate the actual values
|
|
|
- Pi[n][t] = ((n == 1) ? ((n + n + 1)*costheta[t]*Pi[n - 1][t]/n)
|
|
|
- : (((n + n + 1)*costheta[t]*Pi[n - 1][t]
|
|
|
- - (n + 1)*Pi[n - 2][t])/n));
|
|
|
- Tau[n][t] = (n + 1)*costheta[t]*Pi[n][t] - (n + 2)*Pi[n - 1][t];
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- //**********************************************************************************//
|
|
|
- // This function calculates the scattering coefficients required to calculate //
|
|
|
- // both the near- and far-field parameters. //
|
|
|
- // //
|
|
|
- // Input parameters: //
|
|
|
- // L: Number of layers //
|
|
|
- // pl: Index of PEC layer. If there is none just send -1 //
|
|
|
- // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
- // nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
- // calculations. Only use it if you know what you are doing, otherwise //
|
|
|
- // set this parameter to -1 and the function will calculate it. //
|
|
|
- // //
|
|
|
- // Output parameters: //
|
|
|
- // an, bn: Complex scattering amplitudes //
|
|
|
- // //
|
|
|
- // Return value: //
|
|
|
- // Number of multipolar expansion terms used for the calculations //
|
|
|
- //**********************************************************************************//
|
|
|
- void MultiLayerMie::ScattCoeffs(std::vector<std::complex<double> >& an,
|
|
|
- std::vector<std::complex<double> >& bn) {
|
|
|
- const std::vector<double>& x = size_parameter_;
|
|
|
- const std::vector<std::complex<double> >& m = index_;
|
|
|
- const int& pl = PEC_layer_position_;
|
|
|
- const int L = index_.size();
|
|
|
- //************************************************************************//
|
|
|
- // Calculate the index of the first layer. It can be either 0
|
|
|
- // (default) // or the index of the outermost PEC layer. In the
|
|
|
- // latter case all layers // below the PEC are discarded. //
|
|
|
- // ************************************************************************//
|
|
|
- // TODO, is it possible for PEC to have a zero index? If yes than
|
|
|
- // is should be:
|
|
|
- // int fl = (pl > -1) ? pl : 0;
|
|
|
- // This will give the same result, however, it corresponds the
|
|
|
- // logic - if there is PEC, than first layer is PEC.
|
|
|
- int fl = (pl > 0) ? pl : 0;
|
|
|
- if (nmax_ <= 0) Nmax(fl);
|
|
|
-
|
|
|
- std::complex<double> z1, z2;
|
|
|
- //**************************************************************************//
|
|
|
- // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
|
|
|
- // means that index = layer number - 1 or index = n - 1. The only exception //
|
|
|
- // are the arrays for representing D1, D3 and Q because they need a value //
|
|
|
- // for the index 0 (zero), hence it is important to consider this shift //
|
|
|
- // between different arrays. The change was done to optimize memory usage. //
|
|
|
- //**************************************************************************//
|
|
|
- // Allocate memory to the arrays
|
|
|
- std::vector<std::complex<double> > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1),
|
|
|
- D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1);
|
|
|
- std::vector<std::vector<std::complex<double> > > Q(L), Ha(L), Hb(L);
|
|
|
- for (int l = 0; l < L; l++) {
|
|
|
- // D1_mlxl[l].resize(nmax_ + 1);
|
|
|
- // D1_mlxlM1[l].resize(nmax_ + 1);
|
|
|
- // D3_mlxl[l].resize(nmax_ + 1);
|
|
|
- // D3_mlxlM1[l].resize(nmax_ + 1);
|
|
|
- Q[l].resize(nmax_ + 1);
|
|
|
- Ha[l].resize(nmax_);
|
|
|
- Hb[l].resize(nmax_);
|
|
|
- }
|
|
|
- an.resize(nmax_);
|
|
|
- bn.resize(nmax_);
|
|
|
- PsiZeta_.resize(nmax_ + 1);
|
|
|
- std::vector<std::complex<double> > D1XL(nmax_ + 1), D3XL(nmax_ + 1),
|
|
|
- PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);
|
|
|
- //*************************************************//
|
|
|
- // Calculate D1 and D3 for z1 in the first layer //
|
|
|
- //*************************************************//
|
|
|
- if (fl == pl) { // PEC layer
|
|
|
- for (int n = 0; n <= nmax_; n++) {
|
|
|
- D1_mlxl[n] = std::complex<double>(0.0, -1.0);
|
|
|
- D3_mlxl[n] = std::complex<double>(0.0, 1.0);
|
|
|
- }
|
|
|
- } else { // Regular layer
|
|
|
- z1 = x[fl]* m[fl];
|
|
|
- // Calculate D1 and D3
|
|
|
- calcD1D3(z1, D1_mlxl, D3_mlxl);
|
|
|
- }
|
|
|
- // do { \
|
|
|
- // ++iformat;\
|
|
|
- // if (iformat%5 == 0) printf("%24.16e",z1.real()); \
|
|
|
- // } while (false);
|
|
|
- //******************************************************************//
|
|
|
- // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
|
|
|
- //******************************************************************//
|
|
|
- for (int n = 0; n < nmax_; n++) {
|
|
|
- Ha[fl][n] = D1_mlxl[n + 1];
|
|
|
- Hb[fl][n] = D1_mlxl[n + 1];
|
|
|
- }
|
|
|
- //*****************************************************//
|
|
|
- // Iteration from the second layer to the last one (L) //
|
|
|
- //*****************************************************//
|
|
|
- std::complex<double> Temp, Num, Denom;
|
|
|
- std::complex<double> G1, G2;
|
|
|
- for (int l = fl + 1; l < L; l++) {
|
|
|
- //************************************************************//
|
|
|
- //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L //
|
|
|
- //************************************************************//
|
|
|
- z1 = x[l]*m[l];
|
|
|
- z2 = x[l - 1]*m[l];
|
|
|
- //Calculate D1 and D3 for z1
|
|
|
- calcD1D3(z1, D1_mlxl, D3_mlxl);
|
|
|
- //Calculate D1 and D3 for z2
|
|
|
- calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
|
|
|
- // prn(z1.real());
|
|
|
- // for ( auto i : D1_mlxl) { prn(i.real());
|
|
|
- // // prn(i.imag());
|
|
|
- // } printf("\n");
|
|
|
-
|
|
|
- //*********************************************//
|
|
|
- //Calculate Q, Ha and Hb in the layers fl+1..L //
|
|
|
- //*********************************************//
|
|
|
- // Upward recurrence for Q - equations (19a) and (19b)
|
|
|
- Num = exp(-2.0*(z1.imag() - z2.imag()))
|
|
|
- * std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
|
|
|
- Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
|
|
|
- Q[l][0] = Num/Denom;
|
|
|
- for (int n = 1; n <= nmax_; n++) {
|
|
|
- Num = (z1*D1_mlxl[n] + double(n))*(double(n) - z1*D3_mlxl[n - 1]);
|
|
|
- Denom = (z2*D1_mlxlM1[n] + double(n))*(double(n) - z2*D3_mlxlM1[n - 1]);
|
|
|
- Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
|
|
|
- }
|
|
|
- // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
|
|
|
- for (int n = 1; n <= nmax_; n++) {
|
|
|
- //Ha
|
|
|
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
- G1 = -D1_mlxlM1[n];
|
|
|
- G2 = -D3_mlxlM1[n];
|
|
|
- } else {
|
|
|
- G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
|
|
|
- G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
|
|
|
- } // end of if PEC
|
|
|
- Temp = Q[l][n]*G1;
|
|
|
- Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
|
|
|
- Denom = G2 - Temp;
|
|
|
- Ha[l][n - 1] = Num/Denom;
|
|
|
- //Hb
|
|
|
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
- G1 = Hb[l - 1][n - 1];
|
|
|
- G2 = Hb[l - 1][n - 1];
|
|
|
- } else {
|
|
|
- G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
|
|
|
- G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
|
|
|
- } // end of if PEC
|
|
|
-
|
|
|
- Temp = Q[l][n]*G1;
|
|
|
- Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
|
|
|
- Denom = (G2- Temp);
|
|
|
- Hb[l][n - 1] = (Num/ Denom);
|
|
|
- } // end of for Ha and Hb terms
|
|
|
- } // end of for layers iteration
|
|
|
- //**************************************//
|
|
|
- //Calculate D1, D3, Psi and Zeta for XL //
|
|
|
- //**************************************//
|
|
|
- // Calculate D1XL and D3XL
|
|
|
- calcD1D3(x[L - 1], D1XL, D3XL);
|
|
|
- //printf("%5.20f\n",Ha[L-1][0].real());
|
|
|
- // Calculate PsiXL and ZetaXL
|
|
|
- calcPsiZeta(x[L - 1], D1XL, D3XL, PsiXL, ZetaXL);
|
|
|
- //*********************************************************************//
|
|
|
- // Finally, we calculate the scattering coefficients (an and bn) and //
|
|
|
- // the angular functions (Pi and Tau). Note that for these arrays the //
|
|
|
- // first layer is 0 (zero), in future versions all arrays will follow //
|
|
|
- // this convention to save memory. (13 Nov, 2014) //
|
|
|
- //*********************************************************************//
|
|
|
- for (int n = 0; n < nmax_; n++) {
|
|
|
- //********************************************************************//
|
|
|
- //Expressions for calculating an and bn coefficients are not valid if //
|
|
|
- //there is only one PEC layer (ie, for a simple PEC sphere). //
|
|
|
- //********************************************************************//
|
|
|
- if (pl < (L - 1)) {
|
|
|
- an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
- bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
- } else {
|
|
|
- an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
- bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
|
|
|
- }
|
|
|
- } // end of for an and bn terms
|
|
|
- } // end of void MultiLayerMie::ScattCoeffs(...)
