|
@@ -47,23 +47,29 @@ namespace nmie {
|
|
|
throw std::invalid_argument("Declared number of layers do not fit x and m!");
|
|
|
if (Theta.size() != nTheta)
|
|
|
throw std::invalid_argument("Declared number of sample for Theta is not correct!");
|
|
|
-
|
|
|
- MultiLayerMie multi_layer_mie;
|
|
|
- multi_layer_mie.SetWidthSP(x);
|
|
|
- multi_layer_mie.SetIndexSP(m);
|
|
|
- multi_layer_mie.SetAngles(Theta);
|
|
|
+ try {
|
|
|
+ MultiLayerMie multi_layer_mie;
|
|
|
+ multi_layer_mie.SetWidthSP(x);
|
|
|
+ multi_layer_mie.SetIndexSP(m);
|
|
|
+ multi_layer_mie.SetAngles(Theta);
|
|
|
|
|
|
- multi_layer_mie.RunMieCalculations();
|
|
|
-
|
|
|
- *Qext = multi_layer_mie.GetQext();
|
|
|
- *Qsca = multi_layer_mie.GetQsca();
|
|
|
- *Qabs = multi_layer_mie.GetQabs();
|
|
|
- *Qbk = multi_layer_mie.GetQbk();
|
|
|
- *Qpr = multi_layer_mie.GetQpr();
|
|
|
- *g = multi_layer_mie.GetAsymmetryFactor();
|
|
|
- *Albedo = multi_layer_mie.GetAlbedo();
|
|
|
- S1 = multi_layer_mie.GetS1();
|
|
|
- S2 = multi_layer_mie.GetS2();
|
|
|
+ multi_layer_mie.RunMieCalculations();
|
|
|
+
|
|
|
+ *Qext = multi_layer_mie.GetQext();
|
|
|
+ *Qsca = multi_layer_mie.GetQsca();
|
|
|
+ *Qabs = multi_layer_mie.GetQabs();
|
|
|
+ *Qbk = multi_layer_mie.GetQbk();
|
|
|
+ *Qpr = multi_layer_mie.GetQpr();
|
|
|
+ *g = multi_layer_mie.GetAsymmetryFactor();
|
|
|
+ *Albedo = multi_layer_mie.GetAlbedo();
|
|
|
+ S1 = multi_layer_mie.GetS1();
|
|
|
+ S2 = multi_layer_mie.GetS2();
|
|
|
+ } catch( const std::invalid_argument& ia ) {
|
|
|
+ // Will catch if multi_layer_mie fails or other errors.
|
|
|
+ std::cerr << "Invalid argument: " << ia.what() << std::endl;
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+
|
|
|
return 0;
|
|
|
}
|
|
|
// ********************************************************************** //
|
|
@@ -233,200 +239,188 @@ namespace nmie {
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
|
-///MultiLayerMie::
|
|
|
-#define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
|
|
|
-
|
|
|
-const double PI=3.14159265358979323846;
|
|
|
-// light speed [m s-1]
|
|
|
-double const cc = 2.99792458e8;
|
|
|
-// assume non-magnetic (MU=MU0=const) [N A-2]
|
|
|
-double const mu = 4.0*PI*1.0e-7;
|
|
|
-
|
|
|
-// Calculate Nstop - equation (17)
|
|
|
-int MultiLayerMie::Nstop(double xL) {
|
|
|
- int result;
|
|
|
-
|
|
|
- if (xL <= 8) {
|
|
|
- result = round(xL + 4*pow(xL, 1/3) + 1);
|
|
|
- } else if (xL <= 4200) {
|
|
|
- result = round(xL + 4.05*pow(xL, 1/3) + 2);
|
|
|
- } else {
|
|
|
- result = round(xL + 4*pow(xL, 1/3) + 2);
|
|
|
- }
|
|
|
-
|
|
|
- return result;
|
|
|
-}
|
|
|
-
|
|
|
-//**********************************************************************************//
|
|
|
-int MultiLayerMie::Nmax(int L, int fl) {
|
|
|
- int i, result, ri, riM1;
|
|
|
- const std::vector<double>& x = size_parameter_;
|
|
|
