Browse Source

checkout nmie.cc and nmie.h to 164dc05 commit

Konstantin Ladutenko 10 years ago
parent
commit
9d6c859ff5
4 changed files with 1004 additions and 1522 deletions
  1. 18 2
      nmie-wrapper.cc
  2. 1 0
      nmie-wrapper.h
  3. 942 1284
      nmie.cc
  4. 43 236
      nmie.h

+ 18 - 2
nmie-wrapper.cc

@@ -143,7 +143,7 @@ namespace nmie {
     double x2 = pow2(size_parameter_.back());
     for (int i = 0; i < nmax_ - 1; ++i) {
       const int n = i+1;
-      NACS[i] = Qsca_ch_[i]*x2/(2.0*(2.0*static_cast<double>(n)+1));
+      NACS[i] = Qabs_ch_[i]*x2/(2.0*(2.0*static_cast<double>(n)+1));
       // if (NACS[i] > 0.250000001)
       // 	throw std::invalid_argument("Unexpected normalized absorption cross-section value!");
     }
@@ -168,6 +168,22 @@ namespace nmie {
   // ********************************************************************** //
   // ********************************************************************** //
   // ********************************************************************** //
+  std::vector<double> MultiLayerMie::GetQsca_channel_normalized() {
+    if (!isMieCalculated_)
+      throw std::invalid_argument("You should run calculations before result reques!");
+    std::vector<double> NACS(nmax_-1, 0.0);
+    double x2 = pow2(size_parameter_.back());
+    for (int i = 0; i < nmax_ - 1; ++i) {
+      const int n = i+1;
+      NACS[i] = Qsca_ch_[i]*x2/(2.0*(2.0*static_cast<double>(n)+1));
+      // if (NACS[i] > 0.250000001)
+      // 	throw std::invalid_argument("Unexpected normalized absorption cross-section value!");
+    }
+    return NACS;    
+  }
+  // ********************************************************************** //
+  // ********************************************************************** //
+  // ********************************************************************** //
   double MultiLayerMie::GetQbk() {
     if (!isMieCalculated_)
       throw std::invalid_argument("You should run calculations before result reques!");
@@ -779,7 +795,7 @@ c    MM       + 1  and - 1, alternately
       // prn((D1[n] + double(n)*zinv).real());
     }
     //     printf("\n\n"); iformat=0;
-    if (std::abs(D1[0]) > 1000.0 )
+    if (std::abs(D1[0]) > 100000.0 )
       throw std::invalid_argument
 	("Unstable D1! Please, try to change input parameters!\n");
     // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)

+ 1 - 0
nmie-wrapper.h

@@ -148,6 +148,7 @@ namespace nmie {
     double GetQpr();
     std::vector<double> GetQsca_channel();
     std::vector<double> GetQabs_channel();
+    std::vector<double> GetQsca_channel_normalized();
     std::vector<double> GetQabs_channel_normalized();
 
     double GetAsymmetryFactor();