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::InitMieCalculations() {
|
|
|
- // Initialize the scattering parameters
|
|
|
- Qext_ = 0;
|
|
|
- Qsca_ = 0;
|
|
|
- Qabs_ = 0;
|
|
|
- Qbk_ = 0;
|
|
|
- Qpr_ = 0;
|
|
|
- asymmetry_factor_ = 0;
|
|
|
- albedo_ = 0;
|
|
|
- Qsca_ch_.clear();
|
|
|
- Qext_ch_.clear();
|
|
|
- Qabs_ch_.clear();
|
|
|
- Qbk_ch_.clear();
|
|
|
- Qpr_ch_.clear();
|
|
|
- Qsca_ch_.resize(nmax_-1);
|
|
|
- Qext_ch_.resize(nmax_-1);
|
|
|
- Qabs_ch_.resize(nmax_-1);
|
|
|
- Qbk_ch_.resize(nmax_-1);
|
|
|
- Qpr_ch_.resize(nmax_-1);
|
|
|
- // Initialize the scattering amplitudes
|
|
|
- std::vector<std::complex<double> > tmp1(theta_.size(),std::complex<double>(0.0, 0.0));
|
|
|
- S1_.swap(tmp1);
|
|
|
- S2_ = S1_;
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::ConvertToSP() {
|
|
|
- if (target_width_.size() + coating_width_.size() == 0)
|
|
|
- return; // Nothing to convert, we suppose that SP was set directly
|
|
|
- GenerateSizeParameter();
|
|
|
- GenerateIndex();
|
|
|
- if (size_parameter_.size() != index_.size())
|
|
|
- throw std::invalid_argument("Ivalid conversion of width to size parameter units!/n");
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- //**********************************************************************************//
|
|
|
- // This function calculates the actual scattering parameters and amplitudes //
|
|
|
- // //
|
|
|
- // Input parameters: //
|
|
|
- // L: Number of layers //
|
|
|
- // pl: Index of PEC layer. If there is none just send -1 //
|
|
|
- // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
- // nTheta: Number of scattering angles //
|
|
|
- // Theta: Array containing all the scattering angles where the scattering //
|
|
|
- // amplitudes will be calculated //
|
|
|
- // nmax_: Maximum number of multipolar expansion terms to be used for the //
|
|
|
- // calculations. Only use it if you know what you are doing, otherwise //
|
|
|
- // set this parameter to -1 and the function will calculate it //
|
|
|
- // //
|
|
|
- // Output parameters: //
|
|
|
- // Qext: Efficiency factor for extinction //
|
|
|
- // Qsca: Efficiency factor for scattering //
|
|
|
- // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
- // Qbk: Efficiency factor for backscattering //
|
|
|
- // Qpr: Efficiency factor for the radiation pressure //
|
|
|
- // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
- // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
- // S1, S2: Complex scattering amplitudes //
|
|
|
- // //
|
|
|
- // Return value: //
|
|
|
- // Number of multipolar expansion terms used for the calculations //
|
|
|
- //**********************************************************************************//
|
|
|
- void MultiLayerMie::RunMieCalculations() {
|
|
|
- ConvertToSP();
|
|
|
- nmax_ = nmax_preset_;
|
|
|
- if (size_parameter_.size() != index_.size())
|
|
|
- throw std::invalid_argument("Each size parameter should have only one index!");
|
|
|
- if (size_parameter_.size() == 0)
|
|
|
- throw std::invalid_argument("Initialize model first!");
|
|
|
- std::vector<std::complex<double> > an, bn;
|
|
|
- const std::vector<double>& x = size_parameter_;
|
|
|
- // Calculate scattering coefficients
|
|
|
- ScattCoeffs(an, bn);
|
|
|
-
|
|
|
- // std::vector< std::vector<double> > Pi(nmax_), Tau(nmax_);
|
|
|
- std::vector< std::vector<double> > Pi, Tau;
|
|
|
- Pi.resize(nmax_);
|
|
|
- Tau.resize(nmax_);
|
|
|
- for (int i =0; i< nmax_; ++i) {
|
|
|
- Pi[i].resize(theta_.size());
|
|
|
- Tau[i].resize(theta_.size());
|
|
|
- }
|
|
|
- calcPiTau(Pi, Tau);
|
|
|
- InitMieCalculations(); //
|
|
|
- std::complex<double> Qbktmp(0.0, 0.0);
|
|
|
- std::vector< std::complex<double> > Qbktmp_ch(nmax_ - 1, Qbktmp);
|
|
|
- // By using downward recurrence we avoid loss of precision due to float rounding errors
|
|
|
- // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
|
|
|