- const std::vector<std::complex<double> >& m = index_;
|
|
|
- const int& pl = PEC_layer_position_;
|
|
|
-
|
|
|
- result = Nstop(x[L - 1]);
|
|
|
- for (i = fl; i < L; i++) {
|
|
|
- if (i > pl) {
|
|
|
- ri = round(std::abs(x[i]*m[i]));
|
|
|
+ // Calculate Nstop - equation (17)
|
|
|
+ int MultiLayerMie::Nstop(double xL) {
|
|
|
+ int result;
|
|
|
+
|
|
|
+ if (xL <= 8) {
|
|
|
+ result = round(xL + 4*pow(xL, 1/3) + 1);
|
|
|
+ } else if (xL <= 4200) {
|
|
|
+ result = round(xL + 4.05*pow(xL, 1/3) + 2);
|
|
|
} else {
|
|
|
- ri = 0;
|
|
|
- }
|
|
|
- if (result < ri) {
|
|
|
- result = ri;
|
|
|
+ result = round(xL + 4*pow(xL, 1/3) + 2);
|
|
|
}
|
|
|
+
|
|
|
+ return result;
|
|
|
+ }
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ int MultiLayerMie::Nmax(int L, int fl) {
|
|
|
+ int i, result, ri, riM1;
|
|
|
+ const std::vector<double>& x = size_parameter_;
|
|
|
+ const std::vector<std::complex<double> >& m = index_;
|
|
|
+ const int& pl = PEC_layer_position_;
|
|
|
+
|
|
|
+ result = Nstop(x[L - 1]);
|
|
|
+ for (i = fl; i < L; i++) {
|
|
|
+ if (i > pl) {
|
|
|
+ ri = round(std::abs(x[i]*m[i]));
|
|
|
+ } else {
|
|
|
+ ri = 0;
|
|
|
+ }
|
|
|
+ if (result < ri) {
|
|
|
+ result = ri;
|
|
|
+ }
|
|
|
|
|
|
- if ((i > fl) && ((i - 1) > pl)) {
|
|
|
- riM1 = round(std::abs(x[i - 1]* m[i]));
|
|
|
- // TODO Ovidio, should we check?
|
|
|
- // riM2 = round(std::abs(x[i]* m[i-1]))
|
|
|
- } else {
|
|
|
- riM1 = 0;
|
|
|
- }
|
|
|
- if (result < riM1) {
|
|
|
- result = riM1;
|
|
|
+ if ((i > fl) && ((i - 1) > pl)) {
|
|
|
+ riM1 = round(std::abs(x[i - 1]* m[i]));
|
|
|
+ // TODO Ovidio, should we check?
|
|
|
+ // riM2 = round(std::abs(x[i]* m[i-1]))
|
|
|
+ } else {
|
|
|
+ riM1 = 0;
|
|
|
+ }
|
|
|
+ if (result < riM1) {
|
|
|
+ result = riM1;
|
|
|
+ }
|
|
|
}
|
|
|
- }
|
|
|
- return result + 15;
|
|
|
-}
|
|
|
-
|
|
|
-//**********************************************************************************//
|
|
|
-// This function calculates the spherical Bessel (jn) and Hankel (h1n) functions //
|
|
|
-// and their derivatives for a given complex value z. See pag. 87 B&H. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// z: Real argument to evaluate jn and h1n //
|
|
|
-// nmax_: Maximum number of terms to calculate jn and h1n //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// jn, h1n: Spherical Bessel and Hankel functions //
|
|
|
-// jnp, h1np: Derivatives of the spherical Bessel and Hankel functions //
|
|
|
-// //
|
|
|
-// The implementation follows the algorithm by I.J. Thompson and A.R. Barnett, //
|
|
|
-// Comp. Phys. Comm. 47 (1987) 245-257. //
|
|
|
-// //
|
|
|
-// Complex spherical Bessel functions from n=0..nmax_-1 for z in the upper half //
|
|
|
-// plane (Im(z) > -3). //
|
|
|
-// //
|
|
|
-// j[n] = j/n(z) Regular solution: j[0]=sin(z)/z //
|
|
|
-// j'[n] = d[j/n(z)]/dz //
|
|
|
