|  | @@ -1,1339 +1,997 @@
 | 
	
		
			
				|  |  | -///
 | 
	
		
			
				|  |  | -/// @file   nmie.cc
 | 
	
		
			
				|  |  | -/// @author Ladutenko Konstantin <kostyfisik at gmail (.) com>
 | 
	
		
			
				|  |  | -/// @date   Tue Sep  3 00:38:27 2013
 | 
	
		
			
				|  |  | -/// @copyright 2013 Ladutenko Konstantin
 | 
	
		
			
				|  |  | -///
 | 
	
		
			
				|  |  | -/// nmie is free software: you can redistribute it and/or modify
 | 
	
		
			
				|  |  | -/// it under the terms of the GNU General Public License as published by
 | 
	
		
			
				|  |  | -/// the Free Software Foundation, either version 3 of the License, or
 | 
	
		
			
				|  |  | -/// (at your option) any later version.
 | 
	
		
			
				|  |  | -///
 | 
	
		
			
				|  |  | -/// nmie-wrapper is distributed in the hope that it will be useful,
 | 
	
		
			
				|  |  | -/// but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
	
		
			
				|  |  | -/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
	
		
			
				|  |  | -/// GNU General Public License for more details.
 | 
	
		
			
				|  |  | -///
 | 
	
		
			
				|  |  | -/// You should have received a copy of the GNU General Public License
 | 
	
		
			
				|  |  | -/// along with nmie-wrapper.  If not, see <http://www.gnu.org/licenses/>.
 | 
	
		
			
				|  |  | -///
 | 
	
		
			
				|  |  | -/// nmie uses nmie.c from scattnlay by Ovidio Pena
 | 
	
		
			
				|  |  | -/// <ovidio@bytesfall.com> . He has an additional condition to 
 | 
	
		
			
				|  |  | -/// his library:
 | 
	
		
			
				|  |  | -//    The only additional condition is that we expect that all publications         //
 | 
	
		
			
				|  |  | -//    describing  work using this software , or all commercial products             //
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +//    Copyright (C) 2009-2015  Ovidio Pena <ovidio@bytesfall.com>                   //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +//    This file is part of scattnlay                                                //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +//    This program is free software: you can redistribute it and/or modify          //
 | 
	
		
			
				|  |  | +//    it under the terms of the GNU General Public License as published by          //
 | 
	
		
			
				|  |  | +//    the Free Software Foundation, either version 3 of the License, or             //
 | 
	
		
			
				|  |  | +//    (at your option) any later version.                                           //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +//    This program is distributed in the hope that it will be useful,               //
 | 
	
		
			
				|  |  | +//    but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | 
	
		
			
				|  |  | +//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the                 //
 | 
	
		
			
				|  |  | +//    GNU General Public License for more details.                                  //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +//    The only additional remark is that we expect that all publications            //
 | 
	
		
			
				|  |  | +//    describing work using this software, or all commercial products               //
 | 
	
		
			
				|  |  |  //    using it, cite the following reference:                                       //
 | 
	
		
			
				|  |  |  //    [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by           //
 | 
	
		
			
				|  |  |  //        a multilayered sphere," Computer Physics Communications,                  //
 | 
	
		
			
				|  |  |  //        vol. 180, Nov. 2009, pp. 2348-2354.                                       //
 | 
	
		
			
				|  |  | -///
 | 
	
		
			
				|  |  | -/// @brief  Wrapper class around nMie function for ease of use
 | 
	
		
			
				|  |  | -///
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +//    You should have received a copy of the GNU General Public License             //
 | 
	
		
			
				|  |  | +//    along with this program.  If not, see <http://www.gnu.org/licenses/>.         //
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +// This library implements the algorithm for a multilayered sphere described by:    //
 | 
	
		
			
				|  |  | +//    [1] W. Yang, "Improved recursive algorithm for light scattering by a          //
 | 
	
		
			
				|  |  | +//        multilayered sphere,” Applied Optics,  vol. 42, Mar. 2003, pp. 1710-1720. //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// You can find the description of all the used equations in:                       //
 | 
	
		
			
				|  |  | +//    [2] O. Pena and U. Pal, "Scattering of electromagnetic radiation by           //
 | 
	
		
			
				|  |  | +//        a multilayered sphere," Computer Physics Communications,                  //
 | 
	
		
			
				|  |  | +//        vol. 180, Nov. 2009, pp. 2348-2354.                                       //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Hereinafter all equations numbers refer to [2]                                   //
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +#include <math.h>
 | 
	
		
			
				|  |  | +#include <stdlib.h>
 | 
	
		
			
				|  |  | +#include <stdio.h>
 | 
	
		
			
				|  |  |  #include "nmie.h"
 | 
	
		
			
				|  |  | -#include <array>
 | 
	
		
			
				|  |  | -#include <algorithm>
 | 
	
		
			
				|  |  | -#include <cstdio>
 | 
	
		
			
				|  |  | -#include <cstdlib>
 | 
	
		
			
				|  |  | -#include <stdexcept>
 | 
	
		
			
				|  |  | -#include <vector>
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -namespace nmie {  
 | 
	
		
			
				|  |  | -  //helpers
 | 
	
		
			
				|  |  | -  template<class T> inline T pow2(const T value) {return value*value;}
 | 
	
		
			
				|  |  | -  //#define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
 | 
	
		
			
				|  |  | -  int round(double x) {
 | 
	
		
			
				|  |  | -    return x >= 0 ? (int)(x + 0.5):(int)(x - 0.5);
 | 
	
		
			
				|  |  | -  }  
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  //emulate C call.
 | 
	
		
			
				|  |  | -  int nMie_wrapper(int L, const std::vector<double>& x, const std::vector<std::complex<double> >& m,
 | 
	
		
			
				|  |  | -         int nTheta, const std::vector<double>& Theta,
 | 
	
		
			
				|  |  | -         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
 | 
	
		
			
				|  |  | -		   std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
 | 
	
		
			
				|  |  | -    
 | 
	
		
			
				|  |  | -    if (x.size() != L || m.size() != L)
 | 
	
		
			
				|  |  | -        throw std::invalid_argument("Declared number of layers do not fit x and m!");
 | 
	
		
			
				|  |  | -    if (Theta.size() != nTheta)
 | 
	
		
			
				|  |  | -        throw std::invalid_argument("Declared number of sample for Theta is not correct!");
 | 
	
		
			
				|  |  | -    try {
 | 
	
		
			
				|  |  | -      MultiLayerMie multi_layer_mie;  
 | 
	
		
			
				|  |  | -      multi_layer_mie.SetWidthSP(x);
 | 
	
		
			
				|  |  | -      multi_layer_mie.SetIndexSP(m);
 | 
	
		
			
				|  |  | -      multi_layer_mie.SetAngles(Theta);
 | 
	
		
			
				|  |  | -    
 | 
	
		
			
				|  |  | -      multi_layer_mie.RunMieCalculations();
 | 
	
		
			
				|  |  | -      
 | 
	
		
			
				|  |  | -      *Qext = multi_layer_mie.GetQext();
 | 
	
		
			
				|  |  | -      *Qsca = multi_layer_mie.GetQsca();
 | 
	
		
			
				|  |  | -      *Qabs = multi_layer_mie.GetQabs();
 | 
	
		
			
				|  |  | -      *Qbk = multi_layer_mie.GetQbk();
 | 
	
		
			
				|  |  | -      *Qpr = multi_layer_mie.GetQpr();
 | 
	
		
			
				|  |  | -      *g = multi_layer_mie.GetAsymmetryFactor();
 | 
	
		
			
				|  |  | -      *Albedo = multi_layer_mie.GetAlbedo();
 | 
	
		
			
				|  |  | -      S1 = multi_layer_mie.GetS1();
 | 
	
		
			
				|  |  | -      S2 = multi_layer_mie.GetS2();
 | 
	
		
			
				|  |  | -      multi_layer_mie.GetFailed();
 | 
	
		
			
				|  |  | -    } catch( const std::invalid_argument& ia ) {
 | 
	
		
			
				|  |  | -      // Will catch if  multi_layer_mie fails or other errors.
 | 
	
		
			
				|  |  | -      std::cerr << "Invalid argument: " << ia.what() << std::endl;
 | 
	
		
			
				|  |  | -      throw std::invalid_argument(ia);
 | 
	
		
			
				|  |  | -      return -1;
 | 
	
		
			
				|  |  | -    }  
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    return 0;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::GetFailed() {
 | 
	
		
			
				|  |  | -    double faild_x = 9.42477796076938;
 | 
	
		
			
				|  |  | -    //double faild_x = 9.42477796076937;
 | 
	
		
			
				|  |  | -    std::complex<double> z(faild_x, 0.0);
 | 
	
		
			
				|  |  | -    std::vector<int> nmax_local_array = {20, 100, 500, 2500};
 | 
	
		
			
				|  |  | -    for (auto nmax_local : nmax_local_array) {
 | 
	
		
			
				|  |  | -      std::vector<std::complex<double> > D1_failed(nmax_local +1);
 | 
	
		
			
				|  |  | -      // Downward recurrence for D1 - equations (16a) and (16b)
 | 
	
		
			
				|  |  | -      D1_failed[nmax_local] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -      const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;
 | 
	
		
			
				|  |  | -      for (int n = nmax_local; n > 0; n--) {
 | 
	
		
			
				|  |  | -	D1_failed[n - 1] = double(n)*zinv - 1.0/(D1_failed[n] + double(n)*zinv);
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | -      printf("Faild D1[0] from reccurence (z = %16.14f, nmax = %d): %g\n",
 | 
	
		
			
				|  |  | -	     faild_x, nmax_local, D1_failed[0].real());
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -    printf("Faild D1[0] from continued fraction (z = %16.14f): %g\n", faild_x,
 | 
	
		
			
				|  |  | -	   calcD1confra(0,z).real());
 | 
	
		
			
				|  |  | -    //D1[nmax_] = calcD1confra(nmax_, z);
 | 
	
		
			
				|  |  | -  
 | 
	
		
			
				|  |  | -    
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  double MultiLayerMie::GetQext() {
 | 
	
		
			
				|  |  | -    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("You should run calculations before result reques!");
 | 
	
		
			
				|  |  | -    return Qext_;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  double MultiLayerMie::GetQabs() {
 | 
	
		
			
				|  |  | -    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("You should run calculations before result reques!");
 | 
	
		
			
				|  |  | -    return Qabs_;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  std::vector<double> MultiLayerMie::GetQabs_channel() {
 | 
	
		
			
				|  |  | -    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("You should run calculations before result reques!");
 | 
	
		
			
				|  |  | -    return Qabs_ch_;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  std::vector<double> MultiLayerMie::GetQabs_channel_normalized() {
 | 
	
		
			
				|  |  | -    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("You should run calculations before result reques!");
 | 
	
		
			
				|  |  | -    std::vector<double> NACS(nmax_-1, 0.0);
 | 
	
		
			
				|  |  | -    double x2 = pow2(size_parameter_.back());
 | 
	
		
			
				|  |  | -    for (int i = 0; i < nmax_ - 1; ++i) {
 | 
	
		
			
				|  |  | -      const int n = i+1;
 | 
	
		
			
				|  |  | -      NACS[i] = Qsca_ch_[i]*x2/(2.0*(2.0*static_cast<double>(n)+1));
 | 
	
		
			
				|  |  | -      // if (NACS[i] > 0.250000001)
 | 
	
		
			
				|  |  | -      // 	throw std::invalid_argument("Unexpected normalized absorption cross-section value!");
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -    return NACS;    
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  double MultiLayerMie::GetQsca() {
 | 
	
		
			
				|  |  | -    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("You should run calculations before result reques!");
 | 
	
		
			
				|  |  | -    return Qsca_;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  std::vector<double> MultiLayerMie::GetQsca_channel() {
 | 
	
		
			
				|  |  | -    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("You should run calculations before result reques!");
 | 
	
		
			
				|  |  | -    return Qsca_ch_;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  double MultiLayerMie::GetQbk() {
 | 
	
		
			
				|  |  | -    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("You should run calculations before result reques!");
 | 
	
		
			
				|  |  | -    return Qbk_;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  double MultiLayerMie::GetQpr() {
 | 
	
		
			
				|  |  | -    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("You should run calculations before result reques!");
 | 
	
		
			
				|  |  | -    return Qpr_;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  double MultiLayerMie::GetAsymmetryFactor() {
 | 
	
		
			
				|  |  | -    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("You should run calculations before result reques!");
 | 
	
		
			
				|  |  | -    return asymmetry_factor_;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  double MultiLayerMie::GetAlbedo() {
 | 
	
		
			
				|  |  | -    if (!isMieCalculated_)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("You should run calculations before result reques!");
 | 
	
		
			
				|  |  | -    return albedo_;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  std::vector<std::complex<double> > MultiLayerMie::GetS1() {
 | 
	
		
			
				|  |  | -    return S1_;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  std::vector<std::complex<double> > MultiLayerMie::GetS2() {
 | 
	
		
			
				|  |  | -    return S2_;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::AddTargetLayer(double width, std::complex<double> layer_index) {
 | 
	
		
			
				|  |  | -    if (width <= 0)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("Layer width should be positive!");
 | 
	
		
			
				|  |  | -    target_width_.push_back(width);
 | 
	
		
			
				|  |  | -    target_index_.push_back(layer_index);
 | 
	
		
			
				|  |  | -  }  // end of void  MultiLayerMie::AddTargetLayer(...)  
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::SetTargetPEC(double radius) {
 | 
	
		
			
				|  |  | -    isMieCalculated_ = false;
 | 
	
		
			
				|  |  | -    if (target_width_.size() != 0 || target_index_.size() != 0)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("Error! Define PEC target radius before any other layers!");
 | 
	
		
			
				|  |  | -    // Add layer of any index...
 | 
	
		
			
				|  |  | -    AddTargetLayer(radius, std::complex<double>(0.0, 0.0));
 | 
	
		
			
				|  |  | -    // ... and mark it as PEC
 | 
	
		
			
				|  |  | -    SetPEC(0.0);
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::SetCoatingIndex(std::vector<std::complex<double> > index) {
 | 
	
		
			
				|  |  | -    isMieCalculated_ = false;
 | 
	
		
			
				|  |  | -    coating_index_.clear();
 | 
	
		
			
				|  |  | -    for (auto value : index) coating_index_.push_back(value);
 | 
	
		
			
				|  |  | -  }  // end of void MultiLayerMie::SetCoatingIndex(std::vector<complex> index);  
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::SetAngles(const std::vector<double>& angles) {
 | 
	
		
			
				|  |  | -    isMieCalculated_ = false;
 | 
	
		
			
				|  |  | -    theta_ = angles;
 | 
	
		
			
				|  |  | -    // theta_.clear();
 | 
	
		
			
				|  |  | -    // for (auto value : angles) theta_.push_back(value);
 | 
	
		
			
				|  |  | -  }  // end of SetAngles()
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::SetCoatingWidth(std::vector<double> width) {
 | 
	
		
			
				|  |  | -    isMieCalculated_ = false;
 | 
	
		
			
				|  |  | -    coating_width_.clear();
 | 
	
		
			
				|  |  | -    for (auto w : width)
 | 
	
		
			
				|  |  | -      if (w <= 0)
 | 
	
		
			
				|  |  | -        throw std::invalid_argument("Coating width should be positive!");
 | 
	
		
			
				|  |  | -      else coating_width_.push_back(w);
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // end of void MultiLayerMie::SetCoatingWidth(...);
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::SetWidthSP(const std::vector<double>& size_parameter) {
 | 
	
		
			
				|  |  | -    isMieCalculated_ = false;
 | 
	
		
			
				|  |  | -    size_parameter_.clear();
 | 
	
		
			
				|  |  | -    double prev_size_parameter = 0.0;
 | 
	
		
			
				|  |  | -    for (auto layer_size_parameter : size_parameter) {
 | 
	
		
			
				|  |  | -      if (layer_size_parameter <= 0.0)
 | 
	
		
			
				|  |  | -        throw std::invalid_argument("Size parameter should be positive!");
 | 
	
		
			
				|  |  | -      if (prev_size_parameter > layer_size_parameter) 
 | 
	
		
			
				|  |  | -        throw std::invalid_argument
 | 
	
		
			
				|  |  | -	  ("Size parameter for next layer should be larger than the previous one!");
 | 
	