+ 942 - 1284
nmie.cc

@@ -1,1339 +1,997 @@
-///
-/// @file   nmie.cc
-/// @author Ladutenko Konstantin <kostyfisik at gmail (.) com>
-/// @date   Tue Sep  3 00:38:27 2013
-/// @copyright 2013 Ladutenko Konstantin
-///
-/// nmie is free software: you can redistribute it and/or modify
-/// it under the terms of the GNU General Public License as published by
-/// the Free Software Foundation, either version 3 of the License, or
-/// (at your option) any later version.
-///
-/// nmie-wrapper is distributed in the hope that it will be useful,
-/// but WITHOUT ANY WARRANTY; without even the implied warranty of
-/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-/// GNU General Public License for more details.
-///
-/// You should have received a copy of the GNU General Public License
-/// along with nmie-wrapper.  If not, see <http://www.gnu.org/licenses/>.
-///
-/// nmie uses nmie.c from scattnlay by Ovidio Pena
-/// <ovidio@bytesfall.com> . He has an additional condition to 
-/// his library:
-//    The only additional condition is that we expect that all publications         //
-//    describing  work using this software , or all commercial products             //
+//**********************************************************************************//
+//    Copyright (C) 2009-2015  Ovidio Pena <ovidio@bytesfall.com>                   //
+//                                                                                  //
+//    This file is part of scattnlay                                                //
+//                                                                                  //
+//    This program is free software: you can redistribute it and/or modify          //
+//    it under the terms of the GNU General Public License as published by          //
+//    the Free Software Foundation, either version 3 of the License, or             //
+//    (at your option) any later version.                                           //
+//                                                                                  //
+//    This program is distributed in the hope that it will be useful,               //
+//    but WITHOUT ANY WARRANTY; without even the implied warranty of                //
+//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                 //
+//    GNU General Public License for more details.                                  //
+//                                                                                  //
+//    The only additional remark is that we expect that all publications            //
+//    describing work using this software, or all commercial products               //
 //    using it, cite the following reference:                                       //
 //    [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by           //
 //        a multilayered sphere," Computer Physics Communications,                  //
 //        vol. 180, Nov. 2009, pp. 2348-2354.                                       //
-///
-/// @brief  Wrapper class around nMie function for ease of use
-///
+//                                                                                  //
+//    You should have received a copy of the GNU General Public License             //
+//    along with this program.  If not, see <http://www.gnu.org/licenses/>.         //
+//**********************************************************************************//
+
+//**********************************************************************************//
+// This library implements the algorithm for a multilayered sphere described by:    //
+//    [1] W. Yang, "Improved recursive algorithm for light scattering by a          //
+//        multilayered sphere,” Applied Optics,  vol. 42, Mar. 2003, pp. 1710-1720. //
+//                                                                                  //
+// You can find the description of all the used equations in:                       //
+//    [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by           //
+//        a multilayered sphere," Computer Physics Communications,                  //
+//        vol. 180, Nov. 2009, pp. 2348-2354.                                       //
+//                                                                                  //
+// Hereinafter all equations numbers refer to [2]                                   //
+//**********************************************************************************//
+#include <math.h>
+#include <stdlib.h>
+#include <stdio.h>
 #include "nmie.h"
-#include <array>
-#include <algorithm>
-#include <cstdio>
-#include <cstdlib>
-#include <stdexcept>
-#include <vector>
-
-namespace nmie {  
-  //helpers
-  template<class T> inline T pow2(const T value) {return value*value;}
-  //#define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
-  int round(double x) {
-    return x >= 0 ? (int)(x + 0.5):(int)(x - 0.5);
-  }  
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  //emulate C call.
-  int nMie_wrapper(int L, const std::vector<double>& x, const std::vector<std::complex<double> >& m,
-         int nTheta, const std::vector<double>& Theta,
-         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
-		   std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
-    
-    if (x.size() != L || m.size() != L)
-        throw std::invalid_argument("Declared number of layers do not fit x and m!");
-    if (Theta.size() != nTheta)
-        throw std::invalid_argument("Declared number of sample for Theta is not correct!");
-    try {
-      MultiLayerMie multi_layer_mie;  
-      multi_layer_mie.SetWidthSP(x);
-      multi_layer_mie.SetIndexSP(m);
-      multi_layer_mie.SetAngles(Theta);
-    
-      multi_layer_mie.RunMieCalculations();
-      
-      *Qext = multi_layer_mie.GetQext();
-      *Qsca = multi_layer_mie.GetQsca();
-      *Qabs = multi_layer_mie.GetQabs();
-      *Qbk = multi_layer_mie.GetQbk();
-      *Qpr = multi_layer_mie.GetQpr();
-      *g = multi_layer_mie.GetAsymmetryFactor();
-      *Albedo = multi_layer_mie.GetAlbedo();
-      S1 = multi_layer_mie.GetS1();
-      S2 = multi_layer_mie.GetS2();
-      multi_layer_mie.GetFailed();
-    } catch( const std::invalid_argument& ia ) {
-      // Will catch if  multi_layer_mie fails or other errors.
-      std::cerr << "Invalid argument: " << ia.what() << std::endl;
-      throw std::invalid_argument(ia);
-      return -1;
-    }  
-
-    return 0;
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  void MultiLayerMie::GetFailed() {
-    double faild_x = 9.42477796076938;
-    //double faild_x = 9.42477796076937;
-    std::complex<double> z(faild_x, 0.0);
-    std::vector<int> nmax_local_array = {20, 100, 500, 2500};
-    for (auto nmax_local : nmax_local_array) {
-      std::vector<std::complex<double> > D1_failed(nmax_local +1);
-      // Downward recurrence for D1 - equations (16a) and (16b)
-      D1_failed[nmax_local] = std::complex<double>(0.0, 0.0);
-      const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;
-      for (int n = nmax_local; n > 0; n--) {
-	D1_failed[n - 1] = double(n)*zinv - 1.0/(D1_failed[n] + double(n)*zinv);
-      }
-      printf("Faild D1[0] from reccurence (z = %16.14f, nmax = %d): %g\n",
-	     faild_x, nmax_local, D1_failed[0].real());
-    }
-    printf("Faild D1[0] from continued fraction (z = %16.14f): %g\n", faild_x,
-	   calcD1confra(0,z).real());
-    //D1[nmax_] = calcD1confra(nmax_, z);
-  
-    
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  double MultiLayerMie::GetQext() {
-    if (!isMieCalculated_)
-      throw std::invalid_argument("You should run calculations before result reques!");
-    return Qext_;
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  double MultiLayerMie::GetQabs() {
-    if (!isMieCalculated_)
-      throw std::invalid_argument("You should run calculations before result reques!");
-    return Qabs_;
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  std::vector<double> MultiLayerMie::GetQabs_channel() {
-    if (!isMieCalculated_)
-      throw std::invalid_argument("You should run calculations before result reques!");
-    return Qabs_ch_;
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  std::vector<double> MultiLayerMie::GetQabs_channel_normalized() {
-    if (!isMieCalculated_)
-      throw std::invalid_argument("You should run calculations before result reques!");
-    std::vector<double> NACS(nmax_-1, 0.0);
-    double x2 = pow2(size_parameter_.back());
-    for (int i = 0; i < nmax_ - 1; ++i) {
-      const int n = i+1;
-      NACS[i] = Qsca_ch_[i]*x2/(2.0*(2.0*static_cast<double>(n)+1));
-      // if (NACS[i] > 0.250000001)
-      // 	throw std::invalid_argument("Unexpected normalized absorption cross-section value!");
-    }
-    return NACS;    
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  double MultiLayerMie::GetQsca() {
-    if (!isMieCalculated_)
-      throw std::invalid_argument("You should run calculations before result reques!");
-    return Qsca_;
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  std::vector<double> MultiLayerMie::GetQsca_channel() {
-    if (!isMieCalculated_)
-      throw std::invalid_argument("You should run calculations before result reques!");
-    return Qsca_ch_;
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  double MultiLayerMie::GetQbk() {
-    if (!isMieCalculated_)
-      throw std::invalid_argument("You should run calculations before result reques!");
-    return Qbk_;
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  double MultiLayerMie::GetQpr() {
-    if (!isMieCalculated_)
-      throw std::invalid_argument("You should run calculations before result reques!");
-    return Qpr_;
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  double MultiLayerMie::GetAsymmetryFactor() {
-    if (!isMieCalculated_)
-      throw std::invalid_argument("You should run calculations before result reques!");
-    return asymmetry_factor_;
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  double MultiLayerMie::GetAlbedo() {
-    if (!isMieCalculated_)
-      throw std::invalid_argument("You should run calculations before result reques!");
-    return albedo_;
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  std::vector<std::complex<double> > MultiLayerMie::GetS1() {
-    return S1_;
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  std::vector<std::complex<double> > MultiLayerMie::GetS2() {
-    return S2_;
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  void MultiLayerMie::AddTargetLayer(double width, std::complex<double> layer_index) {
-    if (width <= 0)
-      throw std::invalid_argument("Layer width should be positive!");
-    target_width_.push_back(width);
-    target_index_.push_back(layer_index);
-  }  // end of void  MultiLayerMie::AddTargetLayer(...)  
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  void MultiLayerMie::SetTargetPEC(double radius) {
-    isMieCalculated_ = false;
-    if (target_width_.size() != 0 || target_index_.size() != 0)
-      throw std::invalid_argument("Error! Define PEC target radius before any other layers!");
-    // Add layer of any index...
-    AddTargetLayer(radius, std::complex<double>(0.0, 0.0));
-    // ... and mark it as PEC
-    SetPEC(0.0);
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  void MultiLayerMie::SetCoatingIndex(std::vector<std::complex<double> > index) {
-    isMieCalculated_ = false;
-    coating_index_.clear();
-    for (auto value : index) coating_index_.push_back(value);
-  }  // end of void MultiLayerMie::SetCoatingIndex(std::vector<complex> index);  
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  void MultiLayerMie::SetAngles(const std::vector<double>& angles) {
-    isMieCalculated_ = false;
-    theta_ = angles;
-    // theta_.clear();
-    // for (auto value : angles) theta_.push_back(value);
-  }  // end of SetAngles()
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  void MultiLayerMie::SetCoatingWidth(std::vector<double> width) {
-    isMieCalculated_ = false;
-    coating_width_.clear();
-    for (auto w : width)
-      if (w <= 0)
-        throw std::invalid_argument("Coating width should be positive!");
-      else coating_width_.push_back(w);
-  }
-  // end of void MultiLayerMie::SetCoatingWidth(...);
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  void MultiLayerMie::SetWidthSP(const std::vector<double>& size_parameter) {
-    isMieCalculated_ = false;
-    size_parameter_.clear();
-    double prev_size_parameter = 0.0;
-    for (auto layer_size_parameter : size_parameter) {
-      if (layer_size_parameter <= 0.0)
-        throw std::invalid_argument("Size parameter should be positive!");
-      if (prev_size_parameter > layer_size_parameter) 
-        throw std::invalid_argument
-	  ("Size parameter for next layer should be larger than the previous one!");
-      prev_size_parameter = layer_size_parameter;
-      size_parameter_.push_back(layer_size_parameter);
-    }
-  }
-  // end of void MultiLayerMie::SetWidthSP(...);
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  void MultiLayerMie::SetIndexSP(const std::vector< std::complex<double> >& index) {
-    isMieCalculated_ = false;
-    //index_.clear();
-    index_ = index;
-    // for (auto value : index) index_.push_back(value);
-  }  // end of void MultiLayerMie::SetIndexSP(...);  
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  void MultiLayerMie::SetPEC(int layer_position) {
-    isMieCalculated_ = false;
-    if (layer_position < 0)
-      throw std::invalid_argument("Error! Layers are numbered from 0!");
-    PEC_layer_position_ = layer_position;
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  void MultiLayerMie::SetMaxTermsNumber(int nmax) {    
-    isMieCalculated_ = false;
-    nmax_preset_ = nmax;
-    //debug
-    printf("Setting max terms: %d\n", nmax_preset_);
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  void MultiLayerMie::GenerateSizeParameter() {
-    size_parameter_.clear();
-    double radius = 0.0;
-    for (auto width : target_width_) {
-      radius += width;
-      size_parameter_.push_back(2*PI*radius / wavelength_);
+
+#define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
+
+const double PI=3.14159265358979323846;
+// light speed [m s-1]
+double const cc = 2.99792458e8;
+// assume non-magnetic (MU=MU0=const) [N A-2]
+double const mu = 4.0*PI*1.0e-7;
+
+// Calculate Nstop - equation (17)
+int Nstop(double xL) {
+  int result;
+
+  if (xL <= 8) {
+    result = round(xL + 4*pow(xL, 1.0/3.0) + 1);
+  } else if (xL <= 4200) {
+    result = round(xL + 4.05*pow(xL, 1.0/3.0) + 2);
+  } else {
+    result = round(xL + 4*pow(xL, 1.0/3.0) + 2);
+  }
+
+  return result;
+}
+
+//**********************************************************************************//
+int Nmax(int L, int fl, int pl,
+         std::vector<double> x,
+		 std::vector<std::complex<double> > m) {
+  int i, result, ri, riM1;
+  result = Nstop(x[L - 1]);
+  for (i = fl; i < L; i++) {
+    if (i > pl) {
+      ri = round(std::abs(x[i]*m[i]));
+    } else {
+      ri = 0;
     }
-    for (auto width : coating_width_) {
-      radius += width;
-      size_parameter_.push_back(2*PI*radius / wavelength_);
+    if (result < ri) {
+      result = ri;
     }
-    total_radius_ = radius;
-  }  // end of void MultiLayerMie::GenerateSizeParameter();
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  void MultiLayerMie::GenerateIndex() {
-    index_.clear();
-    for (auto index : target_index_) index_.push_back(index);
-    for (auto index : coating_index_) index_.push_back(index);
-  }  // end of void MultiLayerMie::GenerateIndex();
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  double MultiLayerMie::GetTotalRadius() {
-    if (total_radius_ == 0) GenerateSizeParameter();
-    return total_radius_;      
-  }  // end of double MultiLayerMie::GetTotalRadius();
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  std::vector< std::vector<double> >
-  MultiLayerMie::GetSpectra(double from_WL, double to_WL, int samples) {
-    std::vector< std::vector<double> > spectra;
-    double step_WL = (to_WL - from_WL)/ static_cast<double>(samples);
-    double wavelength_backup = wavelength_;
-    long fails = 0;
-    for (double WL = from_WL; WL < to_WL; WL += step_WL) {
-      wavelength_ = WL;
-      try {
-        RunMieCalculations();
-      } catch( const std::invalid_argument& ia ) {
-        fails++;
-        continue;
-      }
-      //printf("%3.1f ",WL);
-      spectra.push_back(std::vector<double>({wavelength_, Qext_, Qsca_, Qabs_, Qbk_}));
-    }  // end of for each WL in spectra
-    printf("Spectrum has %li fails\n",fails);
-    wavelength_ = wavelength_backup;
-    return spectra;
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  void MultiLayerMie::ClearTarget() {
-    target_width_.clear();
-    target_index_.clear();
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  void MultiLayerMie::ClearCoating() {
-    coating_width_.clear();
-    coating_index_.clear();
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  void MultiLayerMie::ClearLayers() {
-    ClearTarget();
-    ClearCoating();
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  void MultiLayerMie::ClearAllDesign() {
-    ClearLayers();
-    size_parameter_.clear();
-    index_.clear();
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  //                         Computational core
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // Calculate Nstop - equation (17)
-  //
-  void MultiLayerMie::Nstop() {
-    const double& xL = size_parameter_.back();
-    if (xL <= 8) {
-      nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 1);
-    } else if (xL <= 4200) {
-      nmax_ = round(xL + 4.05*pow(xL, 1.0/3.0) + 2);
+
+    if ((i > fl) && ((i - 1) > pl)) {
+      riM1 = round(std::abs(x[i - 1]* m[i]));
     } else {
-      nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 2);
-    }    
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  void MultiLayerMie::Nmax(int first_layer) {
-    int ri, riM1;
-    const std::vector<double>& x = size_parameter_;
-    const std::vector<std::complex<double> >& m = index_;
-    Nstop();  // Set initial nmax_ value
-    for (int i = first_layer; i < x.size(); i++) {
-      if (i > PEC_layer_position_) 
-	ri = round(std::abs(x[i]*m[i]));
-      else 
-	ri = 0;      
-      nmax_ = std::max(nmax_, ri);
-      // first layer is pec, if pec is present
-      if ((i > first_layer) && ((i - 1) > PEC_layer_position_)) 
-	riM1 = round(std::abs(x[i - 1]* m[i]));
-      else 
-	riM1 = 0;      
-      nmax_ = std::max(nmax_, riM1);
+      riM1 = 0;
+    }
+    if (result < riM1) {
+      result = riM1;
     }
-    nmax_ += 15;  // Final nmax_ value
   }
-  //**********************************************************************************//
-  // This function calculates the spherical Bessel (jn) and Hankel (h1n) functions    //
-  // and their derivatives for a given complex value z. See pag. 87 B&H.              //
-  //                                                                                  //
-  // Input parameters:                                                                //
-  //   z: Real argument to evaluate jn and h1n                                        //
-  //   nmax_: Maximum number of terms to calculate jn and h1n                          //
-  //                                                                                  //
-  // Output parameters:                                                               //
-  //   jn, h1n: Spherical Bessel and Hankel functions                                 //
-  //   jnp, h1np: Derivatives of the spherical Bessel and Hankel functions            //
-  //                                                                                  //
-  // The implementation follows the algorithm by I.J. Thompson and A.R. Barnett,      //
-  // Comp. Phys. Comm. 47 (1987) 245-257.                                             //
-  //                                                                                  //
-  // Complex spherical Bessel functions from n=0..nmax_-1 for z in the upper half      //
-  // plane (Im(z) > -3).                                                              //
-  //                                                                                  //
-  //     j[n]   = j/n(z)                Regular solution: j[0]=sin(z)/z               //
-  //     j'[n]  = d[j/n(z)]/dz                                                        //
-  //     h1[n]  = h[0]/n(z)             Irregular Hankel function:                    //
-  //     h1'[n] = d[h[0]/n(z)]/dz                h1[0] = j0(z) + i*y0(z)              //
-  //                                                   = (sin(z)-i*cos(z))/z          //
-  //                                                   = -i*exp(i*z)/z                //
-  // Using complex CF1, and trigonometric forms for n=0 solutions.                    //
-  //**********************************************************************************//
-  void MultiLayerMie::sbesjh(std::complex<double> z,
-			     std::vector<std::complex<double> >& jn,
-			     std::vector<std::complex<double> >& jnp,
-			     std::vector<std::complex<double> >& h1n,
-			     std::vector<std::complex<double> >& h1np) {
-    const int limit = 20000;
-    const double accur = 1.0e-12;
-    const double tm30 = 1e-30;
-
-    double absc;
-    std::complex<double> zi, w;
-    std::complex<double> pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb;
-
-    absc = std::abs(std::real(z)) + std::abs(std::imag(z));
-    if ((absc < accur) || (std::imag(z) < -3.0)) {
-      throw std::invalid_argument("TODO add error description for condition if ((absc < accur) || (std::imag(z) < -3.0))");
+  return result + 15;
+}
+
+//**********************************************************************************//
+// This function calculates the spherical Bessel (jn) and Hankel (h1n) functions    //
+// and their derivatives for a given complex value z. See pag. 87 B&H.              //
+//                                                                                  //
+// Input parameters:                                                                //
+//   z: Real argument to evaluate jn and h1n                                        //
+//   nmax: Maximum number of terms to calculate jn and h1n                          //
+//                                                                                  //
+// Output parameters:                                                               //
+//   jn, h1n: Spherical Bessel and Hankel functions                                 //
+//   jnp, h1np: Derivatives of the spherical Bessel and Hankel functions            //
+//                                                                                  //
+// The implementation follows the algorithm by I.J. Thompson and A.R. Barnett,      //
+// Comp. Phys. Comm. 47 (1987) 245-257.                                             //
+//                                                                                  //
+// Complex spherical Bessel functions from n=0..nmax-1 for z in the upper half      //
+// plane (Im(z) > -3).                                                              //
+//                                                                                  //
+//     j[n]   = j/n(z)                Regular solution: j[0]=sin(z)/z               //
+//     j'[n]  = d[j/n(z)]/dz                                                        //
+//     h1[n]  = h[0]/n(z)             Irregular Hankel function:                    //
+//     h1'[n] = d[h[0]/n(z)]/dz                h1[0] = j0(z) + i*y0(z)              //
+//                                                   = (sin(z)-i*cos(z))/z          //
+//                                                   = -i*exp(i*z)/z                //
+// Using complex CF1, and trigonometric forms for n=0 solutions.                    //
+//**********************************************************************************//
+int sbesjh(std::complex<double> z, int nmax, std::vector<std::complex<double> >& jn, std::vector<std::complex<double> >& jnp, std::vector<std::complex<double> >& h1n, std::vector<std::complex<double> >& h1np) {
+
+  const int limit = 20000;
+  double const accur = 1.0e-12;
+  double const tm30 = 1e-30;
+
+  int n;
+  double absc;
+  std::complex<double> zi, w;
+  std::complex<double> pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb;
+
+  absc = std::abs(std::real(z)) + std::abs(std::imag(z));
+  if ((absc < accur) || (std::imag(z) < -3.0)) {
+    return -1;
+  }
+
+  zi = 1.0/z;
+  w = zi + zi;
+
+  pl = double(nmax)*zi;
+
+  f = pl + zi;
+  b = f + f + zi;
+  d = 0.0;
+  c = f;
+  for (n = 0; n < limit; n++) {
+    d = b - d;
+    c = b - 1.0/c;
+
+    absc = std::abs(std::real(d)) + std::abs(std::imag(d));
+    if (absc < tm30) {
+      d = tm30;
     }
 
-    zi = 1.0/z;
-    w = zi + zi;
+    absc = std::abs(std::real(c)) + std::abs(std::imag(c));
+    if (absc < tm30) {
+      c = tm30;
+    }
 
-    pl = double(nmax_)*zi;
+    d = 1.0/d;
+    del = d*c;
+    f = f*del;
+    b += w;
 
-    f = pl + zi;
-    b = f + f + zi;
-    d = 0.0;
-    c = f;
-    for (int n = 0; n < limit; n++) {
-      d = b - d;
-      c = b - 1.0/c;
+    absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
 
-      absc = std::abs(std::real(d)) + std::abs(std::imag(d));
-      if (absc < tm30) {
-	d = tm30;
-      }
+    if (absc < accur) {
+      // We have obtained the desired accuracy
+      break;
+    }
+  }
 
-      absc = std::abs(std::real(c)) + std::abs(std::imag(c));
-      if (absc < tm30) {
-	c = tm30;
-      }
+  if (absc > accur) {
+    // We were not able to obtain the desired accuracy
+    return -2;
+  }
 
-      d = 1.0/d;
-      del = d*c;
-      f = f*del;
-      b += w;
+  jn[nmax - 1] = tm30;
+  jnp[nmax - 1] = f*jn[nmax - 1];
 
-      absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
+  // Downward recursion to n=0 (N.B.  Coulomb Functions)
+  for (n = nmax - 2; n >= 0; n--) {
+    jn[n] = pl*jn[n + 1] + jnp[n + 1];
+    jnp[n] = pl*jn[n] - jn[n + 1];
+    pl = pl - zi;
+  }
 
-      if (absc < accur) {
-	// We have obtained the desired accuracy
-	break;
-      }
-    }
+  // Calculate the n=0 Bessel Functions
+  jn0 = zi*std::sin(z);
+  h1n[0] = std::exp(std::complex<double>(0.0, 1.0)*z)*zi*(-std::complex<double>(0.0, 1.0));
+  h1np[0] = h1n[0]*(std::complex<double>(0.0, 1.0) - zi);
 