-// h1[n] = h[0]/n(z) Irregular Hankel function: //
|
|
|
-// h1'[n] = d[h[0]/n(z)]/dz h1[0] = j0(z) + i*y0(z) //
|
|
|
-// = (sin(z)-i*cos(z))/z //
|
|
|
-// = -i*exp(i*z)/z //
|
|
|
-// Using complex CF1, and trigonometric forms for n=0 solutions. //
|
|
|
-//**********************************************************************************//
|
|
|
-int MultiLayerMie::sbesjh(std::complex<double> z, std::vector<std::complex<double> >& jn, std::vector<std::complex<double> >& jnp, std::vector<std::complex<double> >& h1n, std::vector<std::complex<double> >& h1np) {
|
|
|
-
|
|
|
- const int limit = 20000;
|
|
|
- double const accur = 1.0e-12;
|
|
|
- double const tm30 = 1e-30;
|
|
|
-
|
|
|
- int n;
|
|
|
- double absc;
|
|
|
- std::complex<double> zi, w;
|
|
|
- std::complex<double> pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb;
|
|
|
-
|
|
|
- absc = std::abs(std::real(z)) + std::abs(std::imag(z));
|
|
|
- if ((absc < accur) || (std::imag(z) < -3.0)) {
|
|
|
- return -1;
|
|
|
+ return result + 15;
|
|
|
}
|
|
|
|
|
|
- zi = 1.0/z;
|
|
|
- w = zi + zi;
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function calculates the spherical Bessel (jn) and Hankel (h1n) functions //
|
|
|
+ // and their derivatives for a given complex value z. See pag. 87 B&H. //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // z: Real argument to evaluate jn and h1n //
|
|
|
+ // nmax_: Maximum number of terms to calculate jn and h1n //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // jn, h1n: Spherical Bessel and Hankel functions //
|
|
|
+ // jnp, h1np: Derivatives of the spherical Bessel and Hankel functions //
|
|
|
+ // //
|
|
|
+ // The implementation follows the algorithm by I.J. Thompson and A.R. Barnett, //
|
|
|
+ // Comp. Phys. Comm. 47 (1987) 245-257. //
|
|
|
+ // //
|
|
|
+ // Complex spherical Bessel functions from n=0..nmax_-1 for z in the upper half //
|
|
|
+ // plane (Im(z) > -3). //
|
|
|
+ // //
|
|
|
+ // j[n] = j/n(z) Regular solution: j[0]=sin(z)/z //
|
|
|
+ // j'[n] = d[j/n(z)]/dz //
|
|
|
+ // h1[n] = h[0]/n(z) Irregular Hankel function: //
|
|
|
+ // h1'[n] = d[h[0]/n(z)]/dz h1[0] = j0(z) + i*y0(z) //
|
|
|
+ // = (sin(z)-i*cos(z))/z //
|
|
|
+ // = -i*exp(i*z)/z //
|
|
|
+ // Using complex CF1, and trigonometric forms for n=0 solutions. //
|
|
|
+ //**********************************************************************************//
|
|
|
+ void MultiLayerMie::sbesjh(std::complex<double> z, std::vector<std::complex<double> >& jn, std::vector<std::complex<double> >& jnp, std::vector<std::complex<double> >& h1n, std::vector<std::complex<double> >& h1np) {
|
|
|
+
|
|
|
+ const int limit = 20000;
|
|
|
+ const double accur = 1.0e-12;
|
|
|
+ const double tm30 = 1e-30;
|
|
|
+
|
|
|
+ int n;
|
|
|
+ double absc;
|
|
|
+ std::complex<double> zi, w;
|
|
|
+ std::complex<double> pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb;