- // http://en.wikipedia.org/wiki/Loss_of_significance
|
|
|
- for (int i = nmax_ - 2; i >= 0; i--) {
|
|
|
- const int n = i + 1;
|
|
|
- // Equation (27)
|
|
|
- Qext_ch_[i] = (n + n + 1)*(an[i].real() + bn[i].real());
|
|
|
- Qext_ += Qext_ch_[i];
|
|
|
- // Equation (28)
|
|
|
- Qsca_ch_[i] += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag()
|
|
|
- + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag());
|
|
|
- Qsca_ += Qsca_ch_[i];
|
|
|
- //printf(" %g:%g", Qext_ch_[i], Qsca_ch_[i]);
|
|
|
- // Equation (29) TODO We must check carefully this equation. If we
|
|
|
- // remove the typecast to double then the result changes. Which is
|
|
|
- // the correct one??? Ovidio (2014/12/10) With cast ratio will
|
|
|
- // give double, without cast (n + n + 1)/(n*(n + 1)) will be
|
|
|
- // rounded to integer. Tig (2015/02/24)
|
|
|
- Qpr_ch_[i]=((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real())
|
|
|
- + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real());
|
|
|
- Qpr_ += Qpr_ch_[i];
|
|
|
- // Equation (33)
|
|
|
- Qbktmp_ch[i] = (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]);
|
|
|
- Qbktmp += Qbktmp_ch[i];
|
|
|
- // Calculate the scattering amplitudes (S1 and S2) //
|
|
|
- // Equations (25a) - (25b) //
|
|
|
- for (int t = 0; t < theta_.size(); t++) {
|
|
|
- S1_[t] += calc_S1(n, an[i], bn[i], Pi[i][t], Tau[i][t]);
|
|
|
- S2_[t] += calc_S2(n, an[i], bn[i], Pi[i][t], Tau[i][t]);
|
|
|
- }
|
|
|
+ for (t = 0; t < nTheta; t++) {
|
|
|
+ calcPiTau(nmax, Theta[t], Pi, Tau);
|
|
|
+
|
|
|
+ S1[t] += calc_S1(n, an[i], bn[i], Pi[i], Tau[i]);
|
|
|
+ S2[t] += calc_S2(n, an[i], bn[i], Pi[i], Tau[i]);
|
|
|
}
|
|
|
- double x2 = pow2(x.back());
|
|
|
- Qext_ = 2.0*(Qext_)/x2; // Equation (27)
|
|
|
- for (double& Q : Qext_ch_) Q = 2.0*Q/x2;
|
|
|
- Qsca_ = 2.0*(Qsca_)/x2; // Equation (28)
|
|
|
- for (double& Q : Qsca_ch_) Q = 2.0*Q/x2;
|
|
|
- Qpr_ = Qext_ - 4.0*(Qpr_)/x2; // Equation (29)
|
|
|
- for (int i = 0; i < nmax_ - 1; ++i) Qpr_ch_[i] = Qext_ch_[i] - 4.0*Qpr_ch_[i]/x2;
|
|
|
-
|
|
|
- Qabs_ = Qext_ - Qsca_; // Equation (30)
|
|
|
- for (int i = 0; i < nmax_ - 1; ++i) Qabs_ch_[i] = Qext_ch_[i] - Qsca_ch_[i];
|
|
|
-
|
|
|
- albedo_ = Qsca_ / Qext_; // Equation (31)
|
|
|
- asymmetry_factor_ = (Qext_ - Qpr_) / Qsca_; // Equation (32)
|
|
|
-
|
|
|
- Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
|
|
|
-
|
|
|
- isMieCalculated_ = true;
|
|
|
- nmax_used_ = nmax_;
|
|
|
- //return nmax;
|
|
|
}
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // external scattering field = incident + scattered
|
|
|
- // BH p.92 (4.37), 94 (4.45), 95 (4.50)
|
|
|
- // assume: medium is non-absorbing; refim = 0; Uabs = 0
|
|
|
- void MultiLayerMie::fieldExt(double Rho, double Phi, double Theta, std::vector<double> Pi, std::vector<double> Tau,
|
|
|
- std::vector<std::complex<double> > an, std::vector<std::complex<double> > bn,
|
|
|
- std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
|
|
|
-
|
|
|
-
|
|
|
- double rn = 0.0;
|
|
|
- std::complex<double> zn, xxip, encap;
|
|
|
- std::vector<std::complex<double> > vm3o1n, vm3e1n, vn3o1n, vn3e1n;
|
|
|
- vm3o1n.resize(3);
|
|
|
- vm3e1n.resize(3);
|
|
|
- vn3o1n.resize(3);
|
|
|
- vn3e1n.resize(3);
|
|
|
-
|
|
|
- std::vector<std::complex<double> > Ei, Hi, Es, Hs;
|
|
|
- Ei.resize(3);
|
|
|
- Hi.resize(3);
|
|
|
- Es.resize(3);
|
|
|
- Hs.resize(3);
|
|
|
- for (int i = 0; i < 3; i++) {
|
|
|
- Ei[i] = std::complex<double>(0.0, 0.0);
|
|
|
- Hi[i] = std::complex<double>(0.0, 0.0);
|
|
|
- Es[i] = std::complex<double>(0.0, 0.0);
|
|
|
- Hs[i] = std::complex<double>(0.0, 0.0);
|
|
|
- }
|
|
|
|
|
|
- std::vector<std::complex<double> > bj, by, bd;
|
|
|
- bj.resize(nmax_);
|
|
|
- by.resize(nmax_);
|
|
|
- bd.resize(nmax_);
|
|
|
-
|
|
|
- // Calculate spherical Bessel and Hankel functions
|
|
|
- sphericalBessel(Rho, bj, by, bd);
|
|
|
-
|
|
|
- for (int n = 0; n < nmax_; n++) {
|
|
|
- rn = double(n + 1);
|
|
|
-
|
|