-    if (absc > accur) {
-      throw std::invalid_argument("We were not able to obtain the desired accuracy");
-    }
+  // Rescale j[n], j'[n], converting to spherical Bessel functions.
+  // Recur   h1[n], h1'[n] as spherical Bessel functions.
+  w = 1.0/jn[0];
+  pl = zi;
+  for (n = 0; n < nmax; n++) {
+    jn[n] = jn0*(w*jn[n]);
+    jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
+    if (n != 0) {
+      h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
 
-    jn[nmax_ - 1] = tm30;
-    jnp[nmax_ - 1] = f*jn[nmax_ - 1];
+      // check if hankel is increasing (upward stable)
+      if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
+        jndb = z;
+        h1nldb = h1n[n];
+        h1nbdb = h1n[n - 1];
+      }
 
-    // Downward recursion to n=0 (N.B.  Coulomb Functions)
-    for (int n = nmax_ - 2; n >= 0; n--) {
-      jn[n] = pl*jn[n + 1] + jnp[n + 1];
-      jnp[n] = pl*jn[n] - jn[n + 1];
-      pl = pl - zi;
-    }
+      pl += zi;
 
-    // Calculate the n=0 Bessel Functions
-    jn0 = zi*std::sin(z);
-    h1n[0] = std::exp(std::complex<double>(0.0, 1.0)*z)*zi*(-std::complex<double>(0.0, 1.0));
-    h1np[0] = h1n[0]*(std::complex<double>(0.0, 1.0) - zi);
-
-    // Rescale j[n], j'[n], converting to spherical Bessel functions.
-    // Recur   h1[n], h1'[n] as spherical Bessel functions.
-    w = 1.0/jn[0];
-    pl = zi;
-    for (int n = 0; n < nmax_; n++) {
-      jn[n] = jn0*(w*jn[n]);
-      jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
-      if (n != 0) {
-	h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
-
-	// check if hankel is increasing (upward stable)
-	if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
-	  jndb = z;
-	  h1nldb = h1n[n];
-	  h1nbdb = h1n[n - 1];
-	}
-
-	pl += zi;
-
-	h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
-      }
+      h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
     }
   }
 
-  //**********************************************************************************//
-  // This function calculates the spherical Bessel functions (bj and by) and the      //
-  // logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H.        //
-  //                                                                                  //
-  // Input parameters:                                                                //
-  //   z: Complex argument to evaluate bj, by and bd                                  //
-  //   nmax_: Maximum number of terms to calculate bj, by and bd                       //
-  //                                                                                  //
-  // Output parameters:                                                               //
-  //   bj, by: Spherical Bessel functions                                             //
-  //   bd: Logarithmic derivative                                                     //
-  //**********************************************************************************//
-  void MultiLayerMie::sphericalBessel(std::complex<double> z,
-				      std::vector<std::complex<double> >& bj,
-				      std::vector<std::complex<double> >& by,
-				      std::vector<std::complex<double> >& bd) {
-    std::vector<std::complex<double> > jn(nmax_), jnp(nmax_), h1n(nmax_), h1np(nmax_);
-    sbesjh(z, jn, jnp, h1n, h1np);
-
-    for (int n = 0; n < nmax_; n++) {
+  // success
+  return 0;
+}
+
+//**********************************************************************************//
+// This function calculates the spherical Bessel functions (bj and by) and the      //
+// logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H.        //
+//                                                                                  //
+// Input parameters:                                                                //
+//   z: Complex argument to evaluate bj, by and bd                                  //
+//   nmax: Maximum number of terms to calculate bj, by and bd                       //
+//                                                                                  //
+// Output parameters:                                                               //
+//   bj, by: Spherical Bessel functions                                             //
+//   bd: Logarithmic derivative                                                     //
+//**********************************************************************************//
+void sphericalBessel(std::complex<double> z, int nmax, std::vector<std::complex<double> >& bj, std::vector<std::complex<double> >& by, std::vector<std::complex<double> >& bd) {
+
+    std::vector<std::complex<double> > jn, jnp, h1n, h1np;
+    jn.resize(nmax);
+    jnp.resize(nmax);
+    h1n.resize(nmax);
+    h1np.resize(nmax);
+
+    // TODO verify that the function succeeds
+    int ifail = sbesjh(z, nmax, jn, jnp, h1n, h1np);
+
+    for (int n = 0; n < nmax; n++) {
       bj[n] = jn[n];
       by[n] = (h1n[n] - jn[n])/std::complex<double>(0.0, 1.0);
       bd[n] = jnp[n]/jn[n] + 1.0/z;
     }
+}
+
+// external scattering field = incident + scattered
+// BH p.92 (4.37), 94 (4.45), 95 (4.50)
+// assume: medium is non-absorbing; refim = 0; Uabs = 0
+void fieldExt(int nmax, double Rho, double Phi, double Theta, std::vector<double> Pi, std::vector<double> Tau,
+             std::vector<std::complex<double> > an, std::vector<std::complex<double> > bn,
+		     std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H)  {
+
+  int i, n;
+  double rn = 0.0;
+  std::complex<double> zn, xxip, encap;
+  std::vector<std::complex<double> > vm3o1n, vm3e1n, vn3o1n, vn3e1n;
+  vm3o1n.resize(3);
+  vm3e1n.resize(3);
+  vn3o1n.resize(3);
+  vn3e1n.resize(3);
+
+  std::vector<std::complex<double> > Ei, Hi, Es, Hs;
+  Ei.resize(3);
+  Hi.resize(3);
+  Es.resize(3);
+  Hs.resize(3);
+  for (i = 0; i < 3; i++) {
+    Ei[i] = std::complex<double>(0.0, 0.0);
+    Hi[i] = std::complex<double>(0.0, 0.0);
+    Es[i] = std::complex<double>(0.0, 0.0);
+    Hs[i] = std::complex<double>(0.0, 0.0);
+  }
+
+  std::vector<std::complex<double> > bj, by, bd;
+  bj.resize(nmax);
+  by.resize(nmax);
+  bd.resize(nmax);
+
+  // Calculate spherical Bessel and Hankel functions
+  sphericalBessel(Rho, nmax, bj, by, bd);
+
+  for (n = 0; n < nmax; n++) {
+    rn = double(n + 1);
+
+    zn = bj[n] + std::complex<double>(0.0, 1.0)*by[n];
+    xxip = Rho*(bj[n] + std::complex<double>(0.0, 1.0)*by[n]) - rn*zn;
+
+    vm3o1n[0] = std::complex<double>(0.0, 0.0);
+    vm3o1n[1] = std::cos(Phi)*Pi[n]*zn;
+    vm3o1n[2] = -(std::sin(Phi)*Tau[n]*zn);
+    vm3e1n[0] = std::complex<double>(0.0, 0.0);
+    vm3e1n[1] = -(std::sin(Phi)*Pi[n]*zn);
+    vm3e1n[2] = -(std::cos(Phi)*Tau[n]*zn);
+    vn3o1n[0] = std::sin(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
+    vn3o1n[1] = std::sin(Phi)*Tau[n]*xxip/Rho;
+    vn3o1n[2] = std::cos(Phi)*Pi[n]*xxip/Rho;
+    vn3e1n[0] = std::cos(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
+    vn3e1n[1] = std::cos(Phi)*Tau[n]*xxip/Rho;
+    vn3e1n[2] = -(std::sin(Phi)*Pi[n]*xxip/Rho);
+
+    // scattered field: BH p.94 (4.45)
+    encap = std::pow(std::complex<double>(0.0, 1.0), rn)*(2.0*rn + 1.0)/(rn*(rn + 1.0));
+    for (i = 0; i < 3; i++) {
+      Es[i] = Es[i] + encap*(std::complex<double>(0.0, 1.0)*an[n]*vn3e1n[i] - bn[n]*vm3o1n[i]);
+      Hs[i] = Hs[i] + encap*(std::complex<double>(0.0, 1.0)*bn[n]*vn3o1n[i] + an[n]*vm3e1n[i]);
+    }
   }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // Calculate an - equation (5)
-  std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
-					      std::complex<double> PsiXL, std::complex<double> ZetaXL,
-					      std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
-
-    std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
-    std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
-
-    return Num/Denom;
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // Calculate bn - equation (6)
-  std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
-					      std::complex<double> PsiXL, std::complex<double> ZetaXL,
-					      std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
-
-    std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
-    std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
-
-    return Num/Denom;
+
+  // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
+  // basis unit vectors = er, etheta, ephi
+  std::complex<double> eifac = std::exp(std::complex<double>(0.0, 1.0)*Rho*std::cos(Theta));
+
+  Ei[0] = eifac*std::sin(Theta)*std::cos(Phi);
+  Ei[1] = eifac*std::cos(Theta)*std::cos(Phi);
+  Ei[2] = -(eifac*std::sin(Phi));
+
+  // magnetic field
+  double hffact = 1.0/(cc*mu);
+  for (i = 0; i < 3; i++) {
+    Hs[i] = hffact*Hs[i];
+  }
+
+  // incident H field: BH p.26 (2.43), p.89 (4.21)
+  std::complex<double> hffacta = hffact;
+  std::complex<double> hifac = eifac*hffacta;
+
+  Hi[0] = hifac*std::sin(Theta)*std::sin(Phi);
+  Hi[1] = hifac*std::cos(Theta)*std::sin(Phi);
+  Hi[2] = hifac*std::cos(Phi);
+
+  for (i = 0; i < 3; i++) {
+    // electric field E [V m-1] = EF*E0
+    E[i] = Ei[i] + Es[i];
+    H[i] = Hi[i] + Hs[i];
+  }
+}
+
+// Calculate an - equation (5)
+std::complex<double> calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
+	                         std::complex<double> PsiXL, std::complex<double> ZetaXL,
+	                         std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
+
+  std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
+  std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
+
+  return Num/Denom;
+}
+
+// Calculate bn - equation (6)
+std::complex<double> calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
+	                         std::complex<double> PsiXL, std::complex<double> ZetaXL,
+	                         std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
+
+  std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
+  std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
+
+  return Num/Denom;
+}
+
+// Calculates S1 - equation (25a)
+std::complex<double> calc_S1(int n, std::complex<double> an, std::complex<double> bn,
+		                     double Pi, double Tau) {
+
+  return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
+}
+
+// Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
+std::complex<double> calc_S2(int n, std::complex<double> an, std::complex<double> bn,
+				             double Pi, double Tau) {
+
+  return calc_S1(n, an, bn, Tau, Pi);
+}
+
+
+//**********************************************************************************//
+// This function calculates the Riccati-Bessel functions (Psi and Zeta) for a       //
+// real argument (x).                                                               //
+// Equations (20a) - (21b)                                                          //
+//                                                                                  //
+// Input parameters:                                                                //
+//   x: Real argument to evaluate Psi and Zeta                                      //
+//   nmax: Maximum number of terms to calculate Psi and Zeta                        //
+//                                                                                  //
+// Output parameters:                                                               //
+//   Psi, Zeta: Riccati-Bessel functions                                            //
+//**********************************************************************************//
+void calcPsiZeta(double x, int nmax,
+		         std::vector<std::complex<double> > D1,
+		         std::vector<std::complex<double> > D3,
+		         std::vector<std::complex<double> >& Psi,
+		         std::vector<std::complex<double> >& Zeta) {
+
+  int n;
+
+  //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
+  Psi[0] = std::complex<double>(sin(x), 0);
+  Zeta[0] = std::complex<double>(sin(x), -cos(x));
+  for (n = 1; n <= nmax; n++) {
+    Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
+    Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
+  }
+}
+
+//**********************************************************************************//
+// This function calculates the logarithmic derivatives of the Riccati-Bessel       //
+// functions (D1 and D3) for a complex argument (z).                                //
+// Equations (16a), (16b) and (18a) - (18d)                                         //
+//                                                                                  //
+// Input parameters:                                                                //
+//   z: Complex argument to evaluate D1 and D3                                      //
+//   nmax: Maximum number of terms to calculate D1 and D3                           //
+//                                                                                  //
+// Output parameters:                                                               //
+//   D1, D3: Logarithmic derivatives of the Riccati-Bessel functions                //
+//**********************************************************************************//
+void calcD1D3(std::complex<double> z, int nmax,
+		      std::vector<std::complex<double> >& D1,
+		      std::vector<std::complex<double> >& D3) {
+
+  int n;
+  std::complex<double> nz, PsiZeta;
+
+  // Downward recurrence for D1 - equations (16a) and (16b)
+  D1[nmax] = std::complex<double>(0.0, 0.0);
+  for (n = nmax; n > 0; n--) {
+    nz = double(n)/z;
+    D1[n - 1] = nz - 1.0/(D1[n] + nz);
+  }
+
+  // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
+  PsiZeta = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag()));
+  D3[0] = std::complex<double>(0.0, 1.0);
+  for (n = 1; n <= nmax; n++) {
+    nz = double(n)/z;
+    PsiZeta = PsiZeta*(nz - D1[n - 1])*(nz - D3[n - 1]);
+    D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta;
+  }
+}
+
+//**********************************************************************************//
+// This function calculates Pi and Tau for all values of Theta.                     //
+// Equations (26a) - (26c)                                                          //
+//                                                                                  //
+// Input parameters:                                                                //
+//   nmax: Maximum number of terms to calculate Pi and Tau                          //
+//   nTheta: Number of scattering angles                                            //
+//   Theta: Array containing all the scattering angles where the scattering         //
+//          amplitudes will be calculated                                           //
+//                                                                                  //
+// Output parameters:                                                               //
+//   Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c)   //
+//**********************************************************************************//
+void calcPiTau(int nmax, double Theta, std::vector<double>& Pi, std::vector<double>& Tau) {
+
+  int n;
+  //****************************************************//
+  // Equations (26a) - (26c)                            //
+  //****************************************************//
+  // Initialize Pi and Tau
+  Pi[0] = 1.0;
+  Tau[0] = cos(Theta);
+  // Calculate the actual values
+  if (nmax > 1) {
+    Pi[1] = 3*Tau[0]*Pi[0];
+    Tau[1] = 2*Tau[0]*Pi[1] - 3*Pi[0];
+    for (n = 2; n < nmax; n++) {
+      Pi[n] = ((n + n + 1)*Tau[0]*Pi[n - 1] - (n + 1)*Pi[n - 2])/n;
+      Tau[n] = (n + 1)*Tau[0]*Pi[n] - (n + 2)*Pi[n - 1];
+    }
   }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // Calculates S1 - equation (25a)
-  std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,
-					      double Pi, double Tau) {
-    return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
+}
+
+//**********************************************************************************//
+// This function calculates the scattering coefficients required to calculate       //
+// both the near- and far-field parameters.                                         //
+//                                                                                  //
+// Input parameters:                                                                //
+//   L: Number of layers                                                            //
+//   pl: Index of PEC layer. If there is none just send -1                          //
+//   x: Array containing the size parameters of the layers [0..L-1]                 //
+//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
+//   nmax: Maximum number of multipolar expansion terms to be used for the          //
+//         calculations. Only use it if you know what you are doing, otherwise      //
+//         set this parameter to -1 and the function will calculate it.             //
+//                                                                                  //
+// Output parameters:                                                               //
+//   an, bn: Complex scattering amplitudes                                          //
+//                                                                                  //
+// Return value:                                                                    //
+//   Number of multipolar expansion terms used for the calculations                 //
+//**********************************************************************************//
+int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
+		        std::vector<std::complex<double> >& an, std::vector<std::complex<double> >& bn) {
+  //************************************************************************//
+  // Calculate the index of the first layer. It can be either 0 (default)   //
+  // or the index of the outermost PEC layer. In the latter case all layers //
+  // below the PEC are discarded.                                           //
+  //************************************************************************//
+
+  int fl = (pl > 0) ? pl : 0;
+
+  if (nmax <= 0) {
+    nmax = Nmax(L, fl, pl, x, m);
+  }
+
+  std::complex<double> z1, z2;
+  std::complex<double> Num, Denom;
+  std::complex<double> G1, G2;
+  std::complex<double> Temp;
+
+  int n, l;
+
+  //**************************************************************************//
+  // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which  //
+  // means that index = layer number - 1 or index = n - 1. The only exception //
+  // are the arrays for representing D1, D3 and Q because they need a value   //
+  // for the index 0 (zero), hence it is important to consider this shift     //
+  // between different arrays. The change was done to optimize memory usage.  //
+  //**************************************************************************//
+
+  // Allocate memory to the arrays
+  std::vector<std::vector<std::complex<double> > > D1_mlxl, D1_mlxlM1;
+  D1_mlxl.resize(L);
+  D1_mlxlM1.resize(L);
+
+  std::vector<std::vector<std::complex<double> > > D3_mlxl, D3_mlxlM1;
+  D3_mlxl.resize(L);
+  D3_mlxlM1.resize(L);
+
+  std::vector<std::vector<std::complex<double> > > Q;
+  Q.resize(L);
+
+  std::vector<std::vector<std::complex<double> > > Ha, Hb;
+  Ha.resize(L);
+  Hb.resize(L);
+
+  for (l = 0; l < L; l++) {
+    D1_mlxl[l].resize(nmax + 1);
+    D1_mlxlM1[l].resize(nmax + 1);
+
+    D3_mlxl[l].resize(nmax + 1);
+    D3_mlxlM1[l].resize(nmax + 1);
+
+    Q[l].resize(nmax + 1);
+
+    Ha[l].resize(nmax);
+    Hb[l].resize(nmax);
+  }
+
+  an.resize(nmax);
+  bn.resize(nmax);
+
+  std::vector<std::complex<double> > D1XL, D3XL;
+  D1XL.resize(nmax + 1);
+  D3XL.resize(nmax + 1);
+
+
+  std::vector<std::complex<double> > PsiXL, ZetaXL;
+  PsiXL.resize(nmax + 1);
+  ZetaXL.resize(nmax + 1);
+
+  //*************************************************//
+  // Calculate D1 and D3 for z1 in the first layer   //
+  //*************************************************//
+  if (fl == pl) {  // PEC layer
+    for (n = 0; n <= nmax; n++) {
+      D1_mlxl[fl][n] = std::complex<double>(0.0, -1.0);
+      D3_mlxl[fl][n] = std::complex<double>(0.0, 1.0);
+    }
+  } else { // Regular layer
+    z1 = x[fl]* m[fl];
+
+    // Calculate D1 and D3
+    calcD1D3(z1, nmax, D1_mlxl[fl], D3_mlxl[fl]);
   }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
-  std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,
-					      double Pi, double Tau) {
-    return calc_S1(n, an, bn, Tau, Pi);
+
+  //******************************************************************//
+  // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
+  //******************************************************************//
+  for (n = 0; n < nmax; n++) {
+    Ha[fl][n] = D1_mlxl[fl][n + 1];
+    Hb[fl][n] = D1_mlxl[fl][n + 1];
   }
-  //**********************************************************************************//
-  // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a       //
-  // real argument (x).                                                               //
-  // Equations (20a) - (21b)                                                          //
-  //                                                                                  //
-  // Input parameters:                                                                //
-  //   x: Real argument to evaluate Psi and Zeta                                      //
-  //   nmax: Maximum number of terms to calculate Psi and Zeta                        //
-  //                                                                                  //
-  // Output parameters:                                                               //
-  //   Psi, Zeta: Riccati-Bessel functions                                            //
-  //**********************************************************************************//
-  void MultiLayerMie::calcPsiZeta(double x,
-				  std::vector<std::complex<double> > D1,
-				  std::vector<std::complex<double> > D3,
-				  std::vector<std::complex<double> >& Psi,
-				  std::vector<std::complex<double> >& Zeta) {
-    //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
-    Psi[0] = std::complex<double>(sin(x), 0);
-    Zeta[0] = std::complex<double>(sin(x), -cos(x));
-    for (int n = 1; n <= nmax_; n++) {
-      Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
-      Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
+
+  //*****************************************************//
+  // Iteration from the second layer to the last one (L) //
+  //*****************************************************//
+  for (l = fl + 1; l < L; l++) {
+    //************************************************************//
+    //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L     //
+    //************************************************************//
+    z1 = x[l]*m[l];
+    z2 = x[l - 1]*m[l];
+
+    //Calculate D1 and D3 for z1
+    calcD1D3(z1, nmax, D1_mlxl[l], D3_mlxl[l]);
+
+    //Calculate D1 and D3 for z2
+    calcD1D3(z2, nmax, D1_mlxlM1[l], D3_mlxlM1[l]);
+
+    //*********************************************//
+    //Calculate Q, Ha and Hb in the layers fl+1..L //
+    //*********************************************//
+
+    // Upward recurrence for Q - equations (19a) and (19b)
+    Num = exp(-2.0*(z1.imag() - z2.imag()))*std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
+    Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
+    Q[l][0] = Num/Denom;
+
+    for (n = 1; n <= nmax; n++) {
+      Num = (z1*D1_mlxl[l][n] + double(n))*(double(n) - z1*D3_mlxl[l][n - 1]);
+      Denom = (z2*D1_mlxlM1[l][n] + double(n))*(double(n) - z2*D3_mlxlM1[l][n - 1]);
+
+      Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1])*Num)/Denom;
     }
 