|
|
|
+
|
|
|
+ absc = std::abs(std::real(z)) + std::abs(std::imag(z));
|
|
|
+ if ((absc < accur) || (std::imag(z) < -3.0)) {
|
|
|
+ throw std::invalid_argument("TODO add error description for condition if ((absc < accur) || (std::imag(z) < -3.0))");
|
|
|
+ }
|
|
|
|
|
|
- pl = double(nmax_)*zi;
|
|
|
+ zi = 1.0/z;
|
|
|
+ w = zi + zi;
|
|
|
|
|
|
- f = pl + zi;
|
|
|
- b = f + f + zi;
|
|
|
- d = 0.0;
|
|
|
- c = f;
|
|
|
- for (n = 0; n < limit; n++) {
|
|
|
- d = b - d;
|
|
|
- c = b - 1.0/c;
|
|
|
+ pl = double(nmax_)*zi;
|
|
|
|
|
|
- absc = std::abs(std::real(d)) + std::abs(std::imag(d));
|
|
|
- if (absc < tm30) {
|
|
|
- d = tm30;
|
|
|
- }
|
|
|
+ f = pl + zi;
|
|
|
+ b = f + f + zi;
|
|
|
+ d = 0.0;
|
|
|
+ c = f;
|
|
|
+ for (n = 0; n < limit; n++) {
|
|
|
+ d = b - d;
|
|
|
+ c = b - 1.0/c;
|
|
|
|
|
|
- absc = std::abs(std::real(c)) + std::abs(std::imag(c));
|
|
|
- if (absc < tm30) {
|
|
|
- c = tm30;
|
|
|
- }
|
|
|
+ absc = std::abs(std::real(d)) + std::abs(std::imag(d));
|
|
|
+ if (absc < tm30) {
|
|
|
+ d = tm30;
|
|
|
+ }
|
|
|
+
|
|
|
+ absc = std::abs(std::real(c)) + std::abs(std::imag(c));
|
|
|
+ if (absc < tm30) {
|
|
|
+ c = tm30;
|
|
|
+ }
|
|
|
|
|
|
- d = 1.0/d;
|
|
|
- del = d*c;
|
|
|
- f = f*del;
|
|
|
- b += w;
|
|
|
+ d = 1.0/d;
|
|
|
+ del = d*c;
|
|
|
+ f = f*del;
|
|
|
+ b += w;
|
|
|
|
|
|
- absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
|
|
|
+ absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
|
|
|
|
|
|
- if (absc < accur) {
|
|
|
- // We have obtained the desired accuracy
|
|
|
- break;
|
|
|
+ if (absc < accur) {
|
|
|
+ // We have obtained the desired accuracy
|
|
|
+ break;
|
|
|
+ }
|
|
|
}
|
|
|
- }
|
|
|
|
|
|
- if (absc > accur) {
|
|
|
- // We were not able to obtain the desired accuracy
|
|
|
- return -2;
|
|
|
- }
|
|
|
+ if (absc > accur) {
|
|
|
+ throw std::invalid_argument("We were not able to obtain the desired accuracy");
|
|
|
+ }
|
|
|
|
|
|
- jn[nmax_ - 1] = tm30;
|
|
|
- jnp[nmax_ - 1] = f*jn[nmax_ - 1];
|
|
|
+ jn[nmax_ - 1] = tm30;
|
|
|
+ jnp[nmax_ - 1] = f*jn[nmax_ - 1];
|
|
|
|
|
|
- // Downward recursion to n=0 (N.B. Coulomb Functions)
|
|
|
- for (n = nmax_ - 2; n >= 0; n--) {
|
|
|
- jn[n] = pl*jn[n + 1] + jnp[n + 1];
|
|
|
- jnp[n] = pl*jn[n] - jn[n + 1];
|
|
|
- pl = pl - zi;
|
|
|
- }
|
|
|
+ // Downward recursion to n=0 (N.B. Coulomb Functions)
|
|
|
+ for (n = nmax_ - 2; n >= 0; n--) {
|
|
|
+ jn[n] = pl*jn[n + 1] + jnp[n + 1];
|
|
|
+ jnp[n] = pl*jn[n] - jn[n + 1];
|
|
|
+ pl = pl - zi;
|
|
|
+ }
|
|
|
|
|
|
- // Calculate the n=0 Bessel Functions
|
|
|
- jn0 = zi*std::sin(z);
|
|
|
- h1n[0] = std::exp(std::complex<double>(0.0, 1.0)*z)*zi*(-std::complex<double>(0.0, 1.0));
|
|
|
- h1np[0] = h1n[0]*(std::complex<double>(0.0, 1.0) - zi);
|
|
|
-
|
|
|
- // Rescale j[n], j'[n], converting to spherical Bessel functions.