|
- zn = bj[n] + std::complex<double>(0.0, 1.0)*by[n];
|
|
|
- xxip = Rho*(bj[n] + std::complex<double>(0.0, 1.0)*by[n]) - rn*zn;
|
|
|
-
|
|
|
- vm3o1n[0] = std::complex<double>(0.0, 0.0);
|
|
|
- vm3o1n[1] = std::cos(Phi)*Pi[n]*zn;
|
|
|
- vm3o1n[2] = -(std::sin(Phi)*Tau[n]*zn);
|
|
|
- vm3e1n[0] = std::complex<double>(0.0, 0.0);
|
|
|
- vm3e1n[1] = -(std::sin(Phi)*Pi[n]*zn);
|
|
|
- vm3e1n[2] = -(std::cos(Phi)*Tau[n]*zn);
|
|
|
- vn3o1n[0] = std::sin(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
|
|
|
- vn3o1n[1] = std::sin(Phi)*Tau[n]*xxip/Rho;
|
|
|
- vn3o1n[2] = std::cos(Phi)*Pi[n]*xxip/Rho;
|
|
|
- vn3e1n[0] = std::cos(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
|
|
|
- vn3e1n[1] = std::cos(Phi)*Tau[n]*xxip/Rho;
|
|
|
- vn3e1n[2] = -(std::sin(Phi)*Pi[n]*xxip/Rho);
|
|
|
-
|
|
|
- // scattered field: BH p.94 (4.45)
|
|
|
- encap = std::pow(std::complex<double>(0.0, 1.0), rn)*(2.0*rn + 1.0)/(rn*(rn + 1.0));
|
|
|
- for (int i = 0; i < 3; i++) {
|
|
|
- Es[i] = Es[i] + encap*(std::complex<double>(0.0, 1.0)*an[n]*vn3e1n[i] - bn[n]*vm3o1n[i]);
|
|
|
- Hs[i] = Hs[i] + encap*(std::complex<double>(0.0, 1.0)*bn[n]*vn3o1n[i] + an[n]*vm3e1n[i]);
|
|
|
- }
|
|
|
+ *Qext = 2*(*Qext)/x2; // Equation (27)
|
|
|
+ *Qsca = 2*(*Qsca)/x2; // Equation (28)
|
|
|
+ *Qpr = *Qext - 4*(*Qpr)/x2; // Equation (29)
|
|
|
+
|
|
|
+ *Qabs = *Qext - *Qsca; // Equation (30)
|
|
|
+ *Albedo = *Qsca / *Qext; // Equation (31)
|
|
|
+ *g = (*Qext - *Qpr) / *Qsca; // Equation (32)
|
|
|
+
|
|
|
+ *Qbk = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
|
|
|
+
|
|
|
+ return nmax;
|
|
|
+}
|
|
|
+
|
|
|
+//**********************************************************************************//
|
|
|
+// This function is just a wrapper to call the full 'nMie' function with fewer //
|
|
|
+// parameters, it is here mainly for compatibility with older versions of the //
|
|
|
+// program. Also, you can use it if you neither have a PEC layer nor want to define //
|
|
|
+// any limit for the maximum number of terms. //
|
|
|
+// //
|
|
|
+// Input parameters: //
|
|
|
+// L: Number of layers //
|
|
|
+// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+// nTheta: Number of scattering angles //
|
|
|
+// Theta: Array containing all the scattering angles where the scattering //
|
|
|
+// amplitudes will be calculated //
|
|
|
+// //
|
|
|
+// Output parameters: //
|
|
|
+// Qext: Efficiency factor for extinction //
|
|
|
+// Qsca: Efficiency factor for scattering //
|
|
|
+// Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
+// Qbk: Efficiency factor for backscattering //
|
|
|
+// Qpr: Efficiency factor for the radiation pressure //
|
|
|
+// g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
+// Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
+// S1, S2: Complex scattering amplitudes //
|
|
|
+// //
|
|
|
+// Return value: //
|
|
|
+// Number of multipolar expansion terms used for the calculations //
|
|
|
+//**********************************************************************************//
|
|
|
+
|
|
|
+int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
+ int nTheta, std::vector<double> Theta,
|
|
|
+ double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
|
|
|
+ std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
+
|
|
|
+ return nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+//**********************************************************************************//
|
|
|
+// This function is just a wrapper to call the full 'nMie' function with fewer //
|
|
|
+// parameters, it is useful if you want to include a PEC layer but not a limit //
|
|
|
+// for the maximum number of terms. //
|
|
|
+// //
|
|
|
+// Input parameters: //
|
|
|
+// L: Number of layers //
|
|
|
+// pl: Index of PEC layer. If there is none just send -1 //
|
|
|
+// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+// nTheta: Number of scattering angles //
|
|
|