		
			
				|  |  | -      prev_size_parameter = layer_size_parameter;
 | 
	
		
			
				|  |  | -      size_parameter_.push_back(layer_size_parameter);
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // end of void MultiLayerMie::SetWidthSP(...);
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::SetIndexSP(const std::vector< std::complex<double> >& index) {
 | 
	
		
			
				|  |  | -    isMieCalculated_ = false;
 | 
	
		
			
				|  |  | -    //index_.clear();
 | 
	
		
			
				|  |  | -    index_ = index;
 | 
	
		
			
				|  |  | -    // for (auto value : index) index_.push_back(value);
 | 
	
		
			
				|  |  | -  }  // end of void MultiLayerMie::SetIndexSP(...);  
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::SetPEC(int layer_position) {
 | 
	
		
			
				|  |  | -    isMieCalculated_ = false;
 | 
	
		
			
				|  |  | -    if (layer_position < 0)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("Error! Layers are numbered from 0!");
 | 
	
		
			
				|  |  | -    PEC_layer_position_ = layer_position;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::SetMaxTermsNumber(int nmax) {    
 | 
	
		
			
				|  |  | -    isMieCalculated_ = false;
 | 
	
		
			
				|  |  | -    nmax_preset_ = nmax;
 | 
	
		
			
				|  |  | -    //debug
 | 
	
		
			
				|  |  | -    printf("Setting max terms: %d\n", nmax_preset_);
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::GenerateSizeParameter() {
 | 
	
		
			
				|  |  | -    size_parameter_.clear();
 | 
	
		
			
				|  |  | -    double radius = 0.0;
 | 
	
		
			
				|  |  | -    for (auto width : target_width_) {
 | 
	
		
			
				|  |  | -      radius += width;
 | 
	
		
			
				|  |  | -      size_parameter_.push_back(2*PI*radius / wavelength_);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +const double PI=3.14159265358979323846;
 | 
	
		
			
				|  |  | +// light speed [m s-1]
 | 
	
		
			
				|  |  | +double const cc = 2.99792458e8;
 | 
	
		
			
				|  |  | +// assume non-magnetic (MU=MU0=const) [N A-2]
 | 
	
		
			
				|  |  | +double const mu = 4.0*PI*1.0e-7;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// Calculate Nstop - equation (17)
 | 
	
		
			
				|  |  | +int Nstop(double xL) {
 | 
	
		
			
				|  |  | +  int result;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  if (xL <= 8) {
 | 
	
		
			
				|  |  | +    result = round(xL + 4*pow(xL, 1.0/3.0) + 1);
 | 
	
		
			
				|  |  | +  } else if (xL <= 4200) {
 | 
	
		
			
				|  |  | +    result = round(xL + 4.05*pow(xL, 1.0/3.0) + 2);
 | 
	
		
			
				|  |  | +  } else {
 | 
	
		
			
				|  |  | +    result = round(xL + 4*pow(xL, 1.0/3.0) + 2);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  return result;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +int Nmax(int L, int fl, int pl,
 | 
	
		
			
				|  |  | +         std::vector<double> x,
 | 
	
		
			
				|  |  | +		 std::vector<std::complex<double> > m) {
 | 
	
		
			
				|  |  | +  int i, result, ri, riM1;
 | 
	
		
			
				|  |  | +  result = Nstop(x[L - 1]);
 | 
	
		
			
				|  |  | +  for (i = fl; i < L; i++) {
 | 
	
		
			
				|  |  | +    if (i > pl) {
 | 
	
		
			
				|  |  | +      ri = round(std::abs(x[i]*m[i]));
 | 
	
		
			
				|  |  | +    } else {
 | 
	
		
			
				|  |  | +      ri = 0;
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | -    for (auto width : coating_width_) {
 | 
	
		
			
				|  |  | -      radius += width;
 | 
	
		
			
				|  |  | -      size_parameter_.push_back(2*PI*radius / wavelength_);
 | 
	
		
			
				|  |  | +    if (result < ri) {
 | 
	
		
			
				|  |  | +      result = ri;
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | -    total_radius_ = radius;
 | 
	
		
			
				|  |  | -  }  // end of void MultiLayerMie::GenerateSizeParameter();
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::GenerateIndex() {
 | 
	
		
			
				|  |  | -    index_.clear();
 | 
	
		
			
				|  |  | -    for (auto index : target_index_) index_.push_back(index);
 | 
	
		
			
				|  |  | -    for (auto index : coating_index_) index_.push_back(index);
 | 
	
		
			
				|  |  | -  }  // end of void MultiLayerMie::GenerateIndex();
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  double MultiLayerMie::GetTotalRadius() {
 | 
	
		
			
				|  |  | -    if (total_radius_ == 0) GenerateSizeParameter();
 | 
	
		
			
				|  |  | -    return total_radius_;      
 | 
	
		
			
				|  |  | -  }  // end of double MultiLayerMie::GetTotalRadius();
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  std::vector< std::vector<double> >
 | 
	
		
			
				|  |  | -  MultiLayerMie::GetSpectra(double from_WL, double to_WL, int samples) {
 | 
	
		
			
				|  |  | -    std::vector< std::vector<double> > spectra;
 | 
	
		
			
				|  |  | -    double step_WL = (to_WL - from_WL)/ static_cast<double>(samples);
 | 
	
		
			
				|  |  | -    double wavelength_backup = wavelength_;
 | 
	
		
			
				|  |  | -    long fails = 0;
 | 
	
		
			
				|  |  | -    for (double WL = from_WL; WL < to_WL; WL += step_WL) {
 | 
	
		
			
				|  |  | -      wavelength_ = WL;
 | 
	
		
			
				|  |  | -      try {
 | 
	
		
			
				|  |  | -        RunMieCalculations();
 | 
	
		
			
				|  |  | -      } catch( const std::invalid_argument& ia ) {
 | 
	
		
			
				|  |  | -        fails++;
 | 
	
		
			
				|  |  | -        continue;
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | -      //printf("%3.1f ",WL);
 | 
	
		
			
				|  |  | -      spectra.push_back(std::vector<double>({wavelength_, Qext_, Qsca_, Qabs_, Qbk_}));
 | 
	
		
			
				|  |  | -    }  // end of for each WL in spectra
 | 
	
		
			
				|  |  | -    printf("Spectrum has %li fails\n",fails);
 | 
	
		
			
				|  |  | -    wavelength_ = wavelength_backup;
 | 
	
		
			
				|  |  | -    return spectra;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::ClearTarget() {
 | 
	
		
			
				|  |  | -    target_width_.clear();
 | 
	
		
			
				|  |  | -    target_index_.clear();
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::ClearCoating() {
 | 
	
		
			
				|  |  | -    coating_width_.clear();
 | 
	
		
			
				|  |  | -    coating_index_.clear();
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::ClearLayers() {
 | 
	
		
			
				|  |  | -    ClearTarget();
 | 
	
		
			
				|  |  | -    ClearCoating();
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::ClearAllDesign() {
 | 
	
		
			
				|  |  | -    ClearLayers();
 | 
	
		
			
				|  |  | -    size_parameter_.clear();
 | 
	
		
			
				|  |  | -    index_.clear();
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  //                         Computational core
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Calculate Nstop - equation (17)
 | 
	
		
			
				|  |  | -  //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::Nstop() {
 | 
	
		
			
				|  |  | -    const double& xL = size_parameter_.back();
 | 
	
		
			
				|  |  | -    if (xL <= 8) {
 | 
	
		
			
				|  |  | -      nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 1);
 | 
	
		
			
				|  |  | -    } else if (xL <= 4200) {
 | 
	
		
			
				|  |  | -      nmax_ = round(xL + 4.05*pow(xL, 1.0/3.0) + 2);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    if ((i > fl) && ((i - 1) > pl)) {
 | 
	
		
			
				|  |  | +      riM1 = round(std::abs(x[i - 1]* m[i]));
 | 
	
		
			
				|  |  |      } else {
 | 
	
		
			
				|  |  | -      nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 2);
 | 
	
		
			
				|  |  | -    }    
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::Nmax(int first_layer) {
 | 
	
		
			
				|  |  | -    int ri, riM1;
 | 
	
		
			
				|  |  | -    const std::vector<double>& x = size_parameter_;
 | 
	
		
			
				|  |  | -    const std::vector<std::complex<double> >& m = index_;
 | 
	
		
			
				|  |  | -    Nstop();  // Set initial nmax_ value
 | 
	
		
			
				|  |  | -    for (int i = first_layer; i < x.size(); i++) {
 | 
	
		
			
				|  |  | -      if (i > PEC_layer_position_) 
 | 
	
		
			
				|  |  | -	ri = round(std::abs(x[i]*m[i]));
 | 
	
		
			
				|  |  | -      else 
 | 
	
		
			
				|  |  | -	ri = 0;      
 | 
	
		
			
				|  |  | -      nmax_ = std::max(nmax_, ri);
 | 
	
		
			
				|  |  | -      // first layer is pec, if pec is present
 | 
	
		
			
				|  |  | -      if ((i > first_layer) && ((i - 1) > PEC_layer_position_)) 
 | 
	
		
			
				|  |  | -	riM1 = round(std::abs(x[i - 1]* m[i]));
 | 
	
		
			
				|  |  | -      else 
 | 
	
		
			
				|  |  | -	riM1 = 0;      
 | 
	
		
			
				|  |  | -      nmax_ = std::max(nmax_, riM1);
 | 
	
		
			
				|  |  | +      riM1 = 0;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    if (result < riM1) {
 | 
	
		
			
				|  |  | +      result = riM1;
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | -    nmax_ += 15;  // Final nmax_ value
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  // This function calculates the spherical Bessel (jn) and Hankel (h1n) functions    //
 | 
	
		
			
				|  |  | -  // and their derivatives for a given complex value z. See pag. 87 B&H.              //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | -  //   z: Real argument to evaluate jn and h1n                                        //
 | 
	
		
			
				|  |  | -  //   nmax_: Maximum number of terms to calculate jn and h1n                          //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | -  //   jn, h1n: Spherical Bessel and Hankel functions                                 //
 | 
	
		
			
				|  |  | -  //   jnp, h1np: Derivatives of the spherical Bessel and Hankel functions            //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // The implementation follows the algorithm by I.J. Thompson and A.R. Barnett,      //
 | 
	
		
			
				|  |  | -  // Comp. Phys. Comm. 47 (1987) 245-257.                                             //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Complex spherical Bessel functions from n=0..nmax_-1 for z in the upper half      //
 | 
	
		
			
				|  |  | -  // plane (Im(z) > -3).                                                              //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  //     j[n]   = j/n(z)                Regular solution: j[0]=sin(z)/z               //
 | 
	
		
			
				|  |  | -  //     j'[n]  = d[j/n(z)]/dz                                                        //
 | 
	
		
			
				|  |  | -  //     h1[n]  = h[0]/n(z)             Irregular Hankel function:                    //
 | 
	
		
			
				|  |  | -  //     h1'[n] = d[h[0]/n(z)]/dz                h1[0] = j0(z) + i*y0(z)              //
 | 
	
		
			
				|  |  | -  //                                                   = (sin(z)-i*cos(z))/z          //
 | 
	
		
			
				|  |  | -  //                                                   = -i*exp(i*z)/z                //
 | 
	
		
			
				|  |  | -  // Using complex CF1, and trigonometric forms for n=0 solutions.                    //
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  void MultiLayerMie::sbesjh(std::complex<double> z,
 | 
	
		
			
				|  |  | -			     std::vector<std::complex<double> >& jn,
 | 
	
		
			
				|  |  | -			     std::vector<std::complex<double> >& jnp,
 | 
	
		
			
				|  |  | -			     std::vector<std::complex<double> >& h1n,
 | 
	
		
			
				|  |  | -			     std::vector<std::complex<double> >& h1np) {
 | 
	
		
			
				|  |  | -    const int limit = 20000;
 | 
	
		
			
				|  |  | -    const double accur = 1.0e-12;
 | 
	
		
			
				|  |  | -    const double tm30 = 1e-30;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    double absc;
 | 
	
		
			
				|  |  | -    std::complex<double> zi, w;
 | 
	
		
			
				|  |  | -    std::complex<double> pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    absc = std::abs(std::real(z)) + std::abs(std::imag(z));
 | 
	
		
			
				|  |  | -    if ((absc < accur) || (std::imag(z) < -3.0)) {
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("TODO add error description for condition if ((absc < accur) || (std::imag(z) < -3.0))");
 | 
	
		
			
				|  |  | +  return result + 15;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +// This function calculates the spherical Bessel (jn) and Hankel (h1n) functions    //
 | 
	
		
			
				|  |  | +// and their derivatives for a given complex value z. See pag. 87 B&H.              //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Input parameters:                                                                //
 | 
	
		
			
				|  |  | +//   z: Real argument to evaluate jn and h1n                                        //
 | 
	
		
			
				|  |  | +//   nmax: Maximum number of terms to calculate jn and h1n                          //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Output parameters:                                                               //
 | 
	
		
			
				|  |  | +//   jn, h1n: Spherical Bessel and Hankel functions                                 //
 | 
	
		
			
				|  |  | +//   jnp, h1np: Derivatives of the spherical Bessel and Hankel functions            //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// The implementation follows the algorithm by I.J. Thompson and A.R. Barnett,      //
 | 
	
		
			
				|  |  | +// Comp. Phys. Comm. 47 (1987) 245-257.                                             //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Complex spherical Bessel functions from n=0..nmax-1 for z in the upper half      //
 | 
	
		
			
				|  |  | +// plane (Im(z) > -3).                                                              //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +//     j[n]   = j/n(z)                Regular solution: j[0]=sin(z)/z               //
 | 
	
		
			
				|  |  | +//     j'[n]  = d[j/n(z)]/dz                                                        //
 | 
	
		
			
				|  |  | +//     h1[n]  = h[0]/n(z)             Irregular Hankel function:                    //
 | 
	
		
			
				|  |  | +//     h1'[n] = d[h[0]/n(z)]/dz                h1[0] = j0(z) + i*y0(z)              //
 | 
	
		
			
				|  |  | +//                                                   = (sin(z)-i*cos(z))/z          //
 | 
	
		
			
				|  |  | +//                                                   = -i*exp(i*z)/z                //
 | 
	
		
			
				|  |  | +// Using complex CF1, and trigonometric forms for n=0 solutions.                    //
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +int sbesjh(std::complex<double> z, int nmax, std::vector<std::complex<double> >& jn, std::vector<std::complex<double> >& jnp, std::vector<std::complex<double> >& h1n, std::vector<std::complex<double> >& h1np) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  const int limit = 20000;
 | 
	
		
			
				|  |  | +  double const accur = 1.0e-12;
 | 
	
		
			
				|  |  | +  double const tm30 = 1e-30;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  int n;
 | 
	
		
			
				|  |  | +  double absc;
 | 
	
		
			
				|  |  | +  std::complex<double> zi, w;
 | 
	
		
			
				|  |  | +  std::complex<double> pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  absc = std::abs(std::real(z)) + std::abs(std::imag(z));
 | 
	
		
			
				|  |  | +  if ((absc < accur) || (std::imag(z) < -3.0)) {
 | 
	
		
			
				|  |  | +    return -1;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  zi = 1.0/z;
 | 
	
		
			
				|  |  | +  w = zi + zi;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  pl = double(nmax)*zi;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  f = pl + zi;
 | 
	
		
			
				|  |  | +  b = f + f + zi;
 | 
	
		
			
				|  |  | +  d = 0.0;
 | 
	
		
			
				|  |  | +  c = f;
 | 
	
		
			
				|  |  | +  for (n = 0; n < limit; n++) {
 | 
	
		
			
				|  |  | +    d = b - d;
 | 
	
		
			
				|  |  | +    c = b - 1.0/c;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    absc = std::abs(std::real(d)) + std::abs(std::imag(d));
 | 
	
		
			
				|  |  | +    if (absc < tm30) {
 | 
	
		
			
				|  |  | +      d = tm30;
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    zi = 1.0/z;
 | 
	
