|  | @@ -0,0 +1,136 @@
 | 
	
		
			
				|  |  | +#!/usr/bin/env python
 | 
	
		
			
				|  |  | +# -*- coding: UTF-8 -*-
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +#    Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +#    This file is part of python-scattnlay
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +#    This program is free software: you can redistribute it and/or modify
 | 
	
		
			
				|  |  | +#    it under the terms of the GNU General Public License as published by
 | 
	
		
			
				|  |  | +#    the Free Software Foundation, either version 3 of the License, or
 | 
	
		
			
				|  |  | +#    (at your option) any later version.
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +#    This program is distributed in the hope that it will be useful,
 | 
	
		
			
				|  |  | +#    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
	
		
			
				|  |  | +#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
	
		
			
				|  |  | +#    GNU General Public License for more details.
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +#    The only additional remark is that we expect that all publications
 | 
	
		
			
				|  |  | +#    describing work using this software, or all commercial products
 | 
	
		
			
				|  |  | +#    using it, cite the following reference:
 | 
	
		
			
				|  |  | +#    [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
 | 
	
		
			
				|  |  | +#        a multilayered sphere," Computer Physics Communications,
 | 
	
		
			
				|  |  | +#        vol. 180, Nov. 2009, pp. 2348-2354.
 | 
	
		
			
				|  |  | +#
 | 
	
		
			
				|  |  | +#    You should have received a copy of the GNU General Public License
 | 
	
		
			
				|  |  | +#    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +# This test case calculates the the electric field in the
 | 
	
		
			
				|  |  | +# XY plane, for a Luneburg lens, as described in:
 | 
	
		
			
				|  |  | +# B. R. Johnson, Applied Optics 35 (1996) 3286-3296.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +# The Luneburg lens is a sphere of radius a, with a
 | 
	
		
			
				|  |  | +# radially-varying index of refraction, given by:
 | 
	
		
			
				|  |  | +# m(r) = [2 - (r/a)**1]**(1/2)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +# For the calculations, the Luneburg lens was approximated
 | 
	
		
			
				|  |  | +# as a multilayered sphere with 500 equally spaced layers.
 | 
	
		
			
				|  |  | +# The refractive index of each layer is defined to be equal to
 | 
	
		
			
				|  |  | +# m(r) at the midpoint of the layer: ml = [2 - (xm/xL)**1]**(1/2),
 | 
	
		
			
				|  |  | +# with xm = (xl-1 + xl)/2, for l = 1,2,...,L. The size
 | 
	
		
			
				|  |  | +# parameter in the lth layer is xl = l*xL/500.
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +from scattnlay import fieldnlay
 | 
	
		
			
				|  |  | +import numpy as np
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +nL = 500.0
 | 
	
		
			
				|  |  | +Xmax = 60.0
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +x = np.ones((1, nL), dtype = np.float64)
 | 
	
		
			
				|  |  | +x[0] = np.arange(1.0, nL + 1.0)*Xmax/nL
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +m = np.ones((1, nL), dtype = np.complex128)
 | 
	
		
			
				|  |  | +m[0] = np.sqrt((2.0 - ((x[0] - 0.5*Xmax/nL)/60.0)**2.0)) + 0.0j
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +print "x =", x
 | 
	
		
			
				|  |  | +print "m =", m
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +npts = 501
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +scan = np.linspace(-10.0*x[0, -1], 10.0*x[0, -1], npts)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +coordX, coordY = np.meshgrid(scan, scan)
 | 
	
		
			
				|  |  | +coordX.resize(npts*npts)
 | 
	
		
			
				|  |  | +coordY.resize(npts*npts)
 | 
	
		
			
				|  |  | +coordZ = np.zeros(npts*npts, dtype = np.float64)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +coord = np.vstack((coordX, coordY, coordZ)).transpose()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +terms, E, H = fieldnlay(x, m, coord)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +Er = np.absolute(E)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +# |E|/|Eo|
 | 
	
		
			
				|  |  | +Eh = np.sqrt(Er[0, :, 0]**2 + Er[0, :, 1]**2 + Er[0, :, 2]**2)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +result = np.vstack((coordX, coordY, coordZ, Eh)).transpose()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +try:
 | 
	
		
			
				|  |  | +    import matplotlib.pyplot as plt
 | 
	
		
			
				|  |  | +    from matplotlib import cm
 | 
	
		
			
				|  |  | +    from matplotlib.colors import LogNorm
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    min_tick = 0.1
 | 
	
		
			
				|  |  | +    max_tick = 1.0
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    edata = np.resize(Eh, (npts, npts))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    fig = plt.figure()
 | 
	
		
			
				|  |  | +    ax = fig.add_subplot(111)
 | 
	
		
			
				|  |  | +    # Rescale to better show the axes
 | 
	
		
			
				|  |  | +    scale_x = np.linspace(min(coordX), max(coordX), npts)
 | 
	
		
			
				|  |  | +    scale_y = np.linspace(min(coordY), max(coordY), npts)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # Define scale ticks
 | 
	
		
			
				|  |  | +    min_tick = min(min_tick, np.amin(edata))
 | 
	
		
			
				|  |  | +    max_tick = max(max_tick, np.amax(edata))
 | 
	
		
			
				|  |  | +    scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6))
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
 | 
	
		
			
				|  |  | +    cax = ax.imshow(edata, interpolation = 'nearest', cmap = cm.afmhot,
 | 
	
		
			
				|  |  | +                    origin = 'lower', vmin = min_tick, vmax = max_tick,
 | 
	
		
			
				|  |  | +                    extent = (min(scale_x), max(scale_x), min(scale_y), max(scale_y)),
 | 
	
		
			
				|  |  | +                    norm = LogNorm())
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # Add colorbar
 | 
	
		
			
				|  |  | +    cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
 | 
	
		
			
				|  |  | +    cbar.ax.set_yticklabels(['%3.1e' % (a) for a in scale_ticks]) # vertically oriented colorbar
 | 
	
		
			
				|  |  | +    pos = list(cbar.ax.get_position().bounds)
 | 
	
		
			
				|  |  | +    fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    plt.xlabel('X')
 | 
	
		
			
				|  |  | +    plt.ylabel('Y')
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    # This part draws the nanoshell
 | 
	
		
			
				|  |  | +#    from matplotlib import patches
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#    s1 = patches.Arc((0, 0), 2.0*x[0, 0], 2.0*x[0, 0], angle=0.0, zorder=2,
 | 
	
		
			
				|  |  | +#                      theta1=0.0, theta2=360.0, linewidth=1, color='#00fa9a')
 | 
	
		
			
				|  |  | +#    ax.add_patch(s1)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +#    s2 = patches.Arc((0, 0), 2.0*x[0, 1], 2.0*x[0, 1], angle=0.0, zorder=2,
 | 
	
		
			
				|  |  | +#                      theta1=0.0, theta2=360.0, linewidth=1, color='#00fa9a')
 | 
	
		
			
				|  |  | +#    ax.add_patch(s2)
 | 
	
		
			
				|  |  | +    # End of drawing
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    plt.draw()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    plt.show()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    plt.clf()
 | 
	
		
			
				|  |  | +    plt.close()
 | 
	
		
			
				|  |  | +finally:
 | 
	
		
			
				|  |  | +    np.savetxt("test04_field.txt", result, fmt = "%.5f")
 | 
	
		
			
				|  |  | +    print result
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 |