+// Theta: Array containing all the scattering angles where the scattering //
|
|
|
+// amplitudes will be calculated //
|
|
|
+// //
|
|
|
+// Output parameters: //
|
|
|
+// Qext: Efficiency factor for extinction //
|
|
|
+// Qsca: Efficiency factor for scattering //
|
|
|
+// Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
+// Qbk: Efficiency factor for backscattering //
|
|
|
+// Qpr: Efficiency factor for the radiation pressure //
|
|
|
+// g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
+// Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
+// S1, S2: Complex scattering amplitudes //
|
|
|
+// //
|
|
|
+// Return value: //
|
|
|
+// Number of multipolar expansion terms used for the calculations //
|
|
|
+//**********************************************************************************//
|
|
|
+
|
|
|
+int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
+ int nTheta, std::vector<double> Theta,
|
|
|
+ double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
|
|
|
+ std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
+
|
|
|
+ return nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
+}
|
|
|
+
|
|
|
+//**********************************************************************************//
|
|
|
+// This function is just a wrapper to call the full 'nMie' function with fewer //
|
|
|
+// parameters, it is useful if you want to include a limit for the maximum number //
|
|
|
+// of terms but not a PEC layer. //
|
|
|
+// //
|
|
|
+// Input parameters: //
|
|
|
+// L: Number of layers //
|
|
|
+// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+// nTheta: Number of scattering angles //
|
|
|
+// Theta: Array containing all the scattering angles where the scattering //
|
|
|
+// amplitudes will be calculated //
|
|
|
+// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+// calculations. Only use it if you know what you are doing, otherwise //
|
|
|
+// set this parameter to -1 and the function will calculate it //
|
|
|
+// //
|
|
|
+// Output parameters: //
|
|
|
+// Qext: Efficiency factor for extinction //
|
|
|
+// Qsca: Efficiency factor for scattering //
|
|
|
+// Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
+// Qbk: Efficiency factor for backscattering //
|
|
|
+// Qpr: Efficiency factor for the radiation pressure //
|
|
|
+// g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
+// Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
+// S1, S2: Complex scattering amplitudes //
|
|
|
+// //
|
|
|
+// Return value: //
|
|
|
+// Number of multipolar expansion terms used for the calculations //
|
|
|
+//**********************************************************************************//
|
|
|
+
|
|
|
+int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
+ int nTheta, std::vector<double> Theta, int nmax,
|
|
|
+ double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
|
|
|
+ std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
+
|
|
|
+ return nMie(L, -1, x, m, nTheta, Theta, nmax, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+//**********************************************************************************//
|
|
|
+// This function calculates complex electric and magnetic field in the surroundings //
|
|
|
+// and inside (TODO) the particle. //
|
|
|
+// //
|
|
|
+// Input parameters: //
|
|
|
+// L: Number of layers //
|
|
|
+// pl: Index of PEC layer. If there is none just send 0 (zero) //
|
|
|
+// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+// calculations. Only use it if you know what you are doing, otherwise //
|
|
|
+// set this parameter to 0 (zero) and the function will calculate it. //
|
|
|
+// ncoord: Number of coordinate points //
|
|
|
+// Coords: Array containing all coordinates where the complex electric and //
|
|
|
+// magnetic fields will be calculated //
|
|
|
+// //
|
|
|
+// Output parameters: //
|
|
|
+// E, H: Complex electric and magnetic field at the provided coordinates //
|
|
|
+// //