		
			
				|  |  | -    w = zi + zi;
 | 
	
		
			
				|  |  | +    absc = std::abs(std::real(c)) + std::abs(std::imag(c));
 | 
	
		
			
				|  |  | +    if (absc < tm30) {
 | 
	
		
			
				|  |  | +      c = tm30;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    pl = double(nmax_)*zi;
 | 
	
		
			
				|  |  | +    d = 1.0/d;
 | 
	
		
			
				|  |  | +    del = d*c;
 | 
	
		
			
				|  |  | +    f = f*del;
 | 
	
		
			
				|  |  | +    b += w;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    f = pl + zi;
 | 
	
		
			
				|  |  | -    b = f + f + zi;
 | 
	
		
			
				|  |  | -    d = 0.0;
 | 
	
		
			
				|  |  | -    c = f;
 | 
	
		
			
				|  |  | -    for (int n = 0; n < limit; n++) {
 | 
	
		
			
				|  |  | -      d = b - d;
 | 
	
		
			
				|  |  | -      c = b - 1.0/c;
 | 
	
		
			
				|  |  | +    absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      absc = std::abs(std::real(d)) + std::abs(std::imag(d));
 | 
	
		
			
				|  |  | -      if (absc < tm30) {
 | 
	
		
			
				|  |  | -	d = tm30;
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | +    if (absc < accur) {
 | 
	
		
			
				|  |  | +      // We have obtained the desired accuracy
 | 
	
		
			
				|  |  | +      break;
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      absc = std::abs(std::real(c)) + std::abs(std::imag(c));
 | 
	
		
			
				|  |  | -      if (absc < tm30) {
 | 
	
		
			
				|  |  | -	c = tm30;
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | +  if (absc > accur) {
 | 
	
		
			
				|  |  | +    // We were not able to obtain the desired accuracy
 | 
	
		
			
				|  |  | +    return -2;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      d = 1.0/d;
 | 
	
		
			
				|  |  | -      del = d*c;
 | 
	
		
			
				|  |  | -      f = f*del;
 | 
	
		
			
				|  |  | -      b += w;
 | 
	
		
			
				|  |  | +  jn[nmax - 1] = tm30;
 | 
	
		
			
				|  |  | +  jnp[nmax - 1] = f*jn[nmax - 1];
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
 | 
	
		
			
				|  |  | +  // Downward recursion to n=0 (N.B.  Coulomb Functions)
 | 
	
		
			
				|  |  | +  for (n = nmax - 2; n >= 0; n--) {
 | 
	
		
			
				|  |  | +    jn[n] = pl*jn[n + 1] + jnp[n + 1];
 | 
	
		
			
				|  |  | +    jnp[n] = pl*jn[n] - jn[n + 1];
 | 
	
		
			
				|  |  | +    pl = pl - zi;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -      if (absc < accur) {
 | 
	
		
			
				|  |  | -	// We have obtained the desired accuracy
 | 
	
		
			
				|  |  | -	break;
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | +  // Calculate the n=0 Bessel Functions
 | 
	
		
			
				|  |  | +  jn0 = zi*std::sin(z);
 | 
	
		
			
				|  |  | +  h1n[0] = std::exp(std::complex<double>(0.0, 1.0)*z)*zi*(-std::complex<double>(0.0, 1.0));
 | 
	
		
			
				|  |  | +  h1np[0] = h1n[0]*(std::complex<double>(0.0, 1.0) - zi);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    if (absc > accur) {
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("We were not able to obtain the desired accuracy");
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | +  // Rescale j[n], j'[n], converting to spherical Bessel functions.
 | 
	
		
			
				|  |  | +  // Recur   h1[n], h1'[n] as spherical Bessel functions.
 | 
	
		
			
				|  |  | +  w = 1.0/jn[0];
 | 
	
		
			
				|  |  | +  pl = zi;
 | 
	
		
			
				|  |  | +  for (n = 0; n < nmax; n++) {
 | 
	
		
			
				|  |  | +    jn[n] = jn0*(w*jn[n]);
 | 
	
		
			
				|  |  | +    jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
 | 
	
		
			
				|  |  | +    if (n != 0) {
 | 
	
		
			
				|  |  | +      h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    jn[nmax_ - 1] = tm30;
 | 
	
		
			
				|  |  | -    jnp[nmax_ - 1] = f*jn[nmax_ - 1];
 | 
	
		
			
				|  |  | +      // check if hankel is increasing (upward stable)
 | 
	
		
			
				|  |  | +      if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
 | 
	
		
			
				|  |  | +        jndb = z;
 | 
	
		
			
				|  |  | +        h1nldb = h1n[n];
 | 
	
		
			
				|  |  | +        h1nbdb = h1n[n - 1];
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    // Downward recursion to n=0 (N.B.  Coulomb Functions)
 | 
	
		
			
				|  |  | -    for (int n = nmax_ - 2; n >= 0; n--) {
 | 
	
		
			
				|  |  | -      jn[n] = pl*jn[n + 1] + jnp[n + 1];
 | 
	
		
			
				|  |  | -      jnp[n] = pl*jn[n] - jn[n + 1];
 | 
	
		
			
				|  |  | -      pl = pl - zi;
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | +      pl += zi;
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    // Calculate the n=0 Bessel Functions
 | 
	
		
			
				|  |  | -    jn0 = zi*std::sin(z);
 | 
	
		
			
				|  |  | -    h1n[0] = std::exp(std::complex<double>(0.0, 1.0)*z)*zi*(-std::complex<double>(0.0, 1.0));
 | 
	
		
			
				|  |  | -    h1np[0] = h1n[0]*(std::complex<double>(0.0, 1.0) - zi);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    // Rescale j[n], j'[n], converting to spherical Bessel functions.
 | 
	
		
			
				|  |  | -    // Recur   h1[n], h1'[n] as spherical Bessel functions.
 | 
	
		
			
				|  |  | -    w = 1.0/jn[0];
 | 
	
		
			
				|  |  | -    pl = zi;
 | 
	
		
			
				|  |  | -    for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | -      jn[n] = jn0*(w*jn[n]);
 | 
	
		
			
				|  |  | -      jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
 | 
	
		
			
				|  |  | -      if (n != 0) {
 | 
	
		
			
				|  |  | -	h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -	// check if hankel is increasing (upward stable)
 | 
	
		
			
				|  |  | -	if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
 | 
	
		
			
				|  |  | -	  jndb = z;
 | 
	
		
			
				|  |  | -	  h1nldb = h1n[n];
 | 
	
		
			
				|  |  | -	  h1nbdb = h1n[n - 1];
 | 
	
		
			
				|  |  | -	}
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -	pl += zi;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -	h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | +      h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  // This function calculates the spherical Bessel functions (bj and by) and the      //
 | 
	
		
			
				|  |  | -  // logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H.        //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | -  //   z: Complex argument to evaluate bj, by and bd                                  //
 | 
	
		
			
				|  |  | -  //   nmax_: Maximum number of terms to calculate bj, by and bd                       //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | -  //   bj, by: Spherical Bessel functions                                             //
 | 
	
		
			
				|  |  | -  //   bd: Logarithmic derivative                                                     //
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  void MultiLayerMie::sphericalBessel(std::complex<double> z,
 | 
	
		
			
				|  |  | -				      std::vector<std::complex<double> >& bj,
 | 
	
		
			
				|  |  | -				      std::vector<std::complex<double> >& by,
 | 
	
		
			
				|  |  | -				      std::vector<std::complex<double> >& bd) {
 | 
	
		
			
				|  |  | -    std::vector<std::complex<double> > jn(nmax_), jnp(nmax_), h1n(nmax_), h1np(nmax_);
 | 
	
		
			
				|  |  | -    sbesjh(z, jn, jnp, h1n, h1np);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | +  // success
 | 
	
		
			
				|  |  | +  return 0;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +// This function calculates the spherical Bessel functions (bj and by) and the      //
 | 
	
		
			
				|  |  | +// logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H.        //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Input parameters:                                                                //
 | 
	
		
			
				|  |  | +//   z: Complex argument to evaluate bj, by and bd                                  //
 | 
	
		
			
				|  |  | +//   nmax: Maximum number of terms to calculate bj, by and bd                       //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Output parameters:                                                               //
 | 
	
		
			
				|  |  | +//   bj, by: Spherical Bessel functions                                             //
 | 
	
		
			
				|  |  | +//   bd: Logarithmic derivative                                                     //
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +void sphericalBessel(std::complex<double> z, int nmax, std::vector<std::complex<double> >& bj, std::vector<std::complex<double> >& by, std::vector<std::complex<double> >& bd) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    std::vector<std::complex<double> > jn, jnp, h1n, h1np;
 | 
	
		
			
				|  |  | +    jn.resize(nmax);
 | 
	
		
			
				|  |  | +    jnp.resize(nmax);
 | 
	
		
			
				|  |  | +    h1n.resize(nmax);
 | 
	
		
			
				|  |  | +    h1np.resize(nmax);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // TODO verify that the function succeeds
 | 
	
		
			
				|  |  | +    int ifail = sbesjh(z, nmax, jn, jnp, h1n, h1np);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    for (int n = 0; n < nmax; n++) {
 | 
	
		
			
				|  |  |        bj[n] = jn[n];
 | 
	
		
			
				|  |  |        by[n] = (h1n[n] - jn[n])/std::complex<double>(0.0, 1.0);
 | 
	
		
			
				|  |  |        bd[n] = jnp[n]/jn[n] + 1.0/z;
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// external scattering field = incident + scattered
 | 
	
		
			
				|  |  | +// BH p.92 (4.37), 94 (4.45), 95 (4.50)
 | 
	
		
			
				|  |  | +// assume: medium is non-absorbing; refim = 0; Uabs = 0
 | 
	
		
			
				|  |  | +void fieldExt(int nmax, double Rho, double Phi, double Theta, std::vector<double> Pi, std::vector<double> Tau,
 | 
	
		
			
				|  |  | +             std::vector<std::complex<double> > an, std::vector<std::complex<double> > bn,
 | 
	
		
			
				|  |  | +		     std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H)  {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  int i, n;
 | 
	
		
			
				|  |  | +  double rn = 0.0;
 | 
	
		
			
				|  |  | +  std::complex<double> zn, xxip, encap;
 | 
	
		
			
				|  |  | +  std::vector<std::complex<double> > vm3o1n, vm3e1n, vn3o1n, vn3e1n;
 | 
	
		
			
				|  |  | +  vm3o1n.resize(3);
 | 
	
		
			
				|  |  | +  vm3e1n.resize(3);
 | 
	
		
			
				|  |  | +  vn3o1n.resize(3);
 | 
	
		
			
				|  |  | +  vn3e1n.resize(3);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  std::vector<std::complex<double> > Ei, Hi, Es, Hs;
 | 
	
		
			
				|  |  | +  Ei.resize(3);
 | 
	
		
			
				|  |  | +  Hi.resize(3);
 | 
	
		
			
				|  |  | +  Es.resize(3);
 | 
	
		
			
				|  |  | +  Hs.resize(3);
 | 
	
		
			
				|  |  | +  for (i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | +    Ei[i] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | +    Hi[i] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | +    Es[i] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | +    Hs[i] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  std::vector<std::complex<double> > bj, by, bd;
 | 
	
		
			
				|  |  | +  bj.resize(nmax);
 | 
	
		
			
				|  |  | +  by.resize(nmax);
 | 
	
		
			
				|  |  | +  bd.resize(nmax);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // Calculate spherical Bessel and Hankel functions
 | 
	
		
			
				|  |  | +  sphericalBessel(Rho, nmax, bj, by, bd);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  for (n = 0; n < nmax; n++) {
 | 
	
		
			
				|  |  | +    rn = double(n + 1);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    zn = bj[n] + std::complex<double>(0.0, 1.0)*by[n];
 | 
	
		
			
				|  |  | +    xxip = Rho*(bj[n] + std::complex<double>(0.0, 1.0)*by[n]) - rn*zn;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    vm3o1n[0] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | +    vm3o1n[1] = std::cos(Phi)*Pi[n]*zn;
 | 
	
		
			
				|  |  | +    vm3o1n[2] = -(std::sin(Phi)*Tau[n]*zn);
 | 
	
		
			
				|  |  | +    vm3e1n[0] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | +    vm3e1n[1] = -(std::sin(Phi)*Pi[n]*zn);
 | 
	
		
			
				|  |  | +    vm3e1n[2] = -(std::cos(Phi)*Tau[n]*zn);
 | 
	
		
			
				|  |  | +    vn3o1n[0] = std::sin(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
 | 
	
		
			
				|  |  | +    vn3o1n[1] = std::sin(Phi)*Tau[n]*xxip/Rho;
 | 
	
		
			
				|  |  | +    vn3o1n[2] = std::cos(Phi)*Pi[n]*xxip/Rho;
 | 
	
		
			
				|  |  | +    vn3e1n[0] = std::cos(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
 | 
	
		
			
				|  |  | +    vn3e1n[1] = std::cos(Phi)*Tau[n]*xxip/Rho;
 | 
	
		
			
				|  |  | +    vn3e1n[2] = -(std::sin(Phi)*Pi[n]*xxip/Rho);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // scattered field: BH p.94 (4.45)
 | 
	
		
			
				|  |  | +    encap = std::pow(std::complex<double>(0.0, 1.0), rn)*(2.0*rn + 1.0)/(rn*(rn + 1.0));
 | 
	
		
			
				|  |  | +    for (i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | +      Es[i] = Es[i] + encap*(std::complex<double>(0.0, 1.0)*an[n]*vn3e1n[i] - bn[n]*vm3o1n[i]);
 | 
	
		
			
				|  |  | +      Hs[i] = Hs[i] + encap*(std::complex<double>(0.0, 1.0)*bn[n]*vn3o1n[i] + an[n]*vm3e1n[i]);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Calculate an - equation (5)
 | 
	
		
			
				|  |  | -  std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
 | 
	
		
			
				|  |  | -					      std::complex<double> PsiXL, std::complex<double> ZetaXL,
 | 
	
		
			
				|  |  | -					      std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
 | 
	
		
			
				|  |  | -    std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    return Num/Denom;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Calculate bn - equation (6)
 | 
	
		
			
				|  |  | -  std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
 | 
	
		
			
				|  |  | -					      std::complex<double> PsiXL, std::complex<double> ZetaXL,
 | 
	
		
			
				|  |  | -					      std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
 | 
	
		
			
				|  |  | -    std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    return Num/Denom;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
 | 
	
		
			
				|  |  | +  // basis unit vectors = er, etheta, ephi
 | 
	
		
			
				|  |  | +  std::complex<double> eifac = std::exp(std::complex<double>(0.0, 1.0)*Rho*std::cos(Theta));
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  Ei[0] = eifac*std::sin(Theta)*std::cos(Phi);
 | 
	
		
			
				|  |  | +  Ei[1] = eifac*std::cos(Theta)*std::cos(Phi);
 | 
	
		
			
				|  |  | +  Ei[2] = -(eifac*std::sin(Phi));
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // magnetic field
 | 
	
		
			
				|  |  | +  double hffact = 1.0/(cc*mu);
 | 
	
		
			
				|  |  | +  for (i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | +    Hs[i] = hffact*Hs[i];
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // incident H field: BH p.26 (2.43), p.89 (4.21)
 | 
	
		
			
				|  |  | +  std::complex<double> hffacta = hffact;
 | 
	
		
			
				|  |  | +  std::complex<double> hifac = eifac*hffacta;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  Hi[0] = hifac*std::sin(Theta)*std::sin(Phi);
 | 
	
		
			
				|  |  | +  Hi[1] = hifac*std::cos(Theta)*std::sin(Phi);
 | 
	
		
			
				|  |  | +  Hi[2] = hifac*std::cos(Phi);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  for (i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | +    // electric field E [V m-1] = EF*E0
 | 
	
		
			
				|  |  | +    E[i] = Ei[i] + Es[i];
 | 
	
		
			
				|  |  | +    H[i] = Hi[i] + Hs[i];
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// Calculate an - equation (5)
 | 
	
		
			
				|  |  | +std::complex<double> calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
 | 
	
		
			
				|  |  | +	                         std::complex<double> PsiXL, std::complex<double> ZetaXL,
 | 
	
		
			
				|  |  | +	                         std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
 | 
	
		
			
				|  |  | +  std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  return Num/Denom;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// Calculate bn - equation (6)
 | 
	