|
|
|
- // Recur h1[n], h1'[n] as spherical Bessel functions.
|
|
|
- w = 1.0/jn[0];
|
|
|
- pl = zi;
|
|
|
- for (n = 0; n < nmax_; n++) {
|
|
|
- jn[n] = jn0*(w*jn[n]);
|
|
|
- jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
|
|
|
- if (n != 0) {
|
|
|
- h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
|
|
|
-
|
|
|
- // check if hankel is increasing (upward stable)
|
|
|
- if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
|
|
|
- jndb = z;
|
|
|
- h1nldb = h1n[n];
|
|
|
- h1nbdb = h1n[n - 1];
|
|
|
+ // Calculate the n=0 Bessel Functions
|
|
|
+ jn0 = zi*std::sin(z);
|
|
|
+ h1n[0] = std::exp(std::complex<double>(0.0, 1.0)*z)*zi*(-std::complex<double>(0.0, 1.0));
|
|
|
+ h1np[0] = h1n[0]*(std::complex<double>(0.0, 1.0) - zi);
|
|
|
+
|
|
|
+ // Rescale j[n], j'[n], converting to spherical Bessel functions.
|
|
|
+ // Recur h1[n], h1'[n] as spherical Bessel functions.
|
|
|
+ w = 1.0/jn[0];
|
|
|
+ pl = zi;
|
|
|
+ for (n = 0; n < nmax_; n++) {
|
|
|
+ jn[n] = jn0*(w*jn[n]);
|
|
|
+ jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
|
|
|
+ if (n != 0) {
|
|
|
+ h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
|
|
|
+
|
|
|
+ // check if hankel is increasing (upward stable)
|
|
|
+ if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
|
|
|
+ jndb = z;
|
|
|
+ h1nldb = h1n[n];
|
|
|
+ h1nbdb = h1n[n - 1];
|
|
|
+ }
|
|
|
+
|
|
|
+ pl += zi;
|
|
|
+
|
|
|
+ h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
|
|
|
}
|
|
|
-
|
|
|
- pl += zi;
|
|
|
-
|
|
|
- h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- // success
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-//**********************************************************************************//
|
|
|
-// This function calculates the spherical Bessel functions (bj and by) and the //
|
|
|
-// logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// z: Complex argument to evaluate bj, by and bd //
|
|
|
-// nmax_: Maximum number of terms to calculate bj, by and bd //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// bj, by: Spherical Bessel functions //
|
|
|
-// bd: Logarithmic derivative //
|
|
|
-//**********************************************************************************//
|
|
|
-void MultiLayerMie::sphericalBessel(std::complex<double> z, std::vector<std::complex<double> >& bj, std::vector<std::complex<double> >& by, std::vector<std::complex<double> >& bd) {
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function calculates the spherical Bessel functions (bj and by) and the //
|
|
|
+ // logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H. //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // z: Complex argument to evaluate bj, by and bd //
|
|
|
+ // nmax_: Maximum number of terms to calculate bj, by and bd //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // bj, by: Spherical Bessel functions //
|
|
|
+ // bd: Logarithmic derivative //
|
|
|
+ //**********************************************************************************//
|
|
|
+ void MultiLayerMie::sphericalBessel(std::complex<double> z, std::vector<std::complex<double> >& bj, std::vector<std::complex<double> >& by, std::vector<std::complex<double> >& bd) {
|
|
|
|
|
|
std::vector<std::complex<double> > jn, jnp, h1n, h1np;
|
|
|
jn.resize(nmax_);
|
|
@@ -434,663 +428,662 @@ void MultiLayerMie::sphericalBessel(std::complex<double> z, std::vector<std::com
|
|
|
h1n.resize(nmax_);
|
|
|
h1np.resize(nmax_);
|
|
|
|
|
|