|
|
|
+// Return value: //
|
|
|
+// Number of multipolar expansion terms used for the calculations //
|
|
|
+//**********************************************************************************//
|
|
|
+
|
|
|
+int nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
|
|
|
+ int ncoord, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp,
|
|
|
+ std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
|
|
|
+
|
|
|
+ int i, c;
|
|
|
+ double Rho, Phi, Theta;
|
|
|
+ std::vector<std::complex<double> > an, bn;
|
|
|
+
|
|
|
+ // This array contains the fields in spherical coordinates
|
|
|
+ std::vector<std::complex<double> > Es, Hs;
|
|
|
+ Es.resize(3);
|
|
|
+ Hs.resize(3);
|
|
|
+
|
|
|
+
|
|
|
+ // Calculate scattering coefficients
|
|
|
+ nmax = ScattCoeffs(L, pl, x, m, nmax, an, bn);
|
|
|
+
|
|
|
+ std::vector<double> Pi, Tau;
|
|
|
+ Pi.resize(nmax);
|
|
|
+ Tau.resize(nmax);
|
|
|
+
|
|
|
+ for (c = 0; c < ncoord; c++) {
|
|
|
+ // Convert to spherical coordinates
|
|
|
+ Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
|
|
|
+ // Avoid convergence problems
|
|
|
+ if (Rho < 1e-3) {
|
|
|
+ Rho = 1e-3;
|
|
|
}
|
|
|
+ //If Xp=Yp=0 Phi is undefined. Just set it to zero
|
|
|
+ if ((Xp[c] == 0.0) and (Yp[c] == 0.0)) {
|
|
|
+ Phi = 0.0;
|
|
|
+ } else {
|
|
|
+ Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
|
|
|
+ }
|
|
|
+ Theta = acos(Xp[c]/Rho);
|
|
|
|
|
|
- // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
|
|
|
- // basis unit vectors = er, etheta, ephi
|
|
|
- std::complex<double> eifac = std::exp(std::complex<double>(0.0, 1.0)*Rho*std::cos(Theta));
|
|
|
+ calcPiTau(nmax, Theta, Pi, Tau);
|
|
|
|
|
|
- Ei[0] = eifac*std::sin(Theta)*std::cos(Phi);
|
|
|
- Ei[1] = eifac*std::cos(Theta)*std::cos(Phi);
|
|
|
- Ei[2] = -(eifac*std::sin(Phi));
|
|
|
+ //*******************************************************//
|
|
|
+ // external scattering field = incident + scattered //
|
|
|
+ // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
|
|
|
+ // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
|
|
|
+ //*******************************************************//
|
|
|
|
|
|
- // magnetic field
|
|
|
- double hffact = 1.0/(cc*mu);
|
|
|
- for (int i = 0; i < 3; i++) {
|
|
|
- Hs[i] = hffact*Hs[i];
|
|
|
+ // Firstly the easiest case: the field outside the particle
|
|
|
+ if (Rho >= x[L - 1]) {
|
|
|
+ fieldExt(nmax, Rho, Phi, Theta, Pi, Tau, an, bn, Es, Hs);
|
|
|
+ } else {
|
|
|
+ // TODO, for now just set all the fields to zero
|
|
|
+ for (i = 0; i < 3; i++) {
|
|
|
+ Es[i] = std::complex<double>(0.0, 0.0);
|
|
|
+ Hs[i] = std::complex<double>(0.0, 0.0);
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
- // incident H field: BH p.26 (2.43), p.89 (4.21)
|
|
|
- std::complex<double> hffacta = hffact;
|
|
|
- std::complex<double> hifac = eifac*hffacta;
|
|
|
-
|
|
|
- Hi[0] = hifac*std::sin(Theta)*std::sin(Phi);
|
|
|
- Hi[1] = hifac*std::cos(Theta)*std::sin(Phi);
|
|
|
- Hi[2] = hifac*std::cos(Phi);
|
|
|
+ //Now, convert the fields back to cartesian coordinates
|
|
|
+ E[c][0] = std::sin(Theta)*std::cos(Phi)*Es[0] + std::cos(Theta)*std::cos(Phi)*Es[1] - std::sin(Phi)*Es[2];
|
|
|
+ E[c][1] = std::sin(Theta)*std::sin(Phi)*Es[0] + std::cos(Theta)*std::sin(Phi)*Es[1] + std::cos(Phi)*Es[2];
|
|
|
+ E[c][2] = std::cos(Theta)*Es[0] - std::sin(Theta)*Es[1];
|
|
|
|
|
|
- for (int i = 0; i < 3; i++) {
|
|
|
- // electric field E [V m-1] = EF*E0
|
|
|
- E[i] = Ei[i] + Es[i];
|
|
|
- H[i] = Hi[i] + Hs[i];
|
|
|
- }
|
|
|
+ H[c][0] = std::sin(Theta)*std::cos(Phi)*Hs[0] + std::cos(Theta)*std::cos(Phi)*Hs[1] - std::sin(Phi)*Hs[2];
|
|
|
+ H[c][1] = std::sin(Theta)*std::sin(Phi)*Hs[0] + std::cos(Theta)*std::sin(Phi)*Hs[1] + std::cos(Phi)*Hs[2];
|
|
|
+ H[c][2] = std::cos(Theta)*Hs[0] - std::sin(Theta)*Hs[1];
|
|
|
}
|
|
|
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
-
|
|
|
- //**********************************************************************************//