		
			
				|  |  | +std::complex<double> calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
 | 
	
		
			
				|  |  | +	                         std::complex<double> PsiXL, std::complex<double> ZetaXL,
 | 
	
		
			
				|  |  | +	                         std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
 | 
	
		
			
				|  |  | +  std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  return Num/Denom;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// Calculates S1 - equation (25a)
 | 
	
		
			
				|  |  | +std::complex<double> calc_S1(int n, std::complex<double> an, std::complex<double> bn,
 | 
	
		
			
				|  |  | +		                     double Pi, double Tau) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +// Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
 | 
	
		
			
				|  |  | +std::complex<double> calc_S2(int n, std::complex<double> an, std::complex<double> bn,
 | 
	
		
			
				|  |  | +				             double Pi, double Tau) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  return calc_S1(n, an, bn, Tau, Pi);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +// This function calculates the Riccati-Bessel functions (Psi and Zeta) for a       //
 | 
	
		
			
				|  |  | +// real argument (x).                                                               //
 | 
	
		
			
				|  |  | +// Equations (20a) - (21b)                                                          //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Input parameters:                                                                //
 | 
	
		
			
				|  |  | +//   x: Real argument to evaluate Psi and Zeta                                      //
 | 
	
		
			
				|  |  | +//   nmax: Maximum number of terms to calculate Psi and Zeta                        //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Output parameters:                                                               //
 | 
	
		
			
				|  |  | +//   Psi, Zeta: Riccati-Bessel functions                                            //
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +void calcPsiZeta(double x, int nmax,
 | 
	
		
			
				|  |  | +		         std::vector<std::complex<double> > D1,
 | 
	
		
			
				|  |  | +		         std::vector<std::complex<double> > D3,
 | 
	
		
			
				|  |  | +		         std::vector<std::complex<double> >& Psi,
 | 
	
		
			
				|  |  | +		         std::vector<std::complex<double> >& Zeta) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  int n;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
 | 
	
		
			
				|  |  | +  Psi[0] = std::complex<double>(sin(x), 0);
 | 
	
		
			
				|  |  | +  Zeta[0] = std::complex<double>(sin(x), -cos(x));
 | 
	
		
			
				|  |  | +  for (n = 1; n <= nmax; n++) {
 | 
	
		
			
				|  |  | +    Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
 | 
	
		
			
				|  |  | +    Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +// This function calculates the logarithmic derivatives of the Riccati-Bessel       //
 | 
	
		
			
				|  |  | +// functions (D1 and D3) for a complex argument (z).                                //
 | 
	
		
			
				|  |  | +// Equations (16a), (16b) and (18a) - (18d)                                         //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Input parameters:                                                                //
 | 
	
		
			
				|  |  | +//   z: Complex argument to evaluate D1 and D3                                      //
 | 
	
		
			
				|  |  | +//   nmax: Maximum number of terms to calculate D1 and D3                           //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Output parameters:                                                               //
 | 
	
		
			
				|  |  | +//   D1, D3: Logarithmic derivatives of the Riccati-Bessel functions                //
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +void calcD1D3(std::complex<double> z, int nmax,
 | 
	
		
			
				|  |  | +		      std::vector<std::complex<double> >& D1,
 | 
	
		
			
				|  |  | +		      std::vector<std::complex<double> >& D3) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  int n;
 | 
	
		
			
				|  |  | +  std::complex<double> nz, PsiZeta;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // Downward recurrence for D1 - equations (16a) and (16b)
 | 
	
		
			
				|  |  | +  D1[nmax] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | +  for (n = nmax; n > 0; n--) {
 | 
	
		
			
				|  |  | +    nz = double(n)/z;
 | 
	
		
			
				|  |  | +    D1[n - 1] = nz - 1.0/(D1[n] + nz);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
 | 
	
		
			
				|  |  | +  PsiZeta = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag()));
 | 
	
		
			
				|  |  | +  D3[0] = std::complex<double>(0.0, 1.0);
 | 
	
		
			
				|  |  | +  for (n = 1; n <= nmax; n++) {
 | 
	
		
			
				|  |  | +    nz = double(n)/z;
 | 
	
		
			
				|  |  | +    PsiZeta = PsiZeta*(nz - D1[n - 1])*(nz - D3[n - 1]);
 | 
	
		
			
				|  |  | +    D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta;
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +// This function calculates Pi and Tau for all values of Theta.                     //
 | 
	
		
			
				|  |  | +// Equations (26a) - (26c)                                                          //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Input parameters:                                                                //
 | 
	
		
			
				|  |  | +//   nmax: Maximum number of terms to calculate Pi and Tau                          //
 | 
	
		
			
				|  |  | +//   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | +//   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | +//          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Output parameters:                                                               //
 | 
	
		
			
				|  |  | +//   Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c)   //
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +void calcPiTau(int nmax, double Theta, std::vector<double>& Pi, std::vector<double>& Tau) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  int n;
 | 
	
		
			
				|  |  | +  //****************************************************//
 | 
	
		
			
				|  |  | +  // Equations (26a) - (26c)                            //
 | 
	
		
			
				|  |  | +  //****************************************************//
 | 
	
		
			
				|  |  | +  // Initialize Pi and Tau
 | 
	
		
			
				|  |  | +  Pi[0] = 1.0;
 | 
	
		
			
				|  |  | +  Tau[0] = cos(Theta);
 | 
	
		
			
				|  |  | +  // Calculate the actual values
 | 
	
		
			
				|  |  | +  if (nmax > 1) {
 | 
	
		
			
				|  |  | +    Pi[1] = 3*Tau[0]*Pi[0];
 | 
	
		
			
				|  |  | +    Tau[1] = 2*Tau[0]*Pi[1] - 3*Pi[0];
 | 
	
		
			
				|  |  | +    for (n = 2; n < nmax; n++) {
 | 
	
		
			
				|  |  | +      Pi[n] = ((n + n + 1)*Tau[0]*Pi[n - 1] - (n + 1)*Pi[n - 2])/n;
 | 
	
		
			
				|  |  | +      Tau[n] = (n + 1)*Tau[0]*Pi[n] - (n + 2)*Pi[n - 1];
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Calculates S1 - equation (25a)
 | 
	
		
			
				|  |  | -  std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,
 | 
	
		
			
				|  |  | -					      double Pi, double Tau) {
 | 
	
		
			
				|  |  | -    return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +// This function calculates the scattering coefficients required to calculate       //
 | 
	
		
			
				|  |  | +// both the near- and far-field parameters.                                         //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Input parameters:                                                                //
 | 
	
		
			
				|  |  | +//   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | +//   pl: Index of PEC layer. If there is none just send -1                          //
 | 
	
		
			
				|  |  | +//   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | +//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +//   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | +//         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | +//         set this parameter to -1 and the function will calculate it.             //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Output parameters:                                                               //
 | 
	
		
			
				|  |  | +//   an, bn: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Return value:                                                                    //
 | 
	
		
			
				|  |  | +//   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +int ScattCoeffs(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
 | 
	
		
			
				|  |  | +		        std::vector<std::complex<double> >& an, std::vector<std::complex<double> >& bn) {
 | 
	
		
			
				|  |  | +  //************************************************************************//
 | 
	
		
			
				|  |  | +  // Calculate the index of the first layer. It can be either 0 (default)   //
 | 
	
		
			
				|  |  | +  // or the index of the outermost PEC layer. In the latter case all layers //
 | 
	
		
			
				|  |  | +  // below the PEC are discarded.                                           //
 | 
	
		
			
				|  |  | +  //************************************************************************//
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  int fl = (pl > 0) ? pl : 0;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  if (nmax <= 0) {
 | 
	
		
			
				|  |  | +    nmax = Nmax(L, fl, pl, x, m);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  std::complex<double> z1, z2;
 | 
	
		
			
				|  |  | +  std::complex<double> Num, Denom;
 | 
	
		
			
				|  |  | +  std::complex<double> G1, G2;
 | 
	
		
			
				|  |  | +  std::complex<double> Temp;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  int n, l;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //**************************************************************************//
 | 
	
		
			
				|  |  | +  // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which  //
 | 
	
		
			
				|  |  | +  // means that index = layer number - 1 or index = n - 1. The only exception //
 | 
	
		
			
				|  |  | +  // are the arrays for representing D1, D3 and Q because they need a value   //
 | 
	
		
			
				|  |  | +  // for the index 0 (zero), hence it is important to consider this shift     //
 | 
	
		
			
				|  |  | +  // between different arrays. The change was done to optimize memory usage.  //
 | 
	
		
			
				|  |  | +  //**************************************************************************//
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // Allocate memory to the arrays
 | 
	
		
			
				|  |  | +  std::vector<std::vector<std::complex<double> > > D1_mlxl, D1_mlxlM1;
 | 
	
		
			
				|  |  | +  D1_mlxl.resize(L);
 | 
	
		
			
				|  |  | +  D1_mlxlM1.resize(L);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  std::vector<std::vector<std::complex<double> > > D3_mlxl, D3_mlxlM1;
 | 
	
		
			
				|  |  | +  D3_mlxl.resize(L);
 | 
	
		
			
				|  |  | +  D3_mlxlM1.resize(L);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  std::vector<std::vector<std::complex<double> > > Q;
 | 
	
		
			
				|  |  | +  Q.resize(L);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  std::vector<std::vector<std::complex<double> > > Ha, Hb;
 | 
	
		
			
				|  |  | +  Ha.resize(L);
 | 
	
		
			
				|  |  | +  Hb.resize(L);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  for (l = 0; l < L; l++) {
 | 
	
		
			
				|  |  | +    D1_mlxl[l].resize(nmax + 1);
 | 
	
		
			
				|  |  | +    D1_mlxlM1[l].resize(nmax + 1);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    D3_mlxl[l].resize(nmax + 1);
 | 
	
		
			
				|  |  | +    D3_mlxlM1[l].resize(nmax + 1);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    Q[l].resize(nmax + 1);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    Ha[l].resize(nmax);
 | 
	
		
			
				|  |  | +    Hb[l].resize(nmax);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  an.resize(nmax);
 | 
	
		
			
				|  |  | +  bn.resize(nmax);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  std::vector<std::complex<double> > D1XL, D3XL;
 | 
	
		
			
				|  |  | +  D1XL.resize(nmax + 1);
 | 
	
		
			
				|  |  | +  D3XL.resize(nmax + 1);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  std::vector<std::complex<double> > PsiXL, ZetaXL;
 | 
	
		
			
				|  |  | +  PsiXL.resize(nmax + 1);
 | 
	
		
			
				|  |  | +  ZetaXL.resize(nmax + 1);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //*************************************************//
 | 
	
		
			
				|  |  | +  // Calculate D1 and D3 for z1 in the first layer   //
 | 
	
		
			
				|  |  | +  //*************************************************//
 | 
	
		
			
				|  |  | +  if (fl == pl) {  // PEC layer
 | 
	
		
			
				|  |  | +    for (n = 0; n <= nmax; n++) {
 | 
	
		
			
				|  |  | +      D1_mlxl[fl][n] = std::complex<double>(0.0, -1.0);
 | 
	
		
			
				|  |  | +      D3_mlxl[fl][n] = std::complex<double>(0.0, 1.0);
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +  } else { // Regular layer
 | 
	
		
			
				|  |  | +    z1 = x[fl]* m[fl];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Calculate D1 and D3
 | 
	
		
			
				|  |  | +    calcD1D3(z1, nmax, D1_mlxl[fl], D3_mlxl[fl]);
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
 | 
	
		
			
				|  |  | -  std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,
 | 
	
		
			
				|  |  | -					      double Pi, double Tau) {
 | 
	
		
			
				|  |  | -    return calc_S1(n, an, bn, Tau, Pi);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //******************************************************************//
 | 
	
		
			
				|  |  | +  // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
 | 
	
		
			
				|  |  | +  //******************************************************************//
 | 
	
		
			
				|  |  | +  for (n = 0; n < nmax; n++) {
 | 
	
		
			
				|  |  | +    Ha[fl][n] = D1_mlxl[fl][n + 1];
 | 
	
		
			
				|  |  | +    Hb[fl][n] = D1_mlxl[fl][n + 1];
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a       //
 | 
	
		
			
				|  |  | -  // real argument (x).                                                               //
 | 
	
		
			
				|  |  | -  // Equations (20a) - (21b)                                                          //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | -  //   x: Real argument to evaluate Psi and Zeta                                      //
 | 
	
		
			
				|  |  | -  //   nmax: Maximum number of terms to calculate Psi and Zeta                        //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | -  //   Psi, Zeta: Riccati-Bessel functions                                            //
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  void MultiLayerMie::calcPsiZeta(double x,
 | 
	
		
			
				|  |  | -				  std::vector<std::complex<double> > D1,
 | 
	
		
			
				|  |  | -				  std::vector<std::complex<double> > D3,
 | 
	
		
			
				|  |  | -				  std::vector<std::complex<double> >& Psi,
 | 
	
		
			
				|  |  | -				  std::vector<std::complex<double> >& Zeta) {
 | 
	
		
			
				|  |  | -    //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
 | 
	
		
			
				|  |  | -    Psi[0] = std::complex<double>(sin(x), 0);
 | 
	
		
			
				|  |  | -    Zeta[0] = std::complex<double>(sin(x), -cos(x));
 | 
	
		
			
				|  |  | -    for (int n = 1; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | -      Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
 | 
	
		
			
				|  |  | -      Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //*****************************************************//
 | 
	
		
			
				|  |  | +  // Iteration from the second layer to the last one (L) //
 | 
	
		
			
				|  |  | +  //*****************************************************//
 | 
	
		
			
				|  |  | +  for (l = fl + 1; l < L; l++) {
 | 
	
		
			
				|  |  | +    //************************************************************//
 | 
	
		
			
				|  |  | +    //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L     //
 | 
	
		
			
				|  |  | +    //************************************************************//
 | 
	
		
			
				|  |  | +    z1 = x[l]*m[l];
 | 
	
		
			
				|  |  | +    z2 = x[l - 1]*m[l];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    //Calculate D1 and D3 for z1
 | 
	
		
			
				|  |  | +    calcD1D3(z1, nmax, D1_mlxl[l], D3_mlxl[l]);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    //Calculate D1 and D3 for z2
 | 
	
		
			
				|  |  | +    calcD1D3(z2, nmax, D1_mlxlM1[l], D3_mlxlM1[l]);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    //*********************************************//
 | 
	
		
			
				|  |  | +    //Calculate Q, Ha and Hb in the layers fl+1..L //
 | 
	
		
			
				|  |  | +    //*********************************************//
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // Upward recurrence for Q - equations (19a) and (19b)
 | 
	
		
			
				|  |  | +    Num = exp(-2.0*(z1.imag() - z2.imag()))*std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
 | 
	
		
			
				|  |  | +    Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
 | 
	
		
			
				|  |  | +    Q[l][0] = Num/Denom;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    for (n = 1; n <= nmax; n++) {
 | 
	
		
			
				|  |  | +      Num = (z1*D1_mlxl[l][n] + double(n))*(double(n) - z1*D3_mlxl[l][n - 1]);
 | 
	
		
			
				|  |  | +      Denom = (z2*D1_mlxlM1[l][n] + double(n))*(double(n) - z2*D3_mlxlM1[l][n - 1]);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1])*Num)/Denom;
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  // Function CONFRA ported from MIEV0.f (Wiscombe,1979)
 | 
	
		
			
				|  |  | -  // Ref. to NCAR Technical Notes, Wiscombe, 1979
 | 
	
		
			
				|  |  | -  /*
 | 
	
		
			
				|  |  | -c         Compute Bessel function ratio A-sub-N from its
 | 
	
		
			
				|  |  | -c         continued fraction using Lentz method
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -c         ZINV = Reciprocal of argument of A
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -c    I N T E R N A L    V A R I A B L E S
 | 
	
		
			
				|  |  | -c    ------------------------------------
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -c    CAK      Term in continued fraction expansion of A (Eq. R25)
 | 
	
		
			
				|  |  | -c     a_k
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -c    CAPT     Factor used in Lentz iteration for A (Eq. R27)
 | 
	
		
			
				|  |  | -c     T_k
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -c    CNUMER   Numerator   in capT  ( Eq. R28A )
 | 
	