-  }
-  //**********************************************************************************//
-  // Function CONFRA ported from MIEV0.f (Wiscombe,1979)
-  // Ref. to NCAR Technical Notes, Wiscombe, 1979
-  /*
-c         Compute Bessel function ratio A-sub-N from its
-c         continued fraction using Lentz method
-
-c         ZINV = Reciprocal of argument of A
-
-
-c    I N T E R N A L    V A R I A B L E S
-c    ------------------------------------
-
-c    CAK      Term in continued fraction expansion of A (Eq. R25)
-c     a_k
-
-c    CAPT     Factor used in Lentz iteration for A (Eq. R27)
-c     T_k
-
-c    CNUMER   Numerator   in capT  ( Eq. R28A )
-c     N_k
-c    CDENOM   Denominator in capT  ( Eq. R28B )
-c     D_k
-
-c    CDTD     Product of two successive denominators of capT factors
-c                 ( Eq. R34C )
-c     xi_1
-
-c    CNTN     Product of two successive numerators of capT factors
-c                 ( Eq. R34B )
-c     xi_2
-
-c    EPS1     Ill-conditioning criterion
-c    EPS2     Convergence criterion
-
-c    KK       Subscript k of cAk  ( Eq. R25B )
-c     k
-
-c    KOUNT    Iteration counter ( used to prevent infinite looping )
-
-c    MAXIT    Max. allowed no. of iterations
-
-c    MM       + 1  and - 1, alternately
-*/
-  std::complex<double> MultiLayerMie::calcD1confra(const int N, const std::complex<double> z) {
-  // NTMR -> nmax_ -1  \\TODO nmax_ ?
-    //int N = nmax_ - 1;
-    int KK, KOUNT, MAXIT = 10000, MM;
-    //    double EPS1=1.0e-2;
-    double EPS2=1.0e-8;
-    std::complex<double> CAK, CAPT, CDENOM, CDTD, CNTN, CNUMER;
-    std::complex<double> one = std::complex<double>(1.0,0.0);
-    std::complex<double> ZINV = one/z;
-// c                                 ** Eq. R25a
-    std::complex<double> CONFRA = static_cast<std::complex<double> >(N+1)*ZINV;   //debug ZINV
-    MM = -1; 
-    KK = 2*N +3; //debug 3
-// c                                 ** Eq. R25b, k=2
-    CAK    = static_cast<std::complex<double> >(MM*KK) * ZINV; //debug -3 ZINV
-    CDENOM = CAK;
-    CNUMER = CDENOM + one / CONFRA; //-3zinv+z
-    KOUNT  = 1;
-    //10 CONTINUE
-    do {      ++KOUNT;
-      if (KOUNT > MAXIT) {
-	printf("re(%g):im(%g)\t\n", CONFRA.real(), CONFRA.imag());
-	throw std::invalid_argument("ConFra--Iteration failed to converge!\n");
+    // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
+    for (n = 1; n <= nmax; n++) {
+      //Ha
+      if ((l - 1) == pl) { // The layer below the current one is a PEC layer
+        G1 = -D1_mlxlM1[l][n];
+        G2 = -D3_mlxlM1[l][n];
+      } else {
+        G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[l][n]);
+        G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[l][n]);
       }
-      MM *= -1;      KK += 2;  //debug  mm=1 kk=5
-      CAK = static_cast<std::complex<double> >(MM*KK) * ZINV; //    ** Eq. R25b //debug 5zinv
-     //  //c ** Eq. R32    Ill-conditioned case -- stride two terms instead of one
-     //  if (std::abs( CNUMER / CAK ) >= EPS1 ||  std::abs( CDENOM / CAK ) >= EPS1) {
-     // 	//c                       ** Eq. R34
-     // 	CNTN   = CAK * CNUMER + 1.0;
-     // 	CDTD   = CAK * CDENOM + 1.0;
-     // 	CONFRA = ( CNTN / CDTD ) * CONFRA; // ** Eq. R33
-     // 	MM  *= -1;	KK  += 2;
-     // 	CAK = static_cast<std::complex<double> >(MM*KK) * ZINV; // ** Eq. R25b
-     // 	//c                        ** Eq. R35
-     // 	CNUMER = CAK + CNUMER / CNTN;
-     // 	CDENOM = CAK + CDENOM / CDTD;
-     // 	++KOUNT;
-     // 	//GO TO  10
-     // 	continue;
-     // } else { //c                           *** Well-conditioned case
-      {
-	CAPT   = CNUMER / CDENOM; // ** Eq. R27 //debug (-3zinv + z)/(-3zinv)
-	// printf("re(%g):im(%g)**\t", CAPT.real(), CAPT.imag());
-       CONFRA = CAPT * CONFRA; // ** Eq. R26
-       //if (N == 0) {output=true;printf(" re:");prn(CONFRA.real());printf(" im:"); prn(CONFRA.imag());output=false;};
-       //c                                  ** Check for convergence; Eq. R31
-       if ( std::abs(CAPT.real() - 1.0) >= EPS2 ||  std::abs(CAPT.imag()) >= EPS2 ) {
-//c                                        ** Eq. R30
-	 CNUMER = CAK + one/CNUMER;
-	 CDENOM = CAK + one/CDENOM;
-	 continue;
-	 //GO TO  10
-       }  // end of if < eps2
+
+      Temp = Q[l][n]*G1;
+
+      Num = (G2*D1_mlxl[l][n]) - (Temp*D3_mlxl[l][n]);
+      Denom = G2 - Temp;
+
+      Ha[l][n - 1] = Num/Denom;
+
+      //Hb
+      if ((l - 1) == pl) { // The layer below the current one is a PEC layer
+        G1 = Hb[l - 1][n - 1];
+        G2 = Hb[l - 1][n - 1];
+      } else {
+        G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[l][n]);
+        G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[l][n]);
       }
-      break;
-    } while(1);    
-    //if (N == 0)  printf(" return confra for z=(%g,%g)\n", ZINV.real(), ZINV.imag());
-    return CONFRA;
-  }
-  //**********************************************************************************//
-  // This function calculates the logarithmic derivatives of the Riccati-Bessel       //
-  // functions (D1 and D3) for a complex argument (z).                                //
-  // Equations (16a), (16b) and (18a) - (18d)                                         //
-  //                                                                                  //
-  // Input parameters:                                                                //
-  //   z: Complex argument to evaluate D1 and D3                                      //
-  //   nmax_: Maximum number of terms to calculate D1 and D3                          //
-  //                                                                                  //
-  // Output parameters:                                                               //
-  //   D1, D3: Logarithmic derivatives of the Riccati-Bessel functions                //
-  //**********************************************************************************//
-  void MultiLayerMie::calcD1D3(const std::complex<double> z,
-			       std::vector<std::complex<double> >& D1,
-			       std::vector<std::complex<double> >& D3) {
-    // Downward recurrence for D1 - equations (16a) and (16b)
-    D1[nmax_] = std::complex<double>(0.0, 0.0);
-    //D1[nmax_] = calcD1confra(nmax_, z);
-    const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;
-    
-    // printf(" D:");prn((D1[nmax_]).real()); printf("\t diff:");
-    // prn((D1[nmax_] + double(nmax_)*zinv).real());
-    for (int n = nmax_; n > 0; n--) {
-      D1[n - 1] = double(n)*zinv - 1.0/(D1[n] + double(n)*zinv);
-      //D1[n-1] = calcD1confra(n-1, z);
-      // printf(" D:");prn((D1[n-1]).real()); printf("\t diff:");
-      // prn((D1[n] + double(n)*zinv).real());
+
+      Temp = Q[l][n]*G1;
+
+      Num = (G2*D1_mlxl[l][n]) - (Temp* D3_mlxl[l][n]);
+      Denom = (G2- Temp);
+
+      Hb[l][n - 1] = (Num/ Denom);
     }
-    //     printf("\n\n"); iformat=0;
-    if (std::abs(D1[0]) > 100000.0 )
-      throw std::invalid_argument
-	("Unstable D1! Please, try to change input parameters!\n");
-    // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
-    PsiZeta_[0] = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))
-		       *exp(-2.0*z.imag()));
-    D3[0] = std::complex<double>(0.0, 1.0);
-    for (int n = 1; n <= nmax_; n++) {
-      PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<double>(n)*zinv - D1[n - 1])
-	*(static_cast<double>(n)*zinv- D3[n - 1]);
-      D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta_[n];
+  }
+
+  //**************************************//
+  //Calculate D1, D3, Psi and Zeta for XL //
+  //**************************************//
+
+  // Calculate D1XL and D3XL
+  calcD1D3(x[L - 1], nmax, D1XL, D3XL);
+
+  // Calculate PsiXL and ZetaXL
+  calcPsiZeta(x[L - 1], nmax, D1XL, D3XL, PsiXL, ZetaXL);
+
+  //*********************************************************************//
+  // Finally, we calculate the scattering coefficients (an and bn) and   //
+  // the angular functions (Pi and Tau). Note that for these arrays the  //
+  // first layer is 0 (zero), in future versions all arrays will follow  //
+  // this convention to save memory. (13 Nov, 2014)                      //
+  //*********************************************************************//
+  for (n = 0; n < nmax; n++) {
+    //********************************************************************//
+    //Expressions for calculating an and bn coefficients are not valid if //
+    //there is only one PEC layer (ie, for a simple PEC sphere).          //
+    //********************************************************************//
+    if (pl < (L - 1)) {
+      an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
+      bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
+    } else {
+      an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
+      bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
     }
   }
-  //**********************************************************************************//
-  // This function calculates Pi and Tau for all values of Theta.                     //
-  // Equations (26a) - (26c)                                                          //
-  //                                                                                  //
-  // Input parameters:                                                                //
-  //   nmax_: Maximum number of terms to calculate Pi and Tau                          //
-  //   nTheta: Number of scattering angles                                            //
-  //   Theta: Array containing all the scattering angles where the scattering         //
-  //          amplitudes will be calculated                                           //
-  //                                                                                  //
-  // Output parameters:                                                               //
-  //   Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c)   //
-  //**********************************************************************************//
-  void MultiLayerMie::calcPiTau(std::vector< std::vector<double> >& Pi,
-				std::vector< std::vector<double> >& Tau) {
+
+  return nmax;
+}
+
+//**********************************************************************************//
+// This function calculates the actual scattering parameters and amplitudes         //
+//                                                                                  //
+// Input parameters:                                                                //
+//   L: Number of layers                                                            //
+//   pl: Index of PEC layer. If there is none just send -1                          //
+//   x: Array containing the size parameters of the layers [0..L-1]                 //
+//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
+//   nTheta: Number of scattering angles                                            //
+//   Theta: Array containing all the scattering angles where the scattering         //
+//          amplitudes will be calculated                                           //
+//   nmax: Maximum number of multipolar expansion terms to be used for the          //
+//         calculations. Only use it if you know what you are doing, otherwise      //
+//         set this parameter to -1 and the function will calculate it              //
+//                                                                                  //
+// Output parameters:                                                               //
+//   Qext: Efficiency factor for extinction                                         //
+//   Qsca: Efficiency factor for scattering                                         //
+//   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
+//   Qbk: Efficiency factor for backscattering                                      //
+//   Qpr: Efficiency factor for the radiation pressure                              //
+//   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
+//   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
+//   S1, S2: Complex scattering amplitudes                                          //
+//                                                                                  //
+// Return value:                                                                    //
+//   Number of multipolar expansion terms used for the calculations                 //
+//**********************************************************************************//
+
+int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
+         int nTheta, std::vector<double> Theta, int nmax,
+         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
+		 std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2)  {
+
+  int i, n, t;
+  std::vector<std::complex<double> > an, bn;
+  std::complex<double> Qbktmp;
+
+  // Calculate scattering coefficients
+  nmax = ScattCoeffs(L, pl, x, m, nmax, an, bn);
+
+  std::vector<double> Pi, Tau;
+  Pi.resize(nmax);
+  Tau.resize(nmax);
+
+  double x2 = x[L - 1]*x[L - 1];
+
+  // Initialize the scattering parameters
+  *Qext = 0;
+  *Qsca = 0;
+  *Qabs = 0;
+  *Qbk = 0;
+  Qbktmp = std::complex<double>(0.0, 0.0);
+  *Qpr = 0;
+  *g = 0;
+  *Albedo = 0;
+
+  // Initialize the scattering amplitudes
+  for (t = 0; t < nTheta; t++) {
+    S1[t] = std::complex<double>(0.0, 0.0);
+    S2[t] = std::complex<double>(0.0, 0.0);
+  }
+
+  // By using downward recurrence we avoid loss of precision due to float rounding errors
+  // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
+  //      http://en.wikipedia.org/wiki/Loss_of_significance
+  for (i = nmax - 2; i >= 0; i--) {
+    n = i + 1;
+    // Equation (27)
+    *Qext += (n + n + 1)*(an[i].real() + bn[i].real());
+    // Equation (28)
+    *Qsca += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag() + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag());
+    // Equation (29) TODO We must check carefully this equation. If we
+    // remove the typecast to double then the result changes. Which is
+    // the correct one??? Ovidio (2014/12/10) With cast ratio will
+    // give double, without cast (n + n + 1)/(n*(n + 1)) will be
+    // rounded to integer. Tig (2015/02/24)
+    *Qpr += ((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real());
+    // Equation (33)
+    Qbktmp = Qbktmp + (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]);
+
     //****************************************************//
-    // Equations (26a) - (26c)                            //
+    // Calculate the scattering amplitudes (S1 and S2)    //
+    // Equations (25a) - (25b)                            //
     //****************************************************//
-    std::vector<double> costheta(theta_.size(), 0.0);
-    for (int t = 0; t < theta_.size(); t++) {	
-      costheta[t] = cos(theta_[t]);
-    }
-    for (int n = 0; n < nmax_; n++) {
-      for (int t = 0; t < theta_.size(); t++) {	
-	if (n == 0) {
-	  // Initialize Pi and Tau
-	  Pi[n][t] = 1.0;
-	  Tau[n][t] = (n + 1)*costheta[t]; 
-	} else {
-	  // Calculate the actual values
-	  Pi[n][t] = ((n == 1) ? ((n + n + 1)*costheta[t]*Pi[n - 1][t]/n)
-		   : (((n + n + 1)*costheta[t]*Pi[n - 1][t]
-		       - (n + 1)*Pi[n - 2][t])/n));
-	  Tau[n][t] = (n + 1)*costheta[t]*Pi[n][t] - (n + 2)*Pi[n - 1][t];
-	}
-      }
-    }
-  }
-  //**********************************************************************************//
-  // This function calculates the scattering coefficients required to calculate       //
-  // both the near- and far-field parameters.                                         //
-  //                                                                                  //
-  // Input parameters:                                                                //
-  //   L: Number of layers                                                            //
-  //   pl: Index of PEC layer. If there is none just send -1                          //
-  //   x: Array containing the size parameters of the layers [0..L-1]                 //
-  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
-  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
-  //         calculations. Only use it if you know what you are doing, otherwise      //
-  //         set this parameter to -1 and the function will calculate it.             //