- // TODO verify that the function succeeds
|
|
|
- int ifail = sbesjh(z, jn, jnp, h1n, h1np);
|
|
|
+ sbesjh(z, jn, jnp, h1n, h1np);
|
|
|
|
|
|
for (int n = 0; n < nmax_; n++) {
|
|
|
bj[n] = jn[n];
|
|
|
by[n] = (h1n[n] - jn[n])/std::complex<double>(0.0, 1.0);
|
|
|
bd[n] = jnp[n]/jn[n] + 1.0/z;
|
|
|
}
|
|
|
-}
|
|
|
-
|
|
|
-// external scattering field = incident + scattered
|
|
|
-// BH p.92 (4.37), 94 (4.45), 95 (4.50)
|
|
|
-// assume: medium is non-absorbing; refim = 0; Uabs = 0
|
|
|
-void MultiLayerMie::fieldExt(double Rho, double Phi, double Theta, std::vector<double> Pi, std::vector<double> Tau,
|
|
|
- std::vector<std::complex<double> > an, std::vector<std::complex<double> > bn,
|
|
|
- std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
|
|
|
-
|
|
|
- int i, n;
|
|
|
- double rn = 0.0;
|
|
|
- std::complex<double> zn, xxip, encap;
|
|
|
- std::vector<std::complex<double> > vm3o1n, vm3e1n, vn3o1n, vn3e1n;
|
|
|
- vm3o1n.resize(3);
|
|
|
- vm3e1n.resize(3);
|
|
|
- vn3o1n.resize(3);
|
|
|
- vn3e1n.resize(3);
|
|
|
-
|
|
|
- std::vector<std::complex<double> > Ei, Hi, Es, Hs;
|
|
|
- Ei.resize(3);
|
|
|
- Hi.resize(3);
|
|
|
- Es.resize(3);
|
|
|
- Hs.resize(3);
|
|
|
- for (i = 0; i < 3; i++) {
|
|
|
- Ei[i] = std::complex<double>(0.0, 0.0);
|
|
|
- Hi[i] = std::complex<double>(0.0, 0.0);
|
|
|
- Es[i] = std::complex<double>(0.0, 0.0);
|
|
|
- Hs[i] = std::complex<double>(0.0, 0.0);
|
|
|
- }
|
|
|
-
|
|
|
- std::vector<std::complex<double> > bj, by, bd;
|
|
|
- bj.resize(nmax_);
|
|
|
- by.resize(nmax_);
|
|
|
- bd.resize(nmax_);
|
|
|
-
|
|
|
- // Calculate spherical Bessel and Hankel functions
|
|
|
- sphericalBessel(Rho, bj, by, bd);
|
|
|
-
|
|
|
- for (n = 0; n < nmax_; n++) {
|
|
|
- rn = double(n + 1);
|
|
|
-
|
|
|
- zn = bj[n] + std::complex<double>(0.0, 1.0)*by[n];
|
|
|
- xxip = Rho*(bj[n] + std::complex<double>(0.0, 1.0)*by[n]) - rn*zn;
|
|
|
-
|
|
|
- vm3o1n[0] = std::complex<double>(0.0, 0.0);
|
|
|
- vm3o1n[1] = std::cos(Phi)*Pi[n]*zn;
|
|
|
- vm3o1n[2] = -(std::sin(Phi)*Tau[n]*zn);
|
|
|
- vm3e1n[0] = std::complex<double>(0.0, 0.0);
|
|
|
- vm3e1n[1] = -(std::sin(Phi)*Pi[n]*zn);
|
|
|
- vm3e1n[2] = -(std::cos(Phi)*Tau[n]*zn);
|
|
|
- vn3o1n[0] = std::sin(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
|
|
|
- vn3o1n[1] = std::sin(Phi)*Tau[n]*xxip/Rho;
|
|
|
- vn3o1n[2] = std::cos(Phi)*Pi[n]*xxip/Rho;
|
|
|
- vn3e1n[0] = std::cos(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
|
|
|
- vn3e1n[1] = std::cos(Phi)*Tau[n]*xxip/Rho;
|
|
|
- vn3e1n[2] = -(std::sin(Phi)*Pi[n]*xxip/Rho);
|
|
|
-
|
|
|
- // scattered field: BH p.94 (4.45)
|
|
|
- encap = std::pow(std::complex<double>(0.0, 1.0), rn)*(2.0*rn + 1.0)/(rn*(rn + 1.0));
|
|
|
- for (i = 0; i < 3; i++) {
|
|
|
- Es[i] = Es[i] + encap*(std::complex<double>(0.0, 1.0)*an[n]*vn3e1n[i] - bn[n]*vm3o1n[i]);
|
|
|
- Hs[i] = Hs[i] + encap*(std::complex<double>(0.0, 1.0)*bn[n]*vn3o1n[i] + an[n]*vm3e1n[i]);
|
|
|
- }
|
|
|
}
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Calculate an - equation (5)
|
|
|
+ std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
|
|
|
+ std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
+ std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
|
|
|
- // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
|
|
|
- // basis unit vectors = er, etheta, ephi
|
|
|
- std::complex<double> eifac = std::exp(std::complex<double>(0.0, 1.0)*Rho*std::cos(Theta));
|
|
|
-
|
|
|
- Ei[0] = eifac*std::sin(Theta)*std::cos(Phi);
|