		
			
				|  |  | -c     N_k
 | 
	
		
			
				|  |  | -c    CDENOM   Denominator in capT  ( Eq. R28B )
 | 
	
		
			
				|  |  | -c     D_k
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -c    CDTD     Product of two successive denominators of capT factors
 | 
	
		
			
				|  |  | -c                 ( Eq. R34C )
 | 
	
		
			
				|  |  | -c     xi_1
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -c    CNTN     Product of two successive numerators of capT factors
 | 
	
		
			
				|  |  | -c                 ( Eq. R34B )
 | 
	
		
			
				|  |  | -c     xi_2
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -c    EPS1     Ill-conditioning criterion
 | 
	
		
			
				|  |  | -c    EPS2     Convergence criterion
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -c    KK       Subscript k of cAk  ( Eq. R25B )
 | 
	
		
			
				|  |  | -c     k
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -c    KOUNT    Iteration counter ( used to prevent infinite looping )
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -c    MAXIT    Max. allowed no. of iterations
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -c    MM       + 1  and - 1, alternately
 | 
	
		
			
				|  |  | -*/
 | 
	
		
			
				|  |  | -  std::complex<double> MultiLayerMie::calcD1confra(const int N, const std::complex<double> z) {
 | 
	
		
			
				|  |  | -  // NTMR -> nmax_ -1  \\TODO nmax_ ?
 | 
	
		
			
				|  |  | -    //int N = nmax_ - 1;
 | 
	
		
			
				|  |  | -    int KK, KOUNT, MAXIT = 10000, MM;
 | 
	
		
			
				|  |  | -    //    double EPS1=1.0e-2;
 | 
	
		
			
				|  |  | -    double EPS2=1.0e-8;
 | 
	
		
			
				|  |  | -    std::complex<double> CAK, CAPT, CDENOM, CDTD, CNTN, CNUMER;
 | 
	
		
			
				|  |  | -    std::complex<double> one = std::complex<double>(1.0,0.0);
 | 
	
		
			
				|  |  | -    std::complex<double> ZINV = one/z;
 | 
	
		
			
				|  |  | -// c                                 ** Eq. R25a
 | 
	
		
			
				|  |  | -    std::complex<double> CONFRA = static_cast<std::complex<double> >(N+1)*ZINV;   //debug ZINV
 | 
	
		
			
				|  |  | -    MM = -1; 
 | 
	
		
			
				|  |  | -    KK = 2*N +3; //debug 3
 | 
	
		
			
				|  |  | -// c                                 ** Eq. R25b, k=2
 | 
	
		
			
				|  |  | -    CAK    = static_cast<std::complex<double> >(MM*KK) * ZINV; //debug -3 ZINV
 | 
	
		
			
				|  |  | -    CDENOM = CAK;
 | 
	
		
			
				|  |  | -    CNUMER = CDENOM + one / CONFRA; //-3zinv+z
 | 
	
		
			
				|  |  | -    KOUNT  = 1;
 | 
	
		
			
				|  |  | -    //10 CONTINUE
 | 
	
		
			
				|  |  | -    do {      ++KOUNT;
 | 
	
		
			
				|  |  | -      if (KOUNT > MAXIT) {
 | 
	
		
			
				|  |  | -	printf("re(%g):im(%g)\t\n", CONFRA.real(), CONFRA.imag());
 | 
	
		
			
				|  |  | -	throw std::invalid_argument("ConFra--Iteration failed to converge!\n");
 | 
	
		
			
				|  |  | +    // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
 | 
	
		
			
				|  |  | +    for (n = 1; n <= nmax; n++) {
 | 
	
		
			
				|  |  | +      //Ha
 | 
	
		
			
				|  |  | +      if ((l - 1) == pl) { // The layer below the current one is a PEC layer
 | 
	
		
			
				|  |  | +        G1 = -D1_mlxlM1[l][n];
 | 
	
		
			
				|  |  | +        G2 = -D3_mlxlM1[l][n];
 | 
	
		
			
				|  |  | +      } else {
 | 
	
		
			
				|  |  | +        G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[l][n]);
 | 
	
		
			
				|  |  | +        G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[l][n]);
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  | -      MM *= -1;      KK += 2;  //debug  mm=1 kk=5
 | 
	
		
			
				|  |  | -      CAK = static_cast<std::complex<double> >(MM*KK) * ZINV; //    ** Eq. R25b //debug 5zinv
 | 
	
		
			
				|  |  | -     //  //c ** Eq. R32    Ill-conditioned case -- stride two terms instead of one
 | 
	
		
			
				|  |  | -     //  if (std::abs( CNUMER / CAK ) >= EPS1 ||  std::abs( CDENOM / CAK ) >= EPS1) {
 | 
	
		
			
				|  |  | -     // 	//c                       ** Eq. R34
 | 
	
		
			
				|  |  | -     // 	CNTN   = CAK * CNUMER + 1.0;
 | 
	
		
			
				|  |  | -     // 	CDTD   = CAK * CDENOM + 1.0;
 | 
	
		
			
				|  |  | -     // 	CONFRA = ( CNTN / CDTD ) * CONFRA; // ** Eq. R33
 | 
	
		
			
				|  |  | -     // 	MM  *= -1;	KK  += 2;
 | 
	
		
			
				|  |  | -     // 	CAK = static_cast<std::complex<double> >(MM*KK) * ZINV; // ** Eq. R25b
 | 
	
		
			
				|  |  | -     // 	//c                        ** Eq. R35
 | 
	
		
			
				|  |  | -     // 	CNUMER = CAK + CNUMER / CNTN;
 | 
	
		
			
				|  |  | -     // 	CDENOM = CAK + CDENOM / CDTD;
 | 
	
		
			
				|  |  | -     // 	++KOUNT;
 | 
	
		
			
				|  |  | -     // 	//GO TO  10
 | 
	
		
			
				|  |  | -     // 	continue;
 | 
	
		
			
				|  |  | -     // } else { //c                           *** Well-conditioned case
 | 
	
		
			
				|  |  | -      {
 | 
	
		
			
				|  |  | -	CAPT   = CNUMER / CDENOM; // ** Eq. R27 //debug (-3zinv + z)/(-3zinv)
 | 
	
		
			
				|  |  | -	// printf("re(%g):im(%g)**\t", CAPT.real(), CAPT.imag());
 | 
	
		
			
				|  |  | -       CONFRA = CAPT * CONFRA; // ** Eq. R26
 | 
	
		
			
				|  |  | -       //if (N == 0) {output=true;printf(" re:");prn(CONFRA.real());printf(" im:"); prn(CONFRA.imag());output=false;};
 | 
	
		
			
				|  |  | -       //c                                  ** Check for convergence; Eq. R31
 | 
	
		
			
				|  |  | -       if ( std::abs(CAPT.real() - 1.0) >= EPS2 ||  std::abs(CAPT.imag()) >= EPS2 ) {
 | 
	
		
			
				|  |  | -//c                                        ** Eq. R30
 | 
	
		
			
				|  |  | -	 CNUMER = CAK + one/CNUMER;
 | 
	
		
			
				|  |  | -	 CDENOM = CAK + one/CDENOM;
 | 
	
		
			
				|  |  | -	 continue;
 | 
	
		
			
				|  |  | -	 //GO TO  10
 | 
	
		
			
				|  |  | -       }  // end of if < eps2
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Temp = Q[l][n]*G1;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Num = (G2*D1_mlxl[l][n]) - (Temp*D3_mlxl[l][n]);
 | 
	
		
			
				|  |  | +      Denom = G2 - Temp;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Ha[l][n - 1] = Num/Denom;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      //Hb
 | 
	
		
			
				|  |  | +      if ((l - 1) == pl) { // The layer below the current one is a PEC layer
 | 
	
		
			
				|  |  | +        G1 = Hb[l - 1][n - 1];
 | 
	
		
			
				|  |  | +        G2 = Hb[l - 1][n - 1];
 | 
	
		
			
				|  |  | +      } else {
 | 
	
		
			
				|  |  | +        G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[l][n]);
 | 
	
		
			
				|  |  | +        G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[l][n]);
 | 
	
		
			
				|  |  |        }
 | 
	
		
			
				|  |  | -      break;
 | 
	
		
			
				|  |  | -    } while(1);    
 | 
	
		
			
				|  |  | -    //if (N == 0)  printf(" return confra for z=(%g,%g)\n", ZINV.real(), ZINV.imag());
 | 
	
		
			
				|  |  | -    return CONFRA;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  // This function calculates the logarithmic derivatives of the Riccati-Bessel       //
 | 
	
		
			
				|  |  | -  // functions (D1 and D3) for a complex argument (z).                                //
 | 
	
		
			
				|  |  | -  // Equations (16a), (16b) and (18a) - (18d)                                         //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | -  //   z: Complex argument to evaluate D1 and D3                                      //
 | 
	
		
			
				|  |  | -  //   nmax_: Maximum number of terms to calculate D1 and D3                          //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | -  //   D1, D3: Logarithmic derivatives of the Riccati-Bessel functions                //
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  void MultiLayerMie::calcD1D3(const std::complex<double> z,
 | 
	
		
			
				|  |  | -			       std::vector<std::complex<double> >& D1,
 | 
	
		
			
				|  |  | -			       std::vector<std::complex<double> >& D3) {
 | 
	
		
			
				|  |  | -    // Downward recurrence for D1 - equations (16a) and (16b)
 | 
	
		
			
				|  |  | -    D1[nmax_] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -    //D1[nmax_] = calcD1confra(nmax_, z);
 | 
	
		
			
				|  |  | -    const std::complex<double> zinv = std::complex<double>(1.0, 0.0)/z;
 | 
	
		
			
				|  |  | -    
 | 
	
		
			
				|  |  | -    // printf(" D:");prn((D1[nmax_]).real()); printf("\t diff:");
 | 
	
		
			
				|  |  | -    // prn((D1[nmax_] + double(nmax_)*zinv).real());
 | 
	
		
			
				|  |  | -    for (int n = nmax_; n > 0; n--) {
 | 
	
		
			
				|  |  | -      D1[n - 1] = double(n)*zinv - 1.0/(D1[n] + double(n)*zinv);
 | 
	
		
			
				|  |  | -      //D1[n-1] = calcD1confra(n-1, z);
 | 
	
		
			
				|  |  | -      // printf(" D:");prn((D1[n-1]).real()); printf("\t diff:");
 | 
	
		
			
				|  |  | -      // prn((D1[n] + double(n)*zinv).real());
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Temp = Q[l][n]*G1;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Num = (G2*D1_mlxl[l][n]) - (Temp* D3_mlxl[l][n]);
 | 
	
		
			
				|  |  | +      Denom = (G2- Temp);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      Hb[l][n - 1] = (Num/ Denom);
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | -    //     printf("\n\n"); iformat=0;
 | 
	
		
			
				|  |  | -    if (std::abs(D1[0]) > 100000.0 )
 | 
	
		
			
				|  |  | -      throw std::invalid_argument
 | 
	
		
			
				|  |  | -	("Unstable D1! Please, try to change input parameters!\n");
 | 
	
		
			
				|  |  | -    // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
 | 
	
		
			
				|  |  | -    PsiZeta_[0] = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))
 | 
	
		
			
				|  |  | -		       *exp(-2.0*z.imag()));
 | 
	
		
			
				|  |  | -    D3[0] = std::complex<double>(0.0, 1.0);
 | 
	
		
			
				|  |  | -    for (int n = 1; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | -      PsiZeta_[n] = PsiZeta_[n - 1]*(static_cast<double>(n)*zinv - D1[n - 1])
 | 
	
		
			
				|  |  | -	*(static_cast<double>(n)*zinv- D3[n - 1]);
 | 
	
		
			
				|  |  | -      D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta_[n];
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //**************************************//
 | 
	
		
			
				|  |  | +  //Calculate D1, D3, Psi and Zeta for XL //
 | 
	
		
			
				|  |  | +  //**************************************//
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // Calculate D1XL and D3XL
 | 
	
		
			
				|  |  | +  calcD1D3(x[L - 1], nmax, D1XL, D3XL);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // Calculate PsiXL and ZetaXL
 | 
	
		
			
				|  |  | +  calcPsiZeta(x[L - 1], nmax, D1XL, D3XL, PsiXL, ZetaXL);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  //*********************************************************************//
 | 
	
		
			
				|  |  | +  // Finally, we calculate the scattering coefficients (an and bn) and   //
 | 
	
		
			
				|  |  | +  // the angular functions (Pi and Tau). Note that for these arrays the  //
 | 
	
		
			
				|  |  | +  // first layer is 0 (zero), in future versions all arrays will follow  //
 | 
	
		
			
				|  |  | +  // this convention to save memory. (13 Nov, 2014)                      //
 | 
	
		
			
				|  |  | +  //*********************************************************************//
 | 
	
		
			
				|  |  | +  for (n = 0; n < nmax; n++) {
 | 
	
		
			
				|  |  | +    //********************************************************************//
 | 
	
		
			
				|  |  | +    //Expressions for calculating an and bn coefficients are not valid if //
 | 
	
		
			
				|  |  | +    //there is only one PEC layer (ie, for a simple PEC sphere).          //
 | 
	
		
			
				|  |  | +    //********************************************************************//
 | 
	
		
			
				|  |  | +    if (pl < (L - 1)) {
 | 
	
		
			
				|  |  | +      an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | +      bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | +    } else {
 | 
	
		
			
				|  |  | +      an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | +      bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  // This function calculates Pi and Tau for all values of Theta.                     //
 | 
	
		
			
				|  |  | -  // Equations (26a) - (26c)                                                          //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | -  //   nmax_: Maximum number of terms to calculate Pi and Tau                          //
 | 
	
		
			
				|  |  | -  //   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | -  //   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | -  //          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | -  //   Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c)   //
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  void MultiLayerMie::calcPiTau(std::vector< std::vector<double> >& Pi,
 | 
	
		
			
				|  |  | -				std::vector< std::vector<double> >& Tau) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  return nmax;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +// This function calculates the actual scattering parameters and amplitudes         //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Input parameters:                                                                //
 | 
	
		
			
				|  |  | +//   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | +//   pl: Index of PEC layer. If there is none just send -1                          //
 | 
	
		
			
				|  |  | +//   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | +//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +//   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | +//   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | +//          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | +//   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | +//         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | +//         set this parameter to -1 and the function will calculate it              //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Output parameters:                                                               //
 | 
	
		
			
				|  |  | +//   Qext: Efficiency factor for extinction                                         //
 | 
	
		
			
				|  |  | +//   Qsca: Efficiency factor for scattering                                         //
 | 
	
		
			
				|  |  | +//   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
 | 
	
		
			
				|  |  | +//   Qbk: Efficiency factor for backscattering                                      //
 | 
	
		
			
				|  |  | +//   Qpr: Efficiency factor for the radiation pressure                              //
 | 
	
		
			
				|  |  | +//   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
 | 
	
		
			
				|  |  | +//   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
 | 
	
		
			
				|  |  | +//   S1, S2: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Return value:                                                                    //
 | 
	
		
			
				|  |  | +//   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
 | 
	
		
			
				|  |  | +         int nTheta, std::vector<double> Theta, int nmax,
 | 
	
		
			
				|  |  | +         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
 | 
	
		
			
				|  |  | +		 std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2)  {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  int i, n, t;
 | 
	
		
			
				|  |  | +  std::vector<std::complex<double> > an, bn;
 | 
	
		
			
				|  |  | +  std::complex<double> Qbktmp;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // Calculate scattering coefficients
 | 
	
		
			
				|  |  | +  nmax = ScattCoeffs(L, pl, x, m, nmax, an, bn);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  std::vector<double> Pi, Tau;
 | 
	
		
			
				|  |  | +  Pi.resize(nmax);
 | 
	
		
			
				|  |  | +  Tau.resize(nmax);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  double x2 = x[L - 1]*x[L - 1];
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // Initialize the scattering parameters
 | 
	
		
			
				|  |  | +  *Qext = 0;
 | 
	
		
			
				|  |  | +  *Qsca = 0;
 | 
	
		
			
				|  |  | +  *Qabs = 0;
 | 
	
		
			
				|  |  | +  *Qbk = 0;
 | 
	
		
			
				|  |  | +  Qbktmp = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | +  *Qpr = 0;
 | 
	