-  //                                                                                  //
-  // Output parameters:                                                               //
-  //   an, bn: Complex scattering amplitudes                                          //
-  //                                                                                  //
-  // Return value:                                                                    //
-  //   Number of multipolar expansion terms used for the calculations                 //
-  //**********************************************************************************//
-  void MultiLayerMie::ScattCoeffs(std::vector<std::complex<double> >& an,
-				  std::vector<std::complex<double> >& bn) {
-    const std::vector<double>& x = size_parameter_;
-    const std::vector<std::complex<double> >& m = index_;
-    const int& pl = PEC_layer_position_;
-    const int L = index_.size();
-    //************************************************************************//
-    // Calculate the index of the first layer. It can be either 0
-    // (default) // or the index of the outermost PEC layer. In the
-    // latter case all layers // below the PEC are discarded.  //
-    // ************************************************************************//
-    // TODO, is it possible for PEC to have a zero index? If yes than
-    // is should be:
-    // int fl = (pl > -1) ? pl : 0;
-    // This will give the same result, however, it corresponds the
-    // logic - if there is PEC, than first layer is PEC.
-    int fl = (pl > 0) ? pl : 0;
-    if (nmax_ <= 0) Nmax(fl);
-
-    std::complex<double> z1, z2;
-    //**************************************************************************//
-    // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which  //
-    // means that index = layer number - 1 or index = n - 1. The only exception //
-    // are the arrays for representing D1, D3 and Q because they need a value   //
-    // for the index 0 (zero), hence it is important to consider this shift     //
-    // between different arrays. The change was done to optimize memory usage.  //
-    //**************************************************************************//
-    // Allocate memory to the arrays
-    std::vector<std::complex<double> > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1),
-      D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1);
-    std::vector<std::vector<std::complex<double> > > Q(L), Ha(L), Hb(L);
-    for (int l = 0; l < L; l++) {
-      // D1_mlxl[l].resize(nmax_ + 1);
-      // D1_mlxlM1[l].resize(nmax_ + 1);
-      // D3_mlxl[l].resize(nmax_ + 1);
-      // D3_mlxlM1[l].resize(nmax_ + 1);
-      Q[l].resize(nmax_ + 1);
-      Ha[l].resize(nmax_);
-      Hb[l].resize(nmax_);
-    }
-    an.resize(nmax_);
-    bn.resize(nmax_);
-    PsiZeta_.resize(nmax_ + 1);
-    std::vector<std::complex<double> > D1XL(nmax_ + 1), D3XL(nmax_ + 1), 
-      PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);
-    //*************************************************//
-    // Calculate D1 and D3 for z1 in the first layer   //
-    //*************************************************//
-    if (fl == pl) {  // PEC layer
-      for (int n = 0; n <= nmax_; n++) {
-	D1_mlxl[n] = std::complex<double>(0.0, -1.0);
-	D3_mlxl[n] = std::complex<double>(0.0, 1.0);
-      }
-    } else { // Regular layer
-      z1 = x[fl]* m[fl];
-      // Calculate D1 and D3
-      calcD1D3(z1, D1_mlxl, D3_mlxl);
-    }
-    // do { \
-    //   ++iformat;\
-    //   if (iformat%5 == 0) printf("%24.16e",z1.real());	\
-    // } while (false);
-    //******************************************************************//
-    // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
-    //******************************************************************//
-    for (int n = 0; n < nmax_; n++) {
-      Ha[fl][n] = D1_mlxl[n + 1];
-      Hb[fl][n] = D1_mlxl[n + 1];
-    }
-    //*****************************************************//
-    // Iteration from the second layer to the last one (L) //
-    //*****************************************************//
-    std::complex<double> Temp, Num, Denom;
-    std::complex<double> G1, G2;
-    for (int l = fl + 1; l < L; l++) {
-      //************************************************************//
-      //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L     //
-      //************************************************************//
-      z1 = x[l]*m[l];
-      z2 = x[l - 1]*m[l];
-      //Calculate D1 and D3 for z1
-      calcD1D3(z1, D1_mlxl, D3_mlxl);
-      //Calculate D1 and D3 for z2
-      calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
-      // prn(z1.real());
-      // for ( auto i : D1_mlxl) { prn(i.real());
-      //   // prn(i.imag());
-      // 	} printf("\n");
-
-      //*********************************************//
-      //Calculate Q, Ha and Hb in the layers fl+1..L //
-      //*********************************************//
-      // Upward recurrence for Q - equations (19a) and (19b)
-      Num = exp(-2.0*(z1.imag() - z2.imag()))
-	* std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
-      Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
-      Q[l][0] = Num/Denom;
-      for (int n = 1; n <= nmax_; n++) {
-	Num = (z1*D1_mlxl[n] + double(n))*(double(n) - z1*D3_mlxl[n - 1]);
-	Denom = (z2*D1_mlxlM1[n] + double(n))*(double(n) - z2*D3_mlxlM1[n - 1]);
-	Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
-      }
-      // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
-      for (int n = 1; n <= nmax_; n++) {
-	//Ha
-	if ((l - 1) == pl) { // The layer below the current one is a PEC layer
-	  G1 = -D1_mlxlM1[n];
-	  G2 = -D3_mlxlM1[n];
-	} else {
-	  G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
-	  G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
-	}  // end of if PEC
-	Temp = Q[l][n]*G1;
-	Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
-	Denom = G2 - Temp;
-	Ha[l][n - 1] = Num/Denom;
-	//Hb
-	if ((l - 1) == pl) { // The layer below the current one is a PEC layer
-	  G1 = Hb[l - 1][n - 1];
-	  G2 = Hb[l - 1][n - 1];
-	} else {
-	  G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
-	  G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
-	}  // end of if PEC
-
-	Temp = Q[l][n]*G1;
-	Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
-	Denom = (G2- Temp);
-	Hb[l][n - 1] = (Num/ Denom);
-      }  // end of for Ha and Hb terms
-    }  // end of for layers iteration
-    //**************************************//
-    //Calculate D1, D3, Psi and Zeta for XL //
-    //**************************************//
-    // Calculate D1XL and D3XL
-    calcD1D3(x[L - 1],  D1XL, D3XL);
-    //printf("%5.20f\n",Ha[L-1][0].real());
-    // Calculate PsiXL and ZetaXL
-    calcPsiZeta(x[L - 1], D1XL, D3XL, PsiXL, ZetaXL);
-    //*********************************************************************//
-    // Finally, we calculate the scattering coefficients (an and bn) and   //
-    // the angular functions (Pi and Tau). Note that for these arrays the  //
-    // first layer is 0 (zero), in future versions all arrays will follow  //
-    // this convention to save memory. (13 Nov, 2014)                      //
-    //*********************************************************************//
-    for (int n = 0; n < nmax_; n++) {
-      //********************************************************************//
-      //Expressions for calculating an and bn coefficients are not valid if //
-      //there is only one PEC layer (ie, for a simple PEC sphere).          //
-      //********************************************************************//
-      if (pl < (L - 1)) {
-	an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
-	bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
-      } else {
-	an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
-	bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
-      }
-    }  // end of for an and bn terms
-  }  // end of void MultiLayerMie::ScattCoeffs(...)
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  void MultiLayerMie::InitMieCalculations() {
-    // Initialize the scattering parameters
-    Qext_ = 0;
-    Qsca_ = 0;
-    Qabs_ = 0;
-    Qbk_ = 0;
-    Qpr_ = 0;
-    asymmetry_factor_ = 0;
-    albedo_ = 0;
-    Qsca_ch_.clear();
-    Qext_ch_.clear();
-    Qabs_ch_.clear();
-    Qbk_ch_.clear();
-    Qpr_ch_.clear();
-    Qsca_ch_.resize(nmax_-1);
-    Qext_ch_.resize(nmax_-1);
-    Qabs_ch_.resize(nmax_-1);
-    Qbk_ch_.resize(nmax_-1);
-    Qpr_ch_.resize(nmax_-1);
-    // Initialize the scattering amplitudes
-    std::vector<std::complex<double> >	tmp1(theta_.size(),std::complex<double>(0.0, 0.0));
-    S1_.swap(tmp1);
-    S2_ = S1_;
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  void MultiLayerMie::ConvertToSP() {
-    if (target_width_.size() + coating_width_.size() == 0)
-      return;  // Nothing to convert, we suppose that SP was set directly
-    GenerateSizeParameter();
-    GenerateIndex();
-    if (size_parameter_.size() != index_.size())
-      throw std::invalid_argument("Ivalid conversion of width to size parameter units!/n");
-  }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  //**********************************************************************************//
-  // This function calculates the actual scattering parameters and amplitudes         //
-  //                                                                                  //
-  // Input parameters:                                                                //
-  //   L: Number of layers                                                            //
-  //   pl: Index of PEC layer. If there is none just send -1                          //
-  //   x: Array containing the size parameters of the layers [0..L-1]                 //
-  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
-  //   nTheta: Number of scattering angles                                            //
-  //   Theta: Array containing all the scattering angles where the scattering         //
-  //          amplitudes will be calculated                                           //
-  //   nmax_: Maximum number of multipolar expansion terms to be used for the          //
-  //         calculations. Only use it if you know what you are doing, otherwise      //
-  //         set this parameter to -1 and the function will calculate it              //
-  //                                                                                  //
-  // Output parameters:                                                               //
-  //   Qext: Efficiency factor for extinction                                         //
-  //   Qsca: Efficiency factor for scattering                                         //
-  //   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
-  //   Qbk: Efficiency factor for backscattering                                      //
-  //   Qpr: Efficiency factor for the radiation pressure                              //
-  //   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
-  //   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
-  //   S1, S2: Complex scattering amplitudes                                          //
-  //                                                                                  //
-  // Return value:                                                                    //
-  //   Number of multipolar expansion terms used for the calculations                 //
-  //**********************************************************************************//
-  void MultiLayerMie::RunMieCalculations() {
-    ConvertToSP();
-    nmax_ = nmax_preset_;
-    if (size_parameter_.size() != index_.size())
-      throw std::invalid_argument("Each size parameter should have only one index!");
-    if (size_parameter_.size() == 0)
-      throw std::invalid_argument("Initialize model first!");
-    std::vector<std::complex<double> > an, bn;
-    const std::vector<double>& x = size_parameter_;
-    // Calculate scattering coefficients
-    ScattCoeffs(an, bn);
-
-    // std::vector< std::vector<double> > Pi(nmax_), Tau(nmax_);
-    std::vector< std::vector<double> > Pi, Tau;
-    Pi.resize(nmax_);
-    Tau.resize(nmax_);
-    for (int i =0; i< nmax_; ++i) {
-      Pi[i].resize(theta_.size());
-      Tau[i].resize(theta_.size());
-    }
-    calcPiTau(Pi, Tau);    
-    InitMieCalculations(); //
-    std::complex<double> Qbktmp(0.0, 0.0);
-    std::vector< std::complex<double> > Qbktmp_ch(nmax_ - 1, Qbktmp);
-    // By using downward recurrence we avoid loss of precision due to float rounding errors
-    // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
-    //      http://en.wikipedia.org/wiki/Loss_of_significance
-    for (int i = nmax_ - 2; i >= 0; i--) {
-      const int n = i + 1;
-      // Equation (27)
-      Qext_ch_[i] = (n + n + 1)*(an[i].real() + bn[i].real());
-      Qext_ += Qext_ch_[i];
-      // Equation (28)
-      Qsca_ch_[i] += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag()
-			    + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag());
-      Qsca_ += Qsca_ch_[i];
-      //printf(" %g:%g", Qext_ch_[i], Qsca_ch_[i]);
-      // Equation (29) TODO We must check carefully this equation. If we
-      // remove the typecast to double then the result changes. Which is
-      // the correct one??? Ovidio (2014/12/10) With cast ratio will
-      // give double, without cast (n + n + 1)/(n*(n + 1)) will be
-      // rounded to integer. Tig (2015/02/24)
-      Qpr_ch_[i]=((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real())
-	       + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real());
-      Qpr_ += Qpr_ch_[i];
-      // Equation (33)      
-      Qbktmp_ch[i] = (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]);
-      Qbktmp += Qbktmp_ch[i];
-      // Calculate the scattering amplitudes (S1 and S2)    //
-      // Equations (25a) - (25b)                            //
-      for (int t = 0; t < theta_.size(); t++) {
-	S1_[t] += calc_S1(n, an[i], bn[i], Pi[i][t], Tau[i][t]);
-	S2_[t] += calc_S2(n, an[i], bn[i], Pi[i][t], Tau[i][t]);
-      }
+    for (t = 0; t < nTheta; t++) {
+      calcPiTau(nmax, Theta[t], Pi, Tau);
+
+      S1[t] += calc_S1(n, an[i], bn[i], Pi[i], Tau[i]);
+      S2[t] += calc_S2(n, an[i], bn[i], Pi[i], Tau[i]);
     }
-    double x2 = pow2(x.back());
-    Qext_ = 2.0*(Qext_)/x2;                                 // Equation (27)
-    for (double& Q : Qext_ch_) Q = 2.0*Q/x2;
-    Qsca_ = 2.0*(Qsca_)/x2;                                 // Equation (28)
-    for (double& Q : Qsca_ch_) Q = 2.0*Q/x2;
-    Qpr_ = Qext_ - 4.0*(Qpr_)/x2;                           // Equation (29)
-    for (int i = 0; i < nmax_ - 1; ++i) Qpr_ch_[i] = Qext_ch_[i] - 4.0*Qpr_ch_[i]/x2;
-
-    Qabs_ = Qext_ - Qsca_;                                // Equation (30)
-    for (int i = 0; i < nmax_ - 1; ++i) Qabs_ch_[i] = Qext_ch_[i] - Qsca_ch_[i];
-    
-    albedo_ = Qsca_ / Qext_;                              // Equation (31)
-    asymmetry_factor_ = (Qext_ - Qpr_) / Qsca_;                          // Equation (32)
-
-    Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2;    // Equation (33)
-
-    isMieCalculated_ = true;
-    nmax_used_ = nmax_;
-    //return nmax;
   }
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // external scattering field = incident + scattered
-  // BH p.92 (4.37), 94 (4.45), 95 (4.50)
-  // assume: medium is non-absorbing; refim = 0; Uabs = 0
-  void MultiLayerMie::fieldExt(double Rho, double Phi, double Theta, std::vector<double> Pi, std::vector<double> Tau,
-			       std::vector<std::complex<double> > an, std::vector<std::complex<double> > bn,
-			       std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H)  {
-    
-
-    double rn = 0.0;
-    std::complex<double> zn, xxip, encap;
-    std::vector<std::complex<double> > vm3o1n, vm3e1n, vn3o1n, vn3e1n;
-    vm3o1n.resize(3);
-    vm3e1n.resize(3);
-    vn3o1n.resize(3);
-    vn3e1n.resize(3);
-
-    std::vector<std::complex<double> > Ei, Hi, Es, Hs;
-    Ei.resize(3);
-    Hi.resize(3);
-    Es.resize(3);
-    Hs.resize(3);
-    for (int i = 0; i < 3; i++) {
-      Ei[i] = std::complex<double>(0.0, 0.0);
-      Hi[i] = std::complex<double>(0.0, 0.0);
-      Es[i] = std::complex<double>(0.0, 0.0);
-      Hs[i] = std::complex<double>(0.0, 0.0);
-    }
 