|
|
- Ei[1] = eifac*std::cos(Theta)*std::cos(Phi);
|
|
|
- Ei[2] = -(eifac*std::sin(Phi));
|
|
|
+ std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
|
|
|
+ std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
|
|
|
|
|
|
- // magnetic field
|
|
|
- double hffact = 1.0/(cc*mu);
|
|
|
- for (i = 0; i < 3; i++) {
|
|
|
- Hs[i] = hffact*Hs[i];
|
|
|
+ return Num/Denom;
|
|
|
}
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Calculate bn - equation (6)
|
|
|
+ std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
|
|
|
+ std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
+ std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
|
|
|
- // incident H field: BH p.26 (2.43), p.89 (4.21)
|
|
|
- std::complex<double> hffacta = hffact;
|
|
|
- std::complex<double> hifac = eifac*hffacta;
|
|
|
-
|
|
|
- Hi[0] = hifac*std::sin(Theta)*std::sin(Phi);
|
|
|
- Hi[1] = hifac*std::cos(Theta)*std::sin(Phi);
|
|
|
- Hi[2] = hifac*std::cos(Phi);
|
|
|
+ std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
|
|
|
+ std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
|
|
|
|
|
|
- for (i = 0; i < 3; i++) {
|
|
|
- // electric field E [V m-1] = EF*E0
|
|
|
- E[i] = Ei[i] + Es[i];
|
|
|
- H[i] = Hi[i] + Hs[i];
|
|
|
+ return Num/Denom;
|
|
|
}
|
|
|
-}
|
|
|
-
|
|
|
-// Calculate an - equation (5)
|
|
|
-std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
|
|
|
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
-
|
|
|
- std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
|
|
|
- std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
|
|
|
-
|
|
|
- return Num/Denom;
|
|
|
-}
|
|
|
-
|
|
|
-// Calculate bn - equation (6)
|
|
|
-std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
|
|
|
- std::complex<double> PsiXL, std::complex<double> ZetaXL,
|
|
|
- std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
|
|
|
-
|
|
|
- std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
|
|
|
- std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
|
|
|
-
|
|
|
- return Num/Denom;
|
|
|
-}
|
|
|
-
|
|
|
-// Calculates S1 - equation (25a)
|
|
|
-std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,
|
|
|
- double Pi, double Tau) {
|
|
|
-
|
|
|
- return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
|
|
|
-}
|
|
|
-
|
|
|
-// Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
|
|
|
-std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,
|
|
|
- double Pi, double Tau) {
|
|
|
-
|
|
|
- return calc_S1(n, an, bn, Tau, Pi);
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-//**********************************************************************************//
|
|
|
-// This function calculates the Riccati-Bessel functions (Psi and Zeta) for a //
|
|
|
-// real argument (x). //
|
|
|
-// Equations (20a) - (21b) //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// x: Real argument to evaluate Psi and Zeta //
|
|
|
-// nmax: Maximum number of terms to calculate Psi and Zeta //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// Psi, Zeta: Riccati-Bessel functions //
|
|
|
-//**********************************************************************************//
|
|
|
-void MultiLayerMie::calcPsiZeta(double x,
|
|
|
- std::vector<std::complex<double> > D1,
|
|
|
- std::vector<std::complex<double> > D3,
|
|
|
- std::vector<std::complex<double> >& Psi,
|
|
|
- std::vector<std::complex<double> >& Zeta) {
|
|
|
-
|
|
|
- int n;
|
|
|
-
|
|
|
- //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