		
			
				|  |  | +  *g = 0;
 | 
	
		
			
				|  |  | +  *Albedo = 0;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // Initialize the scattering amplitudes
 | 
	
		
			
				|  |  | +  for (t = 0; t < nTheta; t++) {
 | 
	
		
			
				|  |  | +    S1[t] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | +    S2[t] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // By using downward recurrence we avoid loss of precision due to float rounding errors
 | 
	
		
			
				|  |  | +  // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
 | 
	
		
			
				|  |  | +  //      http://en.wikipedia.org/wiki/Loss_of_significance
 | 
	
		
			
				|  |  | +  for (i = nmax - 2; i >= 0; i--) {
 | 
	
		
			
				|  |  | +    n = i + 1;
 | 
	
		
			
				|  |  | +    // Equation (27)
 | 
	
		
			
				|  |  | +    *Qext += (n + n + 1)*(an[i].real() + bn[i].real());
 | 
	
		
			
				|  |  | +    // Equation (28)
 | 
	
		
			
				|  |  | +    *Qsca += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag() + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag());
 | 
	
		
			
				|  |  | +    // Equation (29) TODO We must check carefully this equation. If we
 | 
	
		
			
				|  |  | +    // remove the typecast to double then the result changes. Which is
 | 
	
		
			
				|  |  | +    // the correct one??? Ovidio (2014/12/10) With cast ratio will
 | 
	
		
			
				|  |  | +    // give double, without cast (n + n + 1)/(n*(n + 1)) will be
 | 
	
		
			
				|  |  | +    // rounded to integer. Tig (2015/02/24)
 | 
	
		
			
				|  |  | +    *Qpr += ((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real());
 | 
	
		
			
				|  |  | +    // Equation (33)
 | 
	
		
			
				|  |  | +    Qbktmp = Qbktmp + (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  |      //****************************************************//
 | 
	
		
			
				|  |  | -    // Equations (26a) - (26c)                            //
 | 
	
		
			
				|  |  | +    // Calculate the scattering amplitudes (S1 and S2)    //
 | 
	
		
			
				|  |  | +    // Equations (25a) - (25b)                            //
 | 
	
		
			
				|  |  |      //****************************************************//
 | 
	
		
			
				|  |  | -    std::vector<double> costheta(theta_.size(), 0.0);
 | 
	
		
			
				|  |  | -    for (int t = 0; t < theta_.size(); t++) {	
 | 
	
		
			
				|  |  | -      costheta[t] = cos(theta_[t]);
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -    for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | -      for (int t = 0; t < theta_.size(); t++) {	
 | 
	
		
			
				|  |  | -	if (n == 0) {
 | 
	
		
			
				|  |  | -	  // Initialize Pi and Tau
 | 
	
		
			
				|  |  | -	  Pi[n][t] = 1.0;
 | 
	
		
			
				|  |  | -	  Tau[n][t] = (n + 1)*costheta[t]; 
 | 
	
		
			
				|  |  | -	} else {
 | 
	
		
			
				|  |  | -	  // Calculate the actual values
 | 
	
		
			
				|  |  | -	  Pi[n][t] = ((n == 1) ? ((n + n + 1)*costheta[t]*Pi[n - 1][t]/n)
 | 
	
		
			
				|  |  | -		   : (((n + n + 1)*costheta[t]*Pi[n - 1][t]
 | 
	
		
			
				|  |  | -		       - (n + 1)*Pi[n - 2][t])/n));
 | 
	
		
			
				|  |  | -	  Tau[n][t] = (n + 1)*costheta[t]*Pi[n][t] - (n + 2)*Pi[n - 1][t];
 | 
	
		
			
				|  |  | -	}
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  // This function calculates the scattering coefficients required to calculate       //
 | 
	
		
			
				|  |  | -  // both the near- and far-field parameters.                                         //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | -  //   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | -  //   pl: Index of PEC layer. If there is none just send -1                          //
 | 
	
		
			
				|  |  | -  //   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | -  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | -  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | -  //         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | -  //         set this parameter to -1 and the function will calculate it.             //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | -  //   an, bn: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Return value:                                                                    //
 | 
	
		
			
				|  |  | -  //   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  void MultiLayerMie::ScattCoeffs(std::vector<std::complex<double> >& an,
 | 
	
		
			
				|  |  | -				  std::vector<std::complex<double> >& bn) {
 | 
	
		
			
				|  |  | -    const std::vector<double>& x = size_parameter_;
 | 
	
		
			
				|  |  | -    const std::vector<std::complex<double> >& m = index_;
 | 
	
		
			
				|  |  | -    const int& pl = PEC_layer_position_;
 | 
	
		
			
				|  |  | -    const int L = index_.size();
 | 
	
		
			
				|  |  | -    //************************************************************************//
 | 
	
		
			
				|  |  | -    // Calculate the index of the first layer. It can be either 0
 | 
	
		
			
				|  |  | -    // (default) // or the index of the outermost PEC layer. In the
 | 
	
		
			
				|  |  | -    // latter case all layers // below the PEC are discarded.  //
 | 
	
		
			
				|  |  | -    // ************************************************************************//
 | 
	
		
			
				|  |  | -    // TODO, is it possible for PEC to have a zero index? If yes than
 | 
	
		
			
				|  |  | -    // is should be:
 | 
	
		
			
				|  |  | -    // int fl = (pl > -1) ? pl : 0;
 | 
	
		
			
				|  |  | -    // This will give the same result, however, it corresponds the
 | 
	
		
			
				|  |  | -    // logic - if there is PEC, than first layer is PEC.
 | 
	
		
			
				|  |  | -    int fl = (pl > 0) ? pl : 0;
 | 
	
		
			
				|  |  | -    if (nmax_ <= 0) Nmax(fl);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    std::complex<double> z1, z2;
 | 
	
		
			
				|  |  | -    //**************************************************************************//
 | 
	
		
			
				|  |  | -    // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which  //
 | 
	
		
			
				|  |  | -    // means that index = layer number - 1 or index = n - 1. The only exception //
 | 
	
		
			
				|  |  | -    // are the arrays for representing D1, D3 and Q because they need a value   //
 | 
	
		
			
				|  |  | -    // for the index 0 (zero), hence it is important to consider this shift     //
 | 
	
		
			
				|  |  | -    // between different arrays. The change was done to optimize memory usage.  //
 | 
	
		
			
				|  |  | -    //**************************************************************************//
 | 
	
		
			
				|  |  | -    // Allocate memory to the arrays
 | 
	
		
			
				|  |  | -    std::vector<std::complex<double> > D1_mlxl(nmax_ + 1), D1_mlxlM1(nmax_ + 1),
 | 
	
		
			
				|  |  | -      D3_mlxl(nmax_ + 1), D3_mlxlM1(nmax_ + 1);
 | 
	
		
			
				|  |  | -    std::vector<std::vector<std::complex<double> > > Q(L), Ha(L), Hb(L);
 | 
	
		
			
				|  |  | -    for (int l = 0; l < L; l++) {
 | 
	
		
			
				|  |  | -      // D1_mlxl[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | -      // D1_mlxlM1[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | -      // D3_mlxl[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | -      // D3_mlxlM1[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | -      Q[l].resize(nmax_ + 1);
 | 
	
		
			
				|  |  | -      Ha[l].resize(nmax_);
 | 
	
		
			
				|  |  | -      Hb[l].resize(nmax_);
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -    an.resize(nmax_);
 | 
	
		
			
				|  |  | -    bn.resize(nmax_);
 | 
	
		
			
				|  |  | -    PsiZeta_.resize(nmax_ + 1);
 | 
	
		
			
				|  |  | -    std::vector<std::complex<double> > D1XL(nmax_ + 1), D3XL(nmax_ + 1), 
 | 
	
		
			
				|  |  | -      PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);
 | 
	
		
			
				|  |  | -    //*************************************************//
 | 
	
		
			
				|  |  | -    // Calculate D1 and D3 for z1 in the first layer   //
 | 
	
		
			
				|  |  | -    //*************************************************//
 | 
	
		
			
				|  |  | -    if (fl == pl) {  // PEC layer
 | 
	
		
			
				|  |  | -      for (int n = 0; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | -	D1_mlxl[n] = std::complex<double>(0.0, -1.0);
 | 
	
		
			
				|  |  | -	D3_mlxl[n] = std::complex<double>(0.0, 1.0);
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | -    } else { // Regular layer
 | 
	
		
			
				|  |  | -      z1 = x[fl]* m[fl];
 | 
	
		
			
				|  |  | -      // Calculate D1 and D3
 | 
	
		
			
				|  |  | -      calcD1D3(z1, D1_mlxl, D3_mlxl);
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -    // do { \
 | 
	
		
			
				|  |  | -    //   ++iformat;\
 | 
	
		
			
				|  |  | -    //   if (iformat%5 == 0) printf("%24.16e",z1.real());	\
 | 
	
		
			
				|  |  | -    // } while (false);
 | 
	
		
			
				|  |  | -    //******************************************************************//
 | 
	
		
			
				|  |  | -    // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
 | 
	
		
			
				|  |  | -    //******************************************************************//
 | 
	
		
			
				|  |  | -    for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | -      Ha[fl][n] = D1_mlxl[n + 1];
 | 
	
		
			
				|  |  | -      Hb[fl][n] = D1_mlxl[n + 1];
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -    //*****************************************************//
 | 
	
		
			
				|  |  | -    // Iteration from the second layer to the last one (L) //
 | 
	
		
			
				|  |  | -    //*****************************************************//
 | 
	
		
			
				|  |  | -    std::complex<double> Temp, Num, Denom;
 | 
	
		
			
				|  |  | -    std::complex<double> G1, G2;
 | 
	
		
			
				|  |  | -    for (int l = fl + 1; l < L; l++) {
 | 
	
		
			
				|  |  | -      //************************************************************//
 | 
	
		
			
				|  |  | -      //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L     //
 | 
	
		
			
				|  |  | -      //************************************************************//
 | 
	
		
			
				|  |  | -      z1 = x[l]*m[l];
 | 
	
		
			
				|  |  | -      z2 = x[l - 1]*m[l];
 | 
	
		
			
				|  |  | -      //Calculate D1 and D3 for z1
 | 
	
		
			
				|  |  | -      calcD1D3(z1, D1_mlxl, D3_mlxl);
 | 
	
		
			
				|  |  | -      //Calculate D1 and D3 for z2
 | 
	
		
			
				|  |  | -      calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
 | 
	
		
			
				|  |  | -      // prn(z1.real());
 | 
	
		
			
				|  |  | -      // for ( auto i : D1_mlxl) { prn(i.real());
 | 
	
		
			
				|  |  | -      //   // prn(i.imag());
 | 
	
		
			
				|  |  | -      // 	} printf("\n");
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -      //*********************************************//
 | 
	
		
			
				|  |  | -      //Calculate Q, Ha and Hb in the layers fl+1..L //
 | 
	
		
			
				|  |  | -      //*********************************************//
 | 
	
		
			
				|  |  | -      // Upward recurrence for Q - equations (19a) and (19b)
 | 
	
		
			
				|  |  | -      Num = exp(-2.0*(z1.imag() - z2.imag()))
 | 
	
		
			
				|  |  | -	* std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
 | 
	
		
			
				|  |  | -      Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
 | 
	
		
			
				|  |  | -      Q[l][0] = Num/Denom;
 | 
	
		
			
				|  |  | -      for (int n = 1; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | -	Num = (z1*D1_mlxl[n] + double(n))*(double(n) - z1*D3_mlxl[n - 1]);
 | 
	
		
			
				|  |  | -	Denom = (z2*D1_mlxlM1[n] + double(n))*(double(n) - z2*D3_mlxlM1[n - 1]);
 | 
	
		
			
				|  |  | -	Q[l][n] = ((pow2(x[l - 1]/x[l])* Q[l][n - 1])*Num)/Denom;
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | -      // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
 | 
	
		
			
				|  |  | -      for (int n = 1; n <= nmax_; n++) {
 | 
	
		
			
				|  |  | -	//Ha
 | 
	
		
			
				|  |  | -	if ((l - 1) == pl) { // The layer below the current one is a PEC layer
 | 
	
		
			
				|  |  | -	  G1 = -D1_mlxlM1[n];
 | 
	
		
			
				|  |  | -	  G2 = -D3_mlxlM1[n];
 | 
	
		
			
				|  |  | -	} else {
 | 
	
		
			
				|  |  | -	  G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[n]);
 | 
	
		
			
				|  |  | -	  G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[n]);
 | 
	
		
			
				|  |  | -	}  // end of if PEC
 | 
	
		
			
				|  |  | -	Temp = Q[l][n]*G1;
 | 
	
		
			
				|  |  | -	Num = (G2*D1_mlxl[n]) - (Temp*D3_mlxl[n]);
 | 
	
		
			
				|  |  | -	Denom = G2 - Temp;
 | 
	
		
			
				|  |  | -	Ha[l][n - 1] = Num/Denom;
 | 
	
		
			
				|  |  | -	//Hb
 | 
	
		
			
				|  |  | -	if ((l - 1) == pl) { // The layer below the current one is a PEC layer
 | 
	
		
			
				|  |  | -	  G1 = Hb[l - 1][n - 1];
 | 
	
		
			
				|  |  | -	  G2 = Hb[l - 1][n - 1];
 | 
	
		
			
				|  |  | -	} else {
 | 
	
		
			
				|  |  | -	  G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[n]);
 | 
	
		
			
				|  |  | -	  G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[n]);
 | 
	
		
			
				|  |  | -	}  // end of if PEC
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -	Temp = Q[l][n]*G1;
 | 
	
		
			
				|  |  | -	Num = (G2*D1_mlxl[n]) - (Temp* D3_mlxl[n]);
 | 
	
		
			
				|  |  | -	Denom = (G2- Temp);
 | 
	
		
			
				|  |  | -	Hb[l][n - 1] = (Num/ Denom);
 | 
	
		
			
				|  |  | -      }  // end of for Ha and Hb terms
 | 
	
		
			
				|  |  | -    }  // end of for layers iteration
 | 
	
		
			
				|  |  | -    //**************************************//
 | 
	
		
			
				|  |  | -    //Calculate D1, D3, Psi and Zeta for XL //
 | 
	
		
			
				|  |  | -    //**************************************//
 | 
	
		
			
				|  |  | -    // Calculate D1XL and D3XL
 | 
	
		
			
				|  |  | -    calcD1D3(x[L - 1],  D1XL, D3XL);
 | 
	
		
			
				|  |  | -    //printf("%5.20f\n",Ha[L-1][0].real());
 | 
	
		
			
				|  |  | -    // Calculate PsiXL and ZetaXL
 | 
	
		
			
				|  |  | -    calcPsiZeta(x[L - 1], D1XL, D3XL, PsiXL, ZetaXL);
 | 
	
		
			
				|  |  | -    //*********************************************************************//
 | 
	
		
			
				|  |  | -    // Finally, we calculate the scattering coefficients (an and bn) and   //
 | 
	
		
			
				|  |  | -    // the angular functions (Pi and Tau). Note that for these arrays the  //
 | 
	
		
			
				|  |  | -    // first layer is 0 (zero), in future versions all arrays will follow  //
 | 
	
		
			
				|  |  | -    // this convention to save memory. (13 Nov, 2014)                      //
 | 
	
		
			
				|  |  | -    //*********************************************************************//
 | 
	
		
			
				|  |  | -    for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | -      //********************************************************************//
 | 
	
		
			
				|  |  | -      //Expressions for calculating an and bn coefficients are not valid if //
 | 
	
		
			
				|  |  | -      //there is only one PEC layer (ie, for a simple PEC sphere).          //
 | 
	
		
			
				|  |  | -      //********************************************************************//
 | 
	
		
			
				|  |  | -      if (pl < (L - 1)) {
 | 
	
		
			
				|  |  | -	an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | -	bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | -      } else {
 | 
	
		
			
				|  |  | -	an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
 | 
	
		
			
				|  |  | -	bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | -    }  // end of for an and bn terms
 | 
	
		
			
				|  |  | -  }  // end of void MultiLayerMie::ScattCoeffs(...)
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::InitMieCalculations() {
 | 
	