-    std::vector<std::complex<double> > bj, by, bd;
-    bj.resize(nmax_);
-    by.resize(nmax_);
-    bd.resize(nmax_);
-
-    // Calculate spherical Bessel and Hankel functions
-    sphericalBessel(Rho, bj, by, bd);
-
-    for (int n = 0; n < nmax_; n++) {
-      rn = double(n + 1);
-
-      zn = bj[n] + std::complex<double>(0.0, 1.0)*by[n];
-      xxip = Rho*(bj[n] + std::complex<double>(0.0, 1.0)*by[n]) - rn*zn;
-
-      vm3o1n[0] = std::complex<double>(0.0, 0.0);
-      vm3o1n[1] = std::cos(Phi)*Pi[n]*zn;
-      vm3o1n[2] = -(std::sin(Phi)*Tau[n]*zn);
-      vm3e1n[0] = std::complex<double>(0.0, 0.0);
-      vm3e1n[1] = -(std::sin(Phi)*Pi[n]*zn);
-      vm3e1n[2] = -(std::cos(Phi)*Tau[n]*zn);
-      vn3o1n[0] = std::sin(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
-      vn3o1n[1] = std::sin(Phi)*Tau[n]*xxip/Rho;
-      vn3o1n[2] = std::cos(Phi)*Pi[n]*xxip/Rho;
-      vn3e1n[0] = std::cos(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
-      vn3e1n[1] = std::cos(Phi)*Tau[n]*xxip/Rho;
-      vn3e1n[2] = -(std::sin(Phi)*Pi[n]*xxip/Rho);
-
-      // scattered field: BH p.94 (4.45)
-      encap = std::pow(std::complex<double>(0.0, 1.0), rn)*(2.0*rn + 1.0)/(rn*(rn + 1.0));
-      for (int i = 0; i < 3; i++) {
-	Es[i] = Es[i] + encap*(std::complex<double>(0.0, 1.0)*an[n]*vn3e1n[i] - bn[n]*vm3o1n[i]);
-	Hs[i] = Hs[i] + encap*(std::complex<double>(0.0, 1.0)*bn[n]*vn3o1n[i] + an[n]*vm3e1n[i]);
-      }
+  *Qext = 2*(*Qext)/x2;                                 // Equation (27)
+  *Qsca = 2*(*Qsca)/x2;                                 // Equation (28)
+  *Qpr = *Qext - 4*(*Qpr)/x2;                           // Equation (29)
+
+  *Qabs = *Qext - *Qsca;                                // Equation (30)
+  *Albedo = *Qsca / *Qext;                              // Equation (31)
+  *g = (*Qext - *Qpr) / *Qsca;                          // Equation (32)
+
+  *Qbk = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2;    // Equation (33)
+
+  return nmax;
+}
+
+//**********************************************************************************//
+// This function is just a wrapper to call the full 'nMie' function with fewer      //
+// parameters, it is here mainly for compatibility with older versions of the       //
+// program. Also, you can use it if you neither have a PEC layer nor want to define //
+// any limit for the maximum number of terms.                                       //
+//                                                                                  //
+// Input parameters:                                                                //
+//   L: Number of layers                                                            //
+//   x: Array containing the size parameters of the layers [0..L-1]                 //
+//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
+//   nTheta: Number of scattering angles                                            //
+//   Theta: Array containing all the scattering angles where the scattering         //
+//          amplitudes will be calculated                                           //
+//                                                                                  //
+// Output parameters:                                                               //
+//   Qext: Efficiency factor for extinction                                         //
+//   Qsca: Efficiency factor for scattering                                         //
+//   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
+//   Qbk: Efficiency factor for backscattering                                      //
+//   Qpr: Efficiency factor for the radiation pressure                              //
+//   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
+//   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
+//   S1, S2: Complex scattering amplitudes                                          //
+//                                                                                  //
+// Return value:                                                                    //
+//   Number of multipolar expansion terms used for the calculations                 //
+//**********************************************************************************//
+
+int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
+         int nTheta, std::vector<double> Theta,
+         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
+         std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
+
+  return nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
+}
+
+
+//**********************************************************************************//
+// This function is just a wrapper to call the full 'nMie' function with fewer      //
+// parameters, it is useful if you want to include a PEC layer but not a limit      //
+// for the maximum number of terms.                                                 //
+//                                                                                  //
+// Input parameters:                                                                //
+//   L: Number of layers                                                            //
+//   pl: Index of PEC layer. If there is none just send -1                          //
+//   x: Array containing the size parameters of the layers [0..L-1]                 //
+//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
+//   nTheta: Number of scattering angles                                            //
+//   Theta: Array containing all the scattering angles where the scattering         //
+//          amplitudes will be calculated                                           //
+//                                                                                  //
+// Output parameters:                                                               //
+//   Qext: Efficiency factor for extinction                                         //
+//   Qsca: Efficiency factor for scattering                                         //
+//   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
+//   Qbk: Efficiency factor for backscattering                                      //
+//   Qpr: Efficiency factor for the radiation pressure                              //
+//   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
+//   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
+//   S1, S2: Complex scattering amplitudes                                          //
+//                                                                                  //
+// Return value:                                                                    //
+//   Number of multipolar expansion terms used for the calculations                 //
+//**********************************************************************************//
+
+int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
+         int nTheta, std::vector<double> Theta,
+         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
+         std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
+
+  return nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
+}
+
+//**********************************************************************************//
+// This function is just a wrapper to call the full 'nMie' function with fewer      //
+// parameters, it is useful if you want to include a limit for the maximum number   //
+// of terms but not a PEC layer.                                                    //
+//                                                                                  //
+// Input parameters:                                                                //
+//   L: Number of layers                                                            //
+//   x: Array containing the size parameters of the layers [0..L-1]                 //
+//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
+//   nTheta: Number of scattering angles                                            //
+//   Theta: Array containing all the scattering angles where the scattering         //
+//          amplitudes will be calculated                                           //
+//   nmax: Maximum number of multipolar expansion terms to be used for the          //
+//         calculations. Only use it if you know what you are doing, otherwise      //
+//         set this parameter to -1 and the function will calculate it              //
+//                                                                                  //
+// Output parameters:                                                               //
+//   Qext: Efficiency factor for extinction                                         //
+//   Qsca: Efficiency factor for scattering                                         //
+//   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
+//   Qbk: Efficiency factor for backscattering                                      //
+//   Qpr: Efficiency factor for the radiation pressure                              //
+//   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
+//   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
+//   S1, S2: Complex scattering amplitudes                                          //
+//                                                                                  //
+// Return value:                                                                    //
+//   Number of multipolar expansion terms used for the calculations                 //
+//**********************************************************************************//
+
+int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
+         int nTheta, std::vector<double> Theta, int nmax,
+         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
+         std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
+
+  return nMie(L, -1, x, m, nTheta, Theta, nmax, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
+}
+
+
+//**********************************************************************************//
+// This function calculates complex electric and magnetic field in the surroundings //
+// and inside (TODO) the particle.                                                  //
+//                                                                                  //
+// Input parameters:                                                                //
+//   L: Number of layers                                                            //
+//   pl: Index of PEC layer. If there is none just send 0 (zero)                    //
+//   x: Array containing the size parameters of the layers [0..L-1]                 //
+//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
+//   nmax: Maximum number of multipolar expansion terms to be used for the          //
+//         calculations. Only use it if you know what you are doing, otherwise      //
+//         set this parameter to 0 (zero) and the function will calculate it.       //
+//   ncoord: Number of coordinate points                                            //
+//   Coords: Array containing all coordinates where the complex electric and        //
+//           magnetic fields will be calculated                                     //
+//                                                                                  //
+// Output parameters:                                                               //
+//   E, H: Complex electric and magnetic field at the provided coordinates          //
+//                                                                                  //
+// Return value:                                                                    //
+//   Number of multipolar expansion terms used for the calculations                 //
+//**********************************************************************************//
+
+int nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
+           int ncoord, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp,
+		   std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
+
+  int i, c;
+  double Rho, Phi, Theta;
+  std::vector<std::complex<double> > an, bn;
+
+  // This array contains the fields in spherical coordinates
+  std::vector<std::complex<double> > Es, Hs;
+  Es.resize(3);
+  Hs.resize(3);
+
+
+  // Calculate scattering coefficients
+  nmax = ScattCoeffs(L, pl, x, m, nmax, an, bn);
+
+  std::vector<double> Pi, Tau;
+  Pi.resize(nmax);
+  Tau.resize(nmax);
+
+  for (c = 0; c < ncoord; c++) {
+    // Convert to spherical coordinates
+    Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
+    // Avoid convergence problems
+    if (Rho < 1e-3) {
+      Rho = 1e-3;
     }
+    //If Xp=Yp=0 Phi is undefined. Just set it to zero
+    if ((Xp[c] == 0.0) and (Yp[c] == 0.0)) {
+      Phi = 0.0;
+    } else {
+      Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
+    }
+    Theta = acos(Xp[c]/Rho);
 
