|
@@ -0,0 +1,136 @@
|
|
|
+#!/usr/bin/env python
|
|
|
+# -*- coding: UTF-8 -*-
|
|
|
+#
|
|
|
+# Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
|
|
|
+#
|
|
|
+# This file is part of python-scattnlay
|
|
|
+#
|
|
|
+# This program is free software: you can redistribute it and/or modify
|
|
|
+# it under the terms of the GNU General Public License as published by
|
|
|
+# the Free Software Foundation, either version 3 of the License, or
|
|
|
+# (at your option) any later version.
|
|
|
+#
|
|
|
+# This program is distributed in the hope that it will be useful,
|
|
|
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
+# GNU General Public License for more details.
|
|
|
+#
|
|
|
+# The only additional remark is that we expect that all publications
|
|
|
+# describing work using this software, or all commercial products
|
|
|
+# using it, cite the following reference:
|
|
|
+# [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
|
|
|
+# a multilayered sphere," Computer Physics Communications,
|
|
|
+# vol. 180, Nov. 2009, pp. 2348-2354.
|
|
|
+#
|
|
|
+# You should have received a copy of the GNU General Public License
|
|
|
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
+
|
|
|
+# This test case calculates the the electric field in the
|
|
|
+# XY plane, for a Luneburg lens, as described in:
|
|
|
+# B. R. Johnson, Applied Optics 35 (1996) 3286-3296.
|
|
|
+
|
|
|
+# The Luneburg lens is a sphere of radius a, with a
|
|
|
+# radially-varying index of refraction, given by:
|
|
|
+# m(r) = [2 - (r/a)**1]**(1/2)
|
|
|
+
|
|
|
+# For the calculations, the Luneburg lens was approximated
|
|
|
+# as a multilayered sphere with 500 equally spaced layers.
|
|
|
+# The refractive index of each layer is defined to be equal to
|
|
|
+# m(r) at the midpoint of the layer: ml = [2 - (xm/xL)**1]**(1/2),
|
|
|
+# with xm = (xl-1 + xl)/2, for l = 1,2,...,L. The size
|
|
|
+# parameter in the lth layer is xl = l*xL/500.
|
|
|
+
|
|
|
+from scattnlay import fieldnlay
|
|
|
+import numpy as np
|
|
|
+
|
|
|
+nL = 500.0
|
|
|
+Xmax = 60.0
|
|
|
+
|
|
|
+x = np.ones((1, nL), dtype = np.float64)
|
|
|
+x[0] = np.arange(1.0, nL + 1.0)*Xmax/nL
|
|
|
+
|
|
|
+m = np.ones((1, nL), dtype = np.complex128)
|
|
|
+m[0] = np.sqrt((2.0 - ((x[0] - 0.5*Xmax/nL)/60.0)**2.0)) + 0.0j
|
|
|
+
|
|
|
+print "x =", x
|
|
|
+print "m =", m
|
|
|
+
|
|
|
+npts = 501
|
|
|
+
|
|
|
+scan = np.linspace(-10.0*x[0, -1], 10.0*x[0, -1], npts)
|
|
|
+
|
|
|
+coordX, coordY = np.meshgrid(scan, scan)
|
|
|
+coordX.resize(npts*npts)
|
|
|
+coordY.resize(npts*npts)
|
|
|
+coordZ = np.zeros(npts*npts, dtype = np.float64)
|
|
|
+
|
|
|
+coord = np.vstack((coordX, coordY, coordZ)).transpose()
|
|
|
+
|
|
|
+terms, E, H = fieldnlay(x, m, coord)
|
|
|
+
|
|
|
+Er = np.absolute(E)
|
|
|
+
|
|
|
+# |E|/|Eo|
|
|
|
+Eh = np.sqrt(Er[0, :, 0]**2 + Er[0, :, 1]**2 + Er[0, :, 2]**2)
|
|
|
+
|
|
|
+result = np.vstack((coordX, coordY, coordZ, Eh)).transpose()
|
|
|
+
|
|
|
+try:
|
|
|
+ import matplotlib.pyplot as plt
|
|
|
+ from matplotlib import cm
|
|
|
+ from matplotlib.colors import LogNorm
|
|
|
+
|
|
|
+ min_tick = 0.1
|
|
|
+ max_tick = 1.0
|
|
|
+
|
|
|
+ edata = np.resize(Eh, (npts, npts))
|
|
|
+
|
|
|
+ fig = plt.figure()
|
|
|
+ ax = fig.add_subplot(111)
|
|
|
+ # Rescale to better show the axes
|
|
|
+ scale_x = np.linspace(min(coordX), max(coordX), npts)
|
|
|
+ scale_y = np.linspace(min(coordY), max(coordY), npts)
|
|
|
+
|
|
|
+ # Define scale ticks
|
|
|
+ min_tick = min(min_tick, np.amin(edata))
|
|
|
+ max_tick = max(max_tick, np.amax(edata))
|
|
|
+ scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6))
|
|
|
+
|
|
|
+ # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
|
|
|
+ cax = ax.imshow(edata, interpolation = 'nearest', cmap = cm.afmhot,
|
|
|
+ origin = 'lower', vmin = min_tick, vmax = max_tick,
|
|
|
+ extent = (min(scale_x), max(scale_x), min(scale_y), max(scale_y)),
|
|
|
+ norm = LogNorm())
|
|
|
+
|
|
|
+ # Add colorbar
|
|
|
+ cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
|
|
|
+ cbar.ax.set_yticklabels(['%3.1e' % (a) for a in scale_ticks]) # vertically oriented colorbar
|
|
|
+ pos = list(cbar.ax.get_position().bounds)
|
|
|
+ fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
|
|
|
+
|
|
|
+ plt.xlabel('X')
|
|
|
+ plt.ylabel('Y')
|
|
|
+
|
|
|
+ # This part draws the nanoshell
|
|
|
+# from matplotlib import patches
|
|
|
+
|
|
|
+# s1 = patches.Arc((0, 0), 2.0*x[0, 0], 2.0*x[0, 0], angle=0.0, zorder=2,
|
|
|
+# theta1=0.0, theta2=360.0, linewidth=1, color='#00fa9a')
|
|
|
+# ax.add_patch(s1)
|
|
|
+
|
|
|
+# s2 = patches.Arc((0, 0), 2.0*x[0, 1], 2.0*x[0, 1], angle=0.0, zorder=2,
|
|
|
+# theta1=0.0, theta2=360.0, linewidth=1, color='#00fa9a')
|
|
|
+# ax.add_patch(s2)
|
|
|
+ # End of drawing
|
|
|
+
|
|
|
+ plt.draw()
|
|
|
+
|
|
|
+ plt.show()
|
|
|
+
|
|
|
+ plt.clf()
|
|
|
+ plt.close()
|
|
|
+finally:
|
|
|
+ np.savetxt("test04_field.txt", result, fmt = "%.5f")
|
|
|
+ print result
|
|
|
+
|
|
|
+
|