		
			
				|  |  | -    // Initialize the scattering parameters
 | 
	
		
			
				|  |  | -    Qext_ = 0;
 | 
	
		
			
				|  |  | -    Qsca_ = 0;
 | 
	
		
			
				|  |  | -    Qabs_ = 0;
 | 
	
		
			
				|  |  | -    Qbk_ = 0;
 | 
	
		
			
				|  |  | -    Qpr_ = 0;
 | 
	
		
			
				|  |  | -    asymmetry_factor_ = 0;
 | 
	
		
			
				|  |  | -    albedo_ = 0;
 | 
	
		
			
				|  |  | -    Qsca_ch_.clear();
 | 
	
		
			
				|  |  | -    Qext_ch_.clear();
 | 
	
		
			
				|  |  | -    Qabs_ch_.clear();
 | 
	
		
			
				|  |  | -    Qbk_ch_.clear();
 | 
	
		
			
				|  |  | -    Qpr_ch_.clear();
 | 
	
		
			
				|  |  | -    Qsca_ch_.resize(nmax_-1);
 | 
	
		
			
				|  |  | -    Qext_ch_.resize(nmax_-1);
 | 
	
		
			
				|  |  | -    Qabs_ch_.resize(nmax_-1);
 | 
	
		
			
				|  |  | -    Qbk_ch_.resize(nmax_-1);
 | 
	
		
			
				|  |  | -    Qpr_ch_.resize(nmax_-1);
 | 
	
		
			
				|  |  | -    // Initialize the scattering amplitudes
 | 
	
		
			
				|  |  | -    std::vector<std::complex<double> >	tmp1(theta_.size(),std::complex<double>(0.0, 0.0));
 | 
	
		
			
				|  |  | -    S1_.swap(tmp1);
 | 
	
		
			
				|  |  | -    S2_ = S1_;
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  void MultiLayerMie::ConvertToSP() {
 | 
	
		
			
				|  |  | -    if (target_width_.size() + coating_width_.size() == 0)
 | 
	
		
			
				|  |  | -      return;  // Nothing to convert, we suppose that SP was set directly
 | 
	
		
			
				|  |  | -    GenerateSizeParameter();
 | 
	
		
			
				|  |  | -    GenerateIndex();
 | 
	
		
			
				|  |  | -    if (size_parameter_.size() != index_.size())
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("Ivalid conversion of width to size parameter units!/n");
 | 
	
		
			
				|  |  | -  }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  // This function calculates the actual scattering parameters and amplitudes         //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | -  //   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | -  //   pl: Index of PEC layer. If there is none just send -1                          //
 | 
	
		
			
				|  |  | -  //   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | -  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | -  //   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | -  //   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | -  //          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | -  //   nmax_: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | -  //         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | -  //         set this parameter to -1 and the function will calculate it              //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | -  //   Qext: Efficiency factor for extinction                                         //
 | 
	
		
			
				|  |  | -  //   Qsca: Efficiency factor for scattering                                         //
 | 
	
		
			
				|  |  | -  //   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
 | 
	
		
			
				|  |  | -  //   Qbk: Efficiency factor for backscattering                                      //
 | 
	
		
			
				|  |  | -  //   Qpr: Efficiency factor for the radiation pressure                              //
 | 
	
		
			
				|  |  | -  //   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
 | 
	
		
			
				|  |  | -  //   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
 | 
	
		
			
				|  |  | -  //   S1, S2: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Return value:                                                                    //
 | 
	
		
			
				|  |  | -  //   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  void MultiLayerMie::RunMieCalculations() {
 | 
	
		
			
				|  |  | -    ConvertToSP();
 | 
	
		
			
				|  |  | -    nmax_ = nmax_preset_;
 | 
	
		
			
				|  |  | -    if (size_parameter_.size() != index_.size())
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("Each size parameter should have only one index!");
 | 
	
		
			
				|  |  | -    if (size_parameter_.size() == 0)
 | 
	
		
			
				|  |  | -      throw std::invalid_argument("Initialize model first!");
 | 
	
		
			
				|  |  | -    std::vector<std::complex<double> > an, bn;
 | 
	
		
			
				|  |  | -    const std::vector<double>& x = size_parameter_;
 | 
	
		
			
				|  |  | -    // Calculate scattering coefficients
 | 
	
		
			
				|  |  | -    ScattCoeffs(an, bn);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    // std::vector< std::vector<double> > Pi(nmax_), Tau(nmax_);
 | 
	
		
			
				|  |  | -    std::vector< std::vector<double> > Pi, Tau;
 | 
	
		
			
				|  |  | -    Pi.resize(nmax_);
 | 
	
		
			
				|  |  | -    Tau.resize(nmax_);
 | 
	
		
			
				|  |  | -    for (int i =0; i< nmax_; ++i) {
 | 
	
		
			
				|  |  | -      Pi[i].resize(theta_.size());
 | 
	
		
			
				|  |  | -      Tau[i].resize(theta_.size());
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | -    calcPiTau(Pi, Tau);    
 | 
	
		
			
				|  |  | -    InitMieCalculations(); //
 | 
	
		
			
				|  |  | -    std::complex<double> Qbktmp(0.0, 0.0);
 | 
	
		
			
				|  |  | -    std::vector< std::complex<double> > Qbktmp_ch(nmax_ - 1, Qbktmp);
 | 
	
		
			
				|  |  | -    // By using downward recurrence we avoid loss of precision due to float rounding errors
 | 
	
		
			
				|  |  | -    // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
 | 
	
		
			
				|  |  | -    //      http://en.wikipedia.org/wiki/Loss_of_significance
 | 
	
		
			
				|  |  | -    for (int i = nmax_ - 2; i >= 0; i--) {
 | 
	
		
			
				|  |  | -      const int n = i + 1;
 | 
	
		
			
				|  |  | -      // Equation (27)
 | 
	
		
			
				|  |  | -      Qext_ch_[i] = (n + n + 1)*(an[i].real() + bn[i].real());
 | 
	
		
			
				|  |  | -      Qext_ += Qext_ch_[i];
 | 
	
		
			
				|  |  | -      // Equation (28)
 | 
	
		
			
				|  |  | -      Qsca_ch_[i] += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag()
 | 
	
		
			
				|  |  | -			    + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag());
 | 
	
		
			
				|  |  | -      Qsca_ += Qsca_ch_[i];
 | 
	
		
			
				|  |  | -      //printf(" %g:%g", Qext_ch_[i], Qsca_ch_[i]);
 | 
	
		
			
				|  |  | -      // Equation (29) TODO We must check carefully this equation. If we
 | 
	
		
			
				|  |  | -      // remove the typecast to double then the result changes. Which is
 | 
	
		
			
				|  |  | -      // the correct one??? Ovidio (2014/12/10) With cast ratio will
 | 
	
		
			
				|  |  | -      // give double, without cast (n + n + 1)/(n*(n + 1)) will be
 | 
	
		
			
				|  |  | -      // rounded to integer. Tig (2015/02/24)
 | 
	
		
			
				|  |  | -      Qpr_ch_[i]=((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real())
 | 
	
		
			
				|  |  | -	       + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real());
 | 
	
		
			
				|  |  | -      Qpr_ += Qpr_ch_[i];
 | 
	
		
			
				|  |  | -      // Equation (33)      
 | 
	
		
			
				|  |  | -      Qbktmp_ch[i] = (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]);
 | 
	
		
			
				|  |  | -      Qbktmp += Qbktmp_ch[i];
 | 
	
		
			
				|  |  | -      // Calculate the scattering amplitudes (S1 and S2)    //
 | 
	
		
			
				|  |  | -      // Equations (25a) - (25b)                            //
 | 
	
		
			
				|  |  | -      for (int t = 0; t < theta_.size(); t++) {
 | 
	
		
			
				|  |  | -	S1_[t] += calc_S1(n, an[i], bn[i], Pi[i][t], Tau[i][t]);
 | 
	
		
			
				|  |  | -	S2_[t] += calc_S2(n, an[i], bn[i], Pi[i][t], Tau[i][t]);
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | +    for (t = 0; t < nTheta; t++) {
 | 
	
		
			
				|  |  | +      calcPiTau(nmax, Theta[t], Pi, Tau);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      S1[t] += calc_S1(n, an[i], bn[i], Pi[i], Tau[i]);
 | 
	
		
			
				|  |  | +      S2[t] += calc_S2(n, an[i], bn[i], Pi[i], Tau[i]);
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | -    double x2 = pow2(x.back());
 | 
	
		
			
				|  |  | -    Qext_ = 2.0*(Qext_)/x2;                                 // Equation (27)
 | 
	
		
			
				|  |  | -    for (double& Q : Qext_ch_) Q = 2.0*Q/x2;
 | 
	
		
			
				|  |  | -    Qsca_ = 2.0*(Qsca_)/x2;                                 // Equation (28)
 | 
	
		
			
				|  |  | -    for (double& Q : Qsca_ch_) Q = 2.0*Q/x2;
 | 
	
		
			
				|  |  | -    Qpr_ = Qext_ - 4.0*(Qpr_)/x2;                           // Equation (29)
 | 
	
		
			
				|  |  | -    for (int i = 0; i < nmax_ - 1; ++i) Qpr_ch_[i] = Qext_ch_[i] - 4.0*Qpr_ch_[i]/x2;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    Qabs_ = Qext_ - Qsca_;                                // Equation (30)
 | 
	
		
			
				|  |  | -    for (int i = 0; i < nmax_ - 1; ++i) Qabs_ch_[i] = Qext_ch_[i] - Qsca_ch_[i];
 | 
	
		
			
				|  |  | -    
 | 
	
		
			
				|  |  | -    albedo_ = Qsca_ / Qext_;                              // Equation (31)
 | 
	
		
			
				|  |  | -    asymmetry_factor_ = (Qext_ - Qpr_) / Qsca_;                          // Equation (32)
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2;    // Equation (33)
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    isMieCalculated_ = true;
 | 
	
		
			
				|  |  | -    nmax_used_ = nmax_;
 | 
	
		
			
				|  |  | -    //return nmax;
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // external scattering field = incident + scattered
 | 
	
		
			
				|  |  | -  // BH p.92 (4.37), 94 (4.45), 95 (4.50)
 | 
	
		
			
				|  |  | -  // assume: medium is non-absorbing; refim = 0; Uabs = 0
 | 
	
		
			
				|  |  | -  void MultiLayerMie::fieldExt(double Rho, double Phi, double Theta, std::vector<double> Pi, std::vector<double> Tau,
 | 
	
		
			
				|  |  | -			       std::vector<std::complex<double> > an, std::vector<std::complex<double> > bn,
 | 
	
		
			
				|  |  | -			       std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H)  {
 | 
	
		
			
				|  |  | -    
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    double rn = 0.0;
 | 
	
		
			
				|  |  | -    std::complex<double> zn, xxip, encap;
 | 
	
		
			
				|  |  | -    std::vector<std::complex<double> > vm3o1n, vm3e1n, vn3o1n, vn3e1n;
 | 
	
		
			
				|  |  | -    vm3o1n.resize(3);
 | 
	
		
			
				|  |  | -    vm3e1n.resize(3);
 | 
	
		
			
				|  |  | -    vn3o1n.resize(3);
 | 
	
		
			
				|  |  | -    vn3e1n.resize(3);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    std::vector<std::complex<double> > Ei, Hi, Es, Hs;
 | 
	
		
			
				|  |  | -    Ei.resize(3);
 | 
	
		
			
				|  |  | -    Hi.resize(3);
 | 
	
		
			
				|  |  | -    Es.resize(3);
 | 
	
		
			
				|  |  | -    Hs.resize(3);
 | 
	
		
			
				|  |  | -    for (int i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | -      Ei[i] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -      Hi[i] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -      Es[i] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -      Hs[i] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    std::vector<std::complex<double> > bj, by, bd;
 | 
	
		
			
				|  |  | -    bj.resize(nmax_);
 | 
	
		
			
				|  |  | -    by.resize(nmax_);
 | 
	
		
			
				|  |  | -    bd.resize(nmax_);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    // Calculate spherical Bessel and Hankel functions
 | 
	
		
			
				|  |  | -    sphericalBessel(Rho, bj, by, bd);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    for (int n = 0; n < nmax_; n++) {
 | 
	
		
			
				|  |  | -      rn = double(n + 1);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -      zn = bj[n] + std::complex<double>(0.0, 1.0)*by[n];
 | 
	
		
			
				|  |  | -      xxip = Rho*(bj[n] + std::complex<double>(0.0, 1.0)*by[n]) - rn*zn;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -      vm3o1n[0] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -      vm3o1n[1] = std::cos(Phi)*Pi[n]*zn;
 | 
	
		
			
				|  |  | -      vm3o1n[2] = -(std::sin(Phi)*Tau[n]*zn);
 | 
	
		
			
				|  |  | -      vm3e1n[0] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -      vm3e1n[1] = -(std::sin(Phi)*Pi[n]*zn);
 | 
	
		
			
				|  |  | -      vm3e1n[2] = -(std::cos(Phi)*Tau[n]*zn);
 | 
	
		
			
				|  |  | -      vn3o1n[0] = std::sin(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
 | 
	
		
			
				|  |  | -      vn3o1n[1] = std::sin(Phi)*Tau[n]*xxip/Rho;
 | 
	
		
			
				|  |  | -      vn3o1n[2] = std::cos(Phi)*Pi[n]*xxip/Rho;
 | 
	
		
			
				|  |  | -      vn3e1n[0] = std::cos(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
 | 
	
		
			
				|  |  | -      vn3e1n[1] = std::cos(Phi)*Tau[n]*xxip/Rho;
 | 
	
		
			
				|  |  | -      vn3e1n[2] = -(std::sin(Phi)*Pi[n]*xxip/Rho);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -      // scattered field: BH p.94 (4.45)
 | 
	
		
			
				|  |  | -      encap = std::pow(std::complex<double>(0.0, 1.0), rn)*(2.0*rn + 1.0)/(rn*(rn + 1.0));
 | 
	
		
			
				|  |  | -      for (int i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | -	Es[i] = Es[i] + encap*(std::complex<double>(0.0, 1.0)*an[n]*vn3e1n[i] - bn[n]*vm3o1n[i]);
 | 
	
		
			
				|  |  | -	Hs[i] = Hs[i] + encap*(std::complex<double>(0.0, 1.0)*bn[n]*vn3o1n[i] + an[n]*vm3e1n[i]);
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | +  *Qext = 2*(*Qext)/x2;                                 // Equation (27)
 | 
	
		
			
				|  |  | +  *Qsca = 2*(*Qsca)/x2;                                 // Equation (28)
 | 
	
		
			
				|  |  | +  *Qpr = *Qext - 4*(*Qpr)/x2;                           // Equation (29)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  *Qabs = *Qext - *Qsca;                                // Equation (30)
 | 
	
		
			
				|  |  | +  *Albedo = *Qsca / *Qext;                              // Equation (31)
 | 
	
		
			
				|  |  | +  *g = (*Qext - *Qpr) / *Qsca;                          // Equation (32)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  *Qbk = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2;    // Equation (33)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  return nmax;
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +// This function is just a wrapper to call the full 'nMie' function with fewer      //
 | 
	
		
			
				|  |  | +// parameters, it is here mainly for compatibility with older versions of the       //
 | 
	
		
			
				|  |  | +// program. Also, you can use it if you neither have a PEC layer nor want to define //
 | 
	
		
			
				|  |  | +// any limit for the maximum number of terms.                                       //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Input parameters:                                                                //
 | 
	
		
			
				|  |  | +//   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | +//   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | +//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +//   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | +//   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | +//          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Output parameters:                                                               //
 | 
	
		
			
				|  |  | +//   Qext: Efficiency factor for extinction                                         //
 | 
	
		
			
				|  |  | +//   Qsca: Efficiency factor for scattering                                         //
 | 
	
		
			
				|  |  | +//   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
 | 
	
		
			
				|  |  | +//   Qbk: Efficiency factor for backscattering                                      //
 | 
	
		
			
				|  |  | +//   Qpr: Efficiency factor for the radiation pressure                              //
 | 
	
		
			
				|  |  | +//   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
 | 
	
		
			
				|  |  | +//   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
 | 
	
		
			
				|  |  | +//   S1, S2: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Return value:                                                                    //
 | 
	