-    // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
-    // basis unit vectors = er, etheta, ephi
-    std::complex<double> eifac = std::exp(std::complex<double>(0.0, 1.0)*Rho*std::cos(Theta));
+    calcPiTau(nmax, Theta, Pi, Tau);
 
-    Ei[0] = eifac*std::sin(Theta)*std::cos(Phi);
-    Ei[1] = eifac*std::cos(Theta)*std::cos(Phi);
-    Ei[2] = -(eifac*std::sin(Phi));
+    //*******************************************************//
+    // external scattering field = incident + scattered      //
+    // BH p.92 (4.37), 94 (4.45), 95 (4.50)                  //
+    // assume: medium is non-absorbing; refim = 0; Uabs = 0  //
+    //*******************************************************//
 
-    // magnetic field
-    double hffact = 1.0/(cc*mu);
-    for (int i = 0; i < 3; i++) {
-      Hs[i] = hffact*Hs[i];
+    // Firstly the easiest case: the field outside the particle
+    if (Rho >= x[L - 1]) {
+      fieldExt(nmax, Rho, Phi, Theta, Pi, Tau, an, bn, Es, Hs);
+    } else {
+      // TODO, for now just set all the fields to zero
+      for (i = 0; i < 3; i++) {
+        Es[i] = std::complex<double>(0.0, 0.0);
+        Hs[i] = std::complex<double>(0.0, 0.0);
+      }
     }
 
-    // incident H field: BH p.26 (2.43), p.89 (4.21)
-    std::complex<double> hffacta = hffact;
-    std::complex<double> hifac = eifac*hffacta;
-
-    Hi[0] = hifac*std::sin(Theta)*std::sin(Phi);
-    Hi[1] = hifac*std::cos(Theta)*std::sin(Phi);
-    Hi[2] = hifac*std::cos(Phi);
+    //Now, convert the fields back to cartesian coordinates
+    E[c][0] = std::sin(Theta)*std::cos(Phi)*Es[0] + std::cos(Theta)*std::cos(Phi)*Es[1] - std::sin(Phi)*Es[2];
+    E[c][1] = std::sin(Theta)*std::sin(Phi)*Es[0] + std::cos(Theta)*std::sin(Phi)*Es[1] + std::cos(Phi)*Es[2];
+    E[c][2] = std::cos(Theta)*Es[0] - std::sin(Theta)*Es[1];
 
-    for (int i = 0; i < 3; i++) {
-      // electric field E [V m-1] = EF*E0
-      E[i] = Ei[i] + Es[i];
-      H[i] = Hi[i] + Hs[i];
-    }
+    H[c][0] = std::sin(Theta)*std::cos(Phi)*Hs[0] + std::cos(Theta)*std::cos(Phi)*Hs[1] - std::sin(Phi)*Hs[2];
+    H[c][1] = std::sin(Theta)*std::sin(Phi)*Hs[0] + std::cos(Theta)*std::sin(Phi)*Hs[1] + std::cos(Phi)*Hs[2];
+    H[c][2] = std::cos(Theta)*Hs[0] - std::sin(Theta)*Hs[1];
   }
 
-  // ********************************************************************** //
-  // ********************************************************************** //
-  // ********************************************************************** //
-
-  //**********************************************************************************//
-  // This function calculates complex electric and magnetic field in the surroundings //
-  // and inside (TODO) the particle.                                                  //
-  //                                                                                  //
-  // Input parameters:                                                                //
-  //   L: Number of layers                                                            //
-  //   pl: Index of PEC layer. If there is none just send 0 (zero)                    //
-  //   x: Array containing the size parameters of the layers [0..L-1]                 //
-  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
-  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
-  //         calculations. Only use it if you know what you are doing, otherwise      //
-  //         set this parameter to 0 (zero) and the function will calculate it.       //
-  //   ncoord: Number of coordinate points                                            //
-  //   Coords: Array containing all coordinates where the complex electric and        //
-  //           magnetic fields will be calculated                                     //
-  //                                                                                  //
-  // Output parameters:                                                               //
-  //   E, H: Complex electric and magnetic field at the provided coordinates          //
-  //                                                                                  //
-  // Return value:                                                                    //
-  //   Number of multipolar expansion terms used for the calculations                 //
-  //**********************************************************************************//
-
-  //   int MultiLayerMie::nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
-  //            int ncoord, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp,
-  // 		   std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
-
-  //   double Rho, Phi, Theta;
-  //   std::vector<std::complex<double> > an, bn;
-
-  //   // This array contains the fields in spherical coordinates
-  //   std::vector<std::complex<double> > Es, Hs;
-  //   Es.resize(3);
-  //   Hs.resize(3);
-
-
-  //   // Calculate scattering coefficients
-  //   ScattCoeffs(L, pl, an, bn);
-
-  //   std::vector<double> Pi, Tau;
-  //   Pi.resize(nmax_);
-  //   Tau.resize(nmax_);
-
-  //   for (int c = 0; c < ncoord; c++) {
-  //     // Convert to spherical coordinates
-  //     Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
-  //     if (Rho < 1e-3) {
-  //       // Avoid convergence problems
-  //       Rho = 1e-3;
-  //     }
-  //     Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
-  //     Theta = acos(Xp[c]/Rho);
-
-  //     calcPiTau(Theta, Pi, Tau);
-
-  //     //*******************************************************//
-  //     // external scattering field = incident + scattered      //
-  //     // BH p.92 (4.37), 94 (4.45), 95 (4.50)                  //
-  //     // assume: medium is non-absorbing; refim = 0; Uabs = 0  //
-  //     //*******************************************************//
-
-  //     // Firstly the easiest case: the field outside the particle
-  //     if (Rho >= x[L - 1]) {
-  //       fieldExt(Rho, Phi, Theta, Pi, Tau, an, bn, Es, Hs);
-  //     } else {
-  //       // TODO, for now just set all the fields to zero
-  //       for (int i = 0; i < 3; i++) {
-  //         Es[i] = std::complex<double>(0.0, 0.0);
-  //         Hs[i] = std::complex<double>(0.0, 0.0);
-  //       }
-  //     }
-
-  //     //Now, convert the fields back to cartesian coordinates
-  //     E[c][0] = std::sin(Theta)*std::cos(Phi)*Es[0] + std::cos(Theta)*std::cos(Phi)*Es[1] - std::sin(Phi)*Es[2];
-  //     E[c][1] = std::sin(Theta)*std::sin(Phi)*Es[0] + std::cos(Theta)*std::sin(Phi)*Es[1] + std::cos(Phi)*Es[2];
-  //     E[c][2] = std::cos(Theta)*Es[0] - std::sin(Theta)*Es[1];
-
-  //     H[c][0] = std::sin(Theta)*std::cos(Phi)*Hs[0] + std::cos(Theta)*std::cos(Phi)*Hs[1] - std::sin(Phi)*Hs[2];
-  //     H[c][1] = std::sin(Theta)*std::sin(Phi)*Hs[0] + std::cos(Theta)*std::sin(Phi)*Hs[1] + std::cos(Phi)*Hs[2];
-  //     H[c][2] = std::cos(Theta)*Hs[0] - std::sin(Theta)*Hs[1];
-  //   }
-
-  //   return nmax;
-  // }  // end of int nField()
-
-}  // end of namespace nmie
+  return nmax;
+}