|
|
|
- // This function calculates complex electric and magnetic field in the surroundings //
|
|
|
- // and inside (TODO) the particle. //
|
|
|
- // //
|
|
|
- // Input parameters: //
|
|
|
- // L: Number of layers //
|
|
|
- // pl: Index of PEC layer. If there is none just send 0 (zero) //
|
|
|
- // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
- // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
- // nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
- // calculations. Only use it if you know what you are doing, otherwise //
|
|
|
- // set this parameter to 0 (zero) and the function will calculate it. //
|
|
|
- // ncoord: Number of coordinate points //
|
|
|
- // Coords: Array containing all coordinates where the complex electric and //
|
|
|
- // magnetic fields will be calculated //
|
|
|
- // //
|
|
|
- // Output parameters: //
|
|
|
- // E, H: Complex electric and magnetic field at the provided coordinates //
|
|
|
- // //
|
|
|
- // Return value: //
|
|
|
- // Number of multipolar expansion terms used for the calculations //
|
|
|
- //**********************************************************************************//
|
|
|
-
|
|
|
- // int MultiLayerMie::nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
|
|
|
- // int ncoord, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp,
|
|
|
- // std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
|
|
|
-
|
|
|
- // double Rho, Phi, Theta;
|
|
|
- // std::vector<std::complex<double> > an, bn;
|
|
|
-
|
|
|
- // // This array contains the fields in spherical coordinates
|
|
|
- // std::vector<std::complex<double> > Es, Hs;
|
|
|
- // Es.resize(3);
|
|
|
- // Hs.resize(3);
|
|
|
-
|
|
|
-
|
|
|
- // // Calculate scattering coefficients
|
|
|
- // ScattCoeffs(L, pl, an, bn);
|
|
|
-
|
|
|
- // std::vector<double> Pi, Tau;
|
|
|
- // Pi.resize(nmax_);
|
|
|
- // Tau.resize(nmax_);
|
|
|
-
|
|
|
- // for (int c = 0; c < ncoord; c++) {
|
|
|
- // // Convert to spherical coordinates
|
|
|
- // Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
|
|
|
- // if (Rho < 1e-3) {
|
|
|
- // // Avoid convergence problems
|
|
|
- // Rho = 1e-3;
|
|
|
- // }
|
|
|
- // Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
|
|
|
- // Theta = acos(Xp[c]/Rho);
|
|
|
-
|
|
|
- // calcPiTau(Theta, Pi, Tau);
|
|
|
-
|
|
|
- // //*******************************************************//
|
|
|
- // // external scattering field = incident + scattered //
|
|
|
- // // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
|
|
|
- // // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
|
|
|
- // //*******************************************************//
|
|
|
-
|
|
|
- // // Firstly the easiest case: the field outside the particle
|
|
|
- // if (Rho >= x[L - 1]) {
|
|
|
- // fieldExt(Rho, Phi, Theta, Pi, Tau, an, bn, Es, Hs);
|
|
|
- // } else {
|
|
|
- // // TODO, for now just set all the fields to zero
|
|
|
- // for (int i = 0; i < 3; i++) {
|
|
|
- // Es[i] = std::complex<double>(0.0, 0.0);
|
|
|
- // Hs[i] = std::complex<double>(0.0, 0.0);
|
|
|
- // }
|
|
|
- // }
|
|
|
-
|
|
|
- // //Now, convert the fields back to cartesian coordinates
|
|
|
- // E[c][0] = std::sin(Theta)*std::cos(Phi)*Es[0] + std::cos(Theta)*std::cos(Phi)*Es[1] - std::sin(Phi)*Es[2];
|
|
|
- // E[c][1] = std::sin(Theta)*std::sin(Phi)*Es[0] + std::cos(Theta)*std::sin(Phi)*Es[1] + std::cos(Phi)*Es[2];
|
|
|
- // E[c][2] = std::cos(Theta)*Es[0] - std::sin(Theta)*Es[1];
|
|
|
-
|
|
|
- // H[c][0] = std::sin(Theta)*std::cos(Phi)*Hs[0] + std::cos(Theta)*std::cos(Phi)*Hs[1] - std::sin(Phi)*Hs[2];
|
|
|
- // H[c][1] = std::sin(Theta)*std::sin(Phi)*Hs[0] + std::cos(Theta)*std::sin(Phi)*Hs[1] + std::cos(Phi)*Hs[2];
|
|
|
- // H[c][2] = std::cos(Theta)*Hs[0] - std::sin(Theta)*Hs[1];
|
|
|
- // }
|
|
|
-
|
|
|
- // return nmax;
|
|
|
- // } // end of int nField()
|
|
|
-
|
|
|
-} // end of namespace nmie
|
|
|
+ return nmax;
|
|
|
+}
|