		
			
				|  |  | +//   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
 | 
	
		
			
				|  |  | +         int nTheta, std::vector<double> Theta,
 | 
	
		
			
				|  |  | +         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
 | 
	
		
			
				|  |  | +         std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  return nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +// This function is just a wrapper to call the full 'nMie' function with fewer      //
 | 
	
		
			
				|  |  | +// parameters, it is useful if you want to include a PEC layer but not a limit      //
 | 
	
		
			
				|  |  | +// for the maximum number of terms.                                                 //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Input parameters:                                                                //
 | 
	
		
			
				|  |  | +//   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | +//   pl: Index of PEC layer. If there is none just send -1                          //
 | 
	
		
			
				|  |  | +//   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | +//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +//   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | +//   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | +//          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Output parameters:                                                               //
 | 
	
		
			
				|  |  | +//   Qext: Efficiency factor for extinction                                         //
 | 
	
		
			
				|  |  | +//   Qsca: Efficiency factor for scattering                                         //
 | 
	
		
			
				|  |  | +//   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
 | 
	
		
			
				|  |  | +//   Qbk: Efficiency factor for backscattering                                      //
 | 
	
		
			
				|  |  | +//   Qpr: Efficiency factor for the radiation pressure                              //
 | 
	
		
			
				|  |  | +//   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
 | 
	
		
			
				|  |  | +//   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
 | 
	
		
			
				|  |  | +//   S1, S2: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Return value:                                                                    //
 | 
	
		
			
				|  |  | +//   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
 | 
	
		
			
				|  |  | +         int nTheta, std::vector<double> Theta,
 | 
	
		
			
				|  |  | +         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
 | 
	
		
			
				|  |  | +         std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  return nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +// This function is just a wrapper to call the full 'nMie' function with fewer      //
 | 
	
		
			
				|  |  | +// parameters, it is useful if you want to include a limit for the maximum number   //
 | 
	
		
			
				|  |  | +// of terms but not a PEC layer.                                                    //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Input parameters:                                                                //
 | 
	
		
			
				|  |  | +//   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | +//   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | +//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +//   nTheta: Number of scattering angles                                            //
 | 
	
		
			
				|  |  | +//   Theta: Array containing all the scattering angles where the scattering         //
 | 
	
		
			
				|  |  | +//          amplitudes will be calculated                                           //
 | 
	
		
			
				|  |  | +//   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | +//         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | +//         set this parameter to -1 and the function will calculate it              //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Output parameters:                                                               //
 | 
	
		
			
				|  |  | +//   Qext: Efficiency factor for extinction                                         //
 | 
	
		
			
				|  |  | +//   Qsca: Efficiency factor for scattering                                         //
 | 
	
		
			
				|  |  | +//   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
 | 
	
		
			
				|  |  | +//   Qbk: Efficiency factor for backscattering                                      //
 | 
	
		
			
				|  |  | +//   Qpr: Efficiency factor for the radiation pressure                              //
 | 
	
		
			
				|  |  | +//   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
 | 
	
		
			
				|  |  | +//   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
 | 
	
		
			
				|  |  | +//   S1, S2: Complex scattering amplitudes                                          //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Return value:                                                                    //
 | 
	
		
			
				|  |  | +//   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +int nMie(int L, std::vector<double> x, std::vector<std::complex<double> > m,
 | 
	
		
			
				|  |  | +         int nTheta, std::vector<double> Theta, int nmax,
 | 
	
		
			
				|  |  | +         double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
 | 
	
		
			
				|  |  | +         std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  return nMie(L, -1, x, m, nTheta, Theta, nmax, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
 | 
	
		
			
				|  |  | +}
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +// This function calculates complex electric and magnetic field in the surroundings //
 | 
	
		
			
				|  |  | +// and inside (TODO) the particle.                                                  //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Input parameters:                                                                //
 | 
	
		
			
				|  |  | +//   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | +//   pl: Index of PEC layer. If there is none just send 0 (zero)                    //
 | 
	
		
			
				|  |  | +//   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | +//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | +//   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | +//         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | +//         set this parameter to 0 (zero) and the function will calculate it.       //
 | 
	
		
			
				|  |  | +//   ncoord: Number of coordinate points                                            //
 | 
	
		
			
				|  |  | +//   Coords: Array containing all coordinates where the complex electric and        //
 | 
	
		
			
				|  |  | +//           magnetic fields will be calculated                                     //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Output parameters:                                                               //
 | 
	
		
			
				|  |  | +//   E, H: Complex electric and magnetic field at the provided coordinates          //
 | 
	
		
			
				|  |  | +//                                                                                  //
 | 
	
		
			
				|  |  | +// Return value:                                                                    //
 | 
	
		
			
				|  |  | +//   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | +//**********************************************************************************//
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +int nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
 | 
	
		
			
				|  |  | +           int ncoord, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp,
 | 
	
		
			
				|  |  | +		   std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  int i, c;
 | 
	
		
			
				|  |  | +  double Rho, Phi, Theta;
 | 
	
		
			
				|  |  | +  std::vector<std::complex<double> > an, bn;
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // This array contains the fields in spherical coordinates
 | 
	
		
			
				|  |  | +  std::vector<std::complex<double> > Es, Hs;
 | 
	
		
			
				|  |  | +  Es.resize(3);
 | 
	
		
			
				|  |  | +  Hs.resize(3);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  // Calculate scattering coefficients
 | 
	
		
			
				|  |  | +  nmax = ScattCoeffs(L, pl, x, m, nmax, an, bn);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  std::vector<double> Pi, Tau;
 | 
	
		
			
				|  |  | +  Pi.resize(nmax);
 | 
	
		
			
				|  |  | +  Tau.resize(nmax);
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  for (c = 0; c < ncoord; c++) {
 | 
	
		
			
				|  |  | +    // Convert to spherical coordinates
 | 
	
		
			
				|  |  | +    Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
 | 
	
		
			
				|  |  | +    // Avoid convergence problems
 | 
	
		
			
				|  |  | +    if (Rho < 1e-3) {
 | 
	
		
			
				|  |  | +      Rho = 1e-3;
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  | +    //If Xp=Yp=0 Phi is undefined. Just set it to zero
 | 
	
		
			
				|  |  | +    if ((Xp[c] == 0.0) and (Yp[c] == 0.0)) {
 | 
	
		
			
				|  |  | +      Phi = 0.0;
 | 
	
		
			
				|  |  | +    } else {
 | 
	
		
			
				|  |  | +      Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    Theta = acos(Xp[c]/Rho);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
 | 
	
		
			
				|  |  | -    // basis unit vectors = er, etheta, ephi
 | 
	
		
			
				|  |  | -    std::complex<double> eifac = std::exp(std::complex<double>(0.0, 1.0)*Rho*std::cos(Theta));
 | 
	
		
			
				|  |  | +    calcPiTau(nmax, Theta, Pi, Tau);
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    Ei[0] = eifac*std::sin(Theta)*std::cos(Phi);
 | 
	
		
			
				|  |  | -    Ei[1] = eifac*std::cos(Theta)*std::cos(Phi);
 | 
	
		
			
				|  |  | -    Ei[2] = -(eifac*std::sin(Phi));
 | 
	
		
			
				|  |  | +    //*******************************************************//
 | 
	
		
			
				|  |  | +    // external scattering field = incident + scattered      //
 | 
	
		
			
				|  |  | +    // BH p.92 (4.37), 94 (4.45), 95 (4.50)                  //
 | 
	
		
			
				|  |  | +    // assume: medium is non-absorbing; refim = 0; Uabs = 0  //
 | 
	
		
			
				|  |  | +    //*******************************************************//
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    // magnetic field
 | 
	
		
			
				|  |  | -    double hffact = 1.0/(cc*mu);
 | 
	
		
			
				|  |  | -    for (int i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | -      Hs[i] = hffact*Hs[i];
 | 
	
		
			
				|  |  | +    // Firstly the easiest case: the field outside the particle
 | 
	
		
			
				|  |  | +    if (Rho >= x[L - 1]) {
 | 
	
		
			
				|  |  | +      fieldExt(nmax, Rho, Phi, Theta, Pi, Tau, an, bn, Es, Hs);
 | 
	
		
			
				|  |  | +    } else {
 | 
	
		
			
				|  |  | +      // TODO, for now just set all the fields to zero
 | 
	
		
			
				|  |  | +      for (i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | +        Es[i] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | +        Hs[i] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    // incident H field: BH p.26 (2.43), p.89 (4.21)
 | 
	
		
			
				|  |  | -    std::complex<double> hffacta = hffact;
 | 
	
		
			
				|  |  | -    std::complex<double> hifac = eifac*hffacta;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    Hi[0] = hifac*std::sin(Theta)*std::sin(Phi);
 | 
	
		
			
				|  |  | -    Hi[1] = hifac*std::cos(Theta)*std::sin(Phi);
 | 
	
		
			
				|  |  | -    Hi[2] = hifac*std::cos(Phi);
 | 
	
		
			
				|  |  | +    //Now, convert the fields back to cartesian coordinates
 | 
	
		
			
				|  |  | +    E[c][0] = std::sin(Theta)*std::cos(Phi)*Es[0] + std::cos(Theta)*std::cos(Phi)*Es[1] - std::sin(Phi)*Es[2];
 | 
	
		
			
				|  |  | +    E[c][1] = std::sin(Theta)*std::sin(Phi)*Es[0] + std::cos(Theta)*std::sin(Phi)*Es[1] + std::cos(Phi)*Es[2];
 | 
	
		
			
				|  |  | +    E[c][2] = std::cos(Theta)*Es[0] - std::sin(Theta)*Es[1];
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -    for (int i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | -      // electric field E [V m-1] = EF*E0
 | 
	
		
			
				|  |  | -      E[i] = Ei[i] + Es[i];
 | 
	
		
			
				|  |  | -      H[i] = Hi[i] + Hs[i];
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | +    H[c][0] = std::sin(Theta)*std::cos(Phi)*Hs[0] + std::cos(Theta)*std::cos(Phi)*Hs[1] - std::sin(Phi)*Hs[2];
 | 
	
		
			
				|  |  | +    H[c][1] = std::sin(Theta)*std::sin(Phi)*Hs[0] + std::cos(Theta)*std::sin(Phi)*Hs[1] + std::cos(Phi)*Hs[2];
 | 
	
		
			
				|  |  | +    H[c][2] = std::cos(Theta)*Hs[0] - std::sin(Theta)*Hs[1];
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -  // ********************************************************************** //
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -  // This function calculates complex electric and magnetic field in the surroundings //
 | 
	
		
			
				|  |  | -  // and inside (TODO) the particle.                                                  //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Input parameters:                                                                //
 | 
	
		
			
				|  |  | -  //   L: Number of layers                                                            //
 | 
	
		
			
				|  |  | -  //   pl: Index of PEC layer. If there is none just send 0 (zero)                    //
 | 
	
		
			
				|  |  | -  //   x: Array containing the size parameters of the layers [0..L-1]                 //
 | 
	
		
			
				|  |  | -  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
 | 
	
		
			
				|  |  | -  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
 | 
	
		
			
				|  |  | -  //         calculations. Only use it if you know what you are doing, otherwise      //
 | 
	
		
			
				|  |  | -  //         set this parameter to 0 (zero) and the function will calculate it.       //
 | 
	
		
			
				|  |  | -  //   ncoord: Number of coordinate points                                            //
 | 
	
		
			
				|  |  | -  //   Coords: Array containing all coordinates where the complex electric and        //
 | 
	
		
			
				|  |  | -  //           magnetic fields will be calculated                                     //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Output parameters:                                                               //
 | 
	
		
			
				|  |  | -  //   E, H: Complex electric and magnetic field at the provided coordinates          //
 | 
	
		
			
				|  |  | -  //                                                                                  //
 | 
	
		
			
				|  |  | -  // Return value:                                                                    //
 | 
	
		
			
				|  |  | -  //   Number of multipolar expansion terms used for the calculations                 //
 | 
	
		
			
				|  |  | -  //**********************************************************************************//
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  //   int MultiLayerMie::nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
 | 
	
		
			
				|  |  | -  //            int ncoord, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp,
 | 
	
		
			
				|  |  | -  // 		   std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  //   double Rho, Phi, Theta;
 | 
	
		
			
				|  |  | -  //   std::vector<std::complex<double> > an, bn;
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  //   // This array contains the fields in spherical coordinates
 | 
	
		
			
				|  |  | -  //   std::vector<std::complex<double> > Es, Hs;
 | 
	
		
			
				|  |  | -  //   Es.resize(3);
 | 
	
		
			
				|  |  | -  //   Hs.resize(3);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  //   // Calculate scattering coefficients
 | 
	
		
			
				|  |  | -  //   ScattCoeffs(L, pl, an, bn);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  //   std::vector<double> Pi, Tau;
 | 
	
		
			
				|  |  | -  //   Pi.resize(nmax_);
 | 
	
		
			
				|  |  | -  //   Tau.resize(nmax_);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  //   for (int c = 0; c < ncoord; c++) {
 | 
	
		
			
				|  |  | -  //     // Convert to spherical coordinates
 | 
	
		
			
				|  |  | -  //     Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
 | 
	
		
			
				|  |  | -  //     if (Rho < 1e-3) {
 | 
	
		
			
				|  |  | -  //       // Avoid convergence problems
 | 
	
		
			
				|  |  | -  //       Rho = 1e-3;
 | 
	
		
			
				|  |  | -  //     }
 | 
	
		
			
				|  |  | -  //     Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
 | 
	
		
			
				|  |  | -  //     Theta = acos(Xp[c]/Rho);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  //     calcPiTau(Theta, Pi, Tau);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  //     //*******************************************************//
 | 
	
		
			
				|  |  | -  //     // external scattering field = incident + scattered      //
 | 
	
		
			
				|  |  | -  //     // BH p.92 (4.37), 94 (4.45), 95 (4.50)                  //
 | 
	
		
			
				|  |  | -  //     // assume: medium is non-absorbing; refim = 0; Uabs = 0  //
 | 
	
		
			
				|  |  | -  //     //*******************************************************//
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  //     // Firstly the easiest case: the field outside the particle
 | 
	
		
			
				|  |  | -  //     if (Rho >= x[L - 1]) {
 | 
	
		
			
				|  |  | -  //       fieldExt(Rho, Phi, Theta, Pi, Tau, an, bn, Es, Hs);
 | 
	
		
			
				|  |  | -  //     } else {
 | 
	
		
			
				|  |  | -  //       // TODO, for now just set all the fields to zero
 | 
	
		
			
				|  |  | -  //       for (int i = 0; i < 3; i++) {
 | 
	
		
			
				|  |  | -  //         Es[i] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -  //         Hs[i] = std::complex<double>(0.0, 0.0);
 | 
	
		
			
				|  |  | -  //       }
 | 
	
		
			
				|  |  | -  //     }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  //     //Now, convert the fields back to cartesian coordinates
 | 
	
		
			
				|  |  | -  //     E[c][0] = std::sin(Theta)*std::cos(Phi)*Es[0] + std::cos(Theta)*std::cos(Phi)*Es[1] - std::sin(Phi)*Es[2];
 | 
	
		
			
				|  |  | -  //     E[c][1] = std::sin(Theta)*std::sin(Phi)*Es[0] + std::cos(Theta)*std::sin(Phi)*Es[1] + std::cos(Phi)*Es[2];
 | 
	
		
			
				|  |  | -  //     E[c][2] = std::cos(Theta)*Es[0] - std::sin(Theta)*Es[1];
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  //     H[c][0] = std::sin(Theta)*std::cos(Phi)*Hs[0] + std::cos(Theta)*std::cos(Phi)*Hs[1] - std::sin(Phi)*Hs[2];
 | 
	
		
			
				|  |  | -  //     H[c][1] = std::sin(Theta)*std::sin(Phi)*Hs[0] + std::cos(Theta)*std::sin(Phi)*Hs[1] + std::cos(Phi)*Hs[2];
 | 
	
		
			
				|  |  | -  //     H[c][2] = std::cos(Theta)*Hs[0] - std::sin(Theta)*Hs[1];
 | 
	
		
			
				|  |  | -  //   }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -  //   return nmax;
 | 
	
		
			
				|  |  | -  // }  // end of int nField()
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -}  // end of namespace nmie
 | 
	
		
			
				|  |  | +  return nmax;
 | 
	
		
			
				|  |  | +}
 |