+ 43 - 236
nmie.h

@@ -1,251 +1,58 @@
-#ifndef SRC_NMIE_NMIE_H_
-#define SRC_NMIE_NMIE_H_
-///
-/// @file   nmie-wrapper.h
-/// @author Ladutenko Konstantin <kostyfisik at gmail (.) com>
-/// @date   Tue Sep  3 00:40:47 2013
-/// @copyright 2013 Ladutenko Konstantin
-///
-/// nmie-wrapper is free software: you can redistribute it and/or modify
-/// it under the terms of the GNU General Public License as published by
-/// the Free Software Foundation, either version 3 of the License, or
-/// (at your option) any later version.
-///
-/// nmie-wrapper is distributed in the hope that it will be useful,
-/// but WITHOUT ANY WARRANTY; without even the implied warranty of
-/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-/// GNU General Public License for more details.
-///
-/// You should have received a copy of the GNU General Public License
-/// along with nmie-wrapper.  If not, see <http://www.gnu.org/licenses/>.
-///
-/// nmie-wrapper uses nmie.c from scattnlay by Ovidio Pena
-/// <ovidio@bytesfall.com> as a linked library. He has an additional condition to 
-/// his library:
-//    The only additional condition is that we expect that all publications         //
-//    describing  work using this software , or all commercial products             //
+//**********************************************************************************//
+//    Copyright (C) 2009-2015  Ovidio Pena <ovidio@bytesfall.com>                   //
+//                                                                                  //
+//    This file is part of scattnlay                                                //
+//                                                                                  //
+//    This program is free software: you can redistribute it and/or modify          //
+//    it under the terms of the GNU General Public License as published by          //
+//    the Free Software Foundation, either version 3 of the License, or             //
+//    (at your option) any later version.                                           //
+//                                                                                  //
+//    This program is distributed in the hope that it will be useful,               //
+//    but WITHOUT ANY WARRANTY; without even the implied warranty of                //
+//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                 //
+//    GNU General Public License for more details.                                  //
+//                                                                                  //
+//    The only additional remark is that we expect that all publications            //
+//    describing work using this software, or all commercial products               //
 //    using it, cite the following reference:                                       //
 //    [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by           //
 //        a multilayered sphere," Computer Physics Communications,                  //
 //        vol. 180, Nov. 2009, pp. 2348-2354.                                       //
-///
-/// @brief  Wrapper class around nMie function for ease of use
-/// 
-///
-#include <array>
+//                                                                                  //
+//    You should have received a copy of the GNU General Public License             //
+//    along with this program.  If not, see <http://www.gnu.org/licenses/>.         //
+//**********************************************************************************//
+
+#define VERSION "0.3.1"
 #include <complex>
-#include <cstdlib>
-#include <iostream>
 #include <vector>
 
-#ifndef NDEBUG
-#   define ASSERT(condition, message) \
-    do { \
-        if (! (condition)) { \
-            std::cerr << "Assertion `" #condition "` failed in " << __FILE__ \
-                      << " line " << __LINE__ << ": " << message << std::endl; \
-            std::exit(EXIT_FAILURE); \
-        } \
-    } while (false)
-#else
-#   define ASSERT(condition, message) do { } while (false)
-#endif
-
+int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
+		        std::vector<std::complex<double> > &an, std::vector<std::complex<double> > &bn);
 
-namespace nmie {
-
-  int nMie_wrapper(int L, const std::vector<double>& x, const std::vector<std::complex<double> >& m,
-         int nTheta, const std::vector<double>& Theta,
+int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
+         int nTheta, std::vector<double> Theta,
          double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
-	   std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2);
-
-  class MultiLayerMie {
-    // Will throw for any error!
-    // SP stands for size parameter units.
-   public:
-    void GetFailed();
-    long iformat = 0;
-    bool output = true;
-    void prn(double var) {
-      do {
-	if (!output) break;
-	++iformat;
-	printf("%23.13e",var);	     
-	if (iformat%4 == 0) printf("\n");
-      } while (false);
-    }
-    // Set parameters in applied units 
-    void SetWavelength(double wavelength) {wavelength_ = wavelength;};
-    // It is possible to set only a multilayer target to run calculaitons.
-    // For many runs it can be convenient to separate target and coating layers.
-    // Per layer
-    void AddTargetLayer(double layer_width, std::complex<double> layer_index);
-    void AddCoatingLayer(double layer_width, std::complex<double> layer_index);
-    // For all layers
-    void SetTargetWidth(std::vector<double> width);
-    void SetTargetIndex(std::vector< std::complex<double> > index);
-    void SetTargetPEC(double radius);
-    void SetCoatingWidth(std::vector<double> width);
-    void SetCoatingIndex(std::vector< std::complex<double> > index);
-    void SetFieldPoints(std::vector< std::array<double,3> > coords);
-
-    //Set parameters in size parameter units
-    void SetWidthSP(const std::vector<double>& width);
-    void SetIndexSP(const std::vector< std::complex<double> >& index);
-    void SetFieldPointsSP(std::vector< std::array<double,3> > coords);
-
-    // Set common parameters
-    void SetAnglesForPattern(double from_angle, double to_angle, int samples);
-    void SetAngles(const std::vector<double>& angles);
-    std::vector<double> GetAngles();
-    void SetPEC(int layer_position = 0);  // By default set PEC layer to be the first one
-    
-    void SetMaxTermsNumber(int nmax);
-    int GetMaxTermsUsed() {return nmax_used_;};
-    
-    void ClearTarget();
-    void ClearCoating();
-    void ClearLayers();
-    void ClearAllDesign(); //Layers + SP + index_
-
-    // Applied units requests
-    double GetTotalRadius();
-    double GetTargetRadius();
-    double GetCoatingWidth();
-    std::vector<double>                  GetTargetLayersWidth();
-    std::vector< std::complex<double> >  GetTargetLayersIndex();
-    std::vector<double>                  GetCoatingLayersWidth();
-    std::vector< std::complex<double> >  GetCoatingLayersIndex();
-    std::vector< std::array<double,3> >   GetFieldPoints();
-    std::vector<std::array< std::complex<double>,3 > >  GetFieldE();
-    std::vector<std::array< std::complex<double>,3 > >  GetFieldH();
-    std::vector< std::vector<double> >   GetSpectra(double from_WL, double to_WL,
-                                                   int samples);  // ext, sca, abs, bk
-    double GetRCSext();
-    double GetRCSsca();
-    double GetRCSabs();
-    double GetRCSbk();
-    std::vector<double> GetPatternEk();
-    std::vector<double> GetPatternHk();
-    std::vector<double> GetPatternUnpolarized();
-    
-
+         std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2);
 
-    // Size parameter units
-    std::vector<double>                  GetLayerWidthSP();
-    // Same as to get target and coating index
-    std::vector< std::complex<double> >  GetLayerIndex();  
-    std::vector< std::array<double,3> >   GetFieldPointsSP();
-    // Do we need normalize field to size parameter?
-    /* std::vector<std::vector<std::complex<double> > >  GetFieldESP(); */
-    /* std::vector<std::vector<std::complex<double> > >  GetFieldHSP(); */
-    std::vector< std::array<double,5> >   GetSpectraSP(double from_SP, double to_SP,
-						       int samples);  // WL,ext, sca, abs, bk
-    double GetQext();
-    double GetQsca();
-    double GetQabs();
-    double GetQbk();
-    double GetQpr();
-    std::vector<double> GetQsca_channel();
-    std::vector<double> GetQabs_channel();
-    std::vector<double> GetQabs_channel_normalized();
-
-    double GetAsymmetryFactor();
-    double GetAlbedo();
-    std::vector<std::complex<double> > GetS1();
-    std::vector<std::complex<double> > GetS2();
-    std::vector<double> GetPatternEkSP();
-    std::vector<double> GetPatternHkSP();
-    std::vector<double> GetPatternUnpolarizedSP();
-    
-    // Run calculation
-    void RunMieCalculations();
-    void RunFieldCalculations();
-
-    // Output results (data file + python script to plot it with matplotlib)
-    void PlotSpectra();
-    void PlotSpectraSP();
-    void PlotField();
-    void PlotFieldSP();
-    void PlotPattern();
-    void PlotPatternSP();
-
-  private:
-    void ConvertToSP();
-    void GenerateSizeParameter();
-    void GenerateIndex();
-    void InitMieCalculations();
-
-    void Nstop();
-    void Nmax(int first_layer);
-    void sbesjh(std::complex<double> z, std::vector<std::complex<double> >& jn,
-	       std::vector<std::complex<double> >& jnp, std::vector<std::complex<double> >& h1n,
-	       std::vector<std::complex<double> >& h1np);
-    void sphericalBessel(std::complex<double> z, std::vector<std::complex<double> >& bj,
-			 std::vector<std::complex<double> >& by, std::vector<std::complex<double> >& bd);
-    std::complex<double> calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
-	                         std::complex<double> PsiXL, std::complex<double> ZetaXL,
-				 std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1);
-    std::complex<double> calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
-	                         std::complex<double> PsiXL, std::complex<double> ZetaXL,
-				 std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1);
-    std::complex<double> calc_S1(int n, std::complex<double> an, std::complex<double> bn,
-				 double Pi, double Tau);
-    std::complex<double> calc_S2(int n, std::complex<double> an, std::complex<double> bn,
-				 double Pi, double Tau);
-    void calcPsiZeta(double x, 
-		     std::vector<std::complex<double> > D1,
-		     std::vector<std::complex<double> > D3,
-		     std::vector<std::complex<double> >& Psi,
-		     std::vector<std::complex<double> >& Zeta);
-    std::complex<double> calcD1confra(int N, const std::complex<double> z);
-    void calcD1D3(std::complex<double> z,
-		  std::vector<std::complex<double> >& D1,
-		  std::vector<std::complex<double> >& D3);
-    void calcPiTau( std::vector< std::vector<double> >& Pi,
-		    std::vector< std::vector<double> >& Tau);
-    void ScattCoeffs(std::vector<std::complex<double> >& an, std::vector<std::complex<double> >& bn); 
-    void fieldExt( double Rho, double Phi, double Theta, std::vector<double> Pi, std::vector<double> Tau,
-		  std::vector<std::complex<double> > an, std::vector<std::complex<double> > bn,
-		  std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H);
-    
-    bool isMieCalculated_ = false;
-    double wavelength_ = 1.0;
-    double total_radius_ = 0.0;
-    /// Width and index for each layer of the structure
-    std::vector<double> target_width_, coating_width_;
-    std::vector< std::complex<double> > target_index_, coating_index_;
-    /// Size parameters for all layers
-    std::vector<double> size_parameter_;
-    /// Complex index values for each layers.
-    std::vector< std::complex<double> > index_;
-    /// Scattering angles for RCS pattern in radians
-    std::vector<double> theta_;
-    // Should be -1 if there is no PEC.
-    int PEC_layer_position_ = -1;
-    // Set nmax_ manualy with SetMaxTermsNumber(int nmax) or in ScattCoeffs(..)
-    // with Nmax(int first_layer);
-    int nmax_ = -1;
-    int nmax_used_ = -1;
-    int nmax_preset_ = -1;
-    /// Store result
-    double Qsca_ = 0.0, Qext_ = 0.0, Qabs_ = 0.0, Qbk_ = 0.0, Qpr_ = 0.0, asymmetry_factor_ = 0.0, albedo_ = 0.0;
-    // Mie efficinecy from each multipole channel.
-    std::vector<double> Qsca_ch_, Qext_ch_, Qabs_ch_, Qbk_ch_, Qpr_ch_;
-    std::vector<std::complex<double> > S1_, S2_;
+int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
+         int nTheta, std::vector<double> Theta,
+         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
+         std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2);
 
-    //Used constants
-    const double PI=3.14159265358979323846;  
-    // light speed [m s-1]
-    double const cc = 2.99792458e8;
-    // assume non-magnetic (MU=MU0=const) [N A-2]
-    double const mu = 4.0*PI*1.0e-7;
+int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
+         int nTheta, std::vector<double> Theta, int nmax,
+         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
+         std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2);
 
-    //Temporary variables
-    std::vector<std::complex<double> > PsiZeta_;
+int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
+         int nTheta, std::vector<double> Theta, int nmax,
+         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
+		 std::vector<std::complex<double> > &S1, std::vector<std::complex<double> > &S2);
 
+int nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
+           int ncoord, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp,
+		   std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H);
 
-  };  // end of class MultiLayerMie
 
-}  // end of namespace nmie
-#endif  // SRC_NMIE_NMIE_H_