|
|
|
- Psi[0] = std::complex<double>(sin(x), 0);
|
|
|
- Zeta[0] = std::complex<double>(sin(x), -cos(x));
|
|
|
- for (n = 1; n <= nmax_; n++) {
|
|
|
- Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
|
|
|
- Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Calculates S1 - equation (25a)
|
|
|
+ std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,
|
|
|
+ double Pi, double Tau) {
|
|
|
+ return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
|
|
|
}
|
|
|
-}
|
|
|
-
|
|
|
-//**********************************************************************************//
|
|
|
-// This function calculates the logarithmic derivatives of the Riccati-Bessel //
|
|
|
-// functions (D1 and D3) for a complex argument (z). //
|
|
|
-// Equations (16a), (16b) and (18a) - (18d) //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// z: Complex argument to evaluate D1 and D3 //
|
|
|
-// nmax_: Maximum number of terms to calculate D1 and D3 //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
|
|
|
-//**********************************************************************************//
|
|
|
-void MultiLayerMie::calcD1D3(std::complex<double> z,
|
|
|
- std::vector<std::complex<double> >& D1,
|
|
|
- std::vector<std::complex<double> >& D3) {
|
|
|
-
|
|
|
- int n;
|
|
|
- std::vector<std::complex<double> > PsiZeta;
|
|
|
- PsiZeta.resize(nmax_ + 1);
|
|
|
-
|
|
|
- // Downward recurrence for D1 - equations (16a) and (16b)
|
|
|
- D1[nmax_] = std::complex<double>(0.0, 0.0);
|
|
|
- for (n = nmax_; n > 0; n--) {
|
|
|
- D1[n - 1] = double(n)/z - 1.0/(D1[n] + double(n)/z);
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
|
|
|
+ std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,
|
|
|
+ double Pi, double Tau) {
|
|
|
+ return calc_S1(n, an, bn, Tau, Pi);
|
|
|
}
|
|
|
-
|
|
|
- // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
|
|
|
- PsiZeta[0] = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag()));
|
|
|
- D3[0] = std::complex<double>(0.0, 1.0);
|
|
|
- for (n = 1; n <= nmax_; n++) {
|
|
|
- PsiZeta[n] = PsiZeta[n - 1]*(double(n)/z - D1[n - 1])*(double(n)/z- D3[n - 1]);
|
|
|
- D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta[n];
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a //
|
|
|
+ // real argument (x). //
|
|
|
+ // Equations (20a) - (21b) //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // x: Real argument to evaluate Psi and Zeta //
|
|
|
+ // nmax: Maximum number of terms to calculate Psi and Zeta //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // Psi, Zeta: Riccati-Bessel functions //
|
|
|
+ //**********************************************************************************//
|
|
|
+ void MultiLayerMie::calcPsiZeta(double x,
|
|
|
+ std::vector<std::complex<double> > D1,
|
|
|
+ std::vector<std::complex<double> > D3,
|
|
|
+ std::vector<std::complex<double> >& Psi,
|
|
|
+ std::vector<std::complex<double> >& Zeta) {
|
|
|
+
|
|
|
+ int n;
|
|
|
+
|
|
|
+ //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
|
|
|
+ Psi[0] = std::complex<double>(sin(x), 0);
|
|
|
+ Zeta[0] = std::complex<double>(sin(x), -cos(x));
|
|
|
+ for (n = 1; n <= nmax_; n++) {
|
|
|
+ Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
|
|
|
+ Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
|
|
|
+ }
|
|
|
}
|
|
|
-}
|
|
|
-
|
|
|
-//**********************************************************************************//
|
|
|
-// This function calculates Pi and Tau for all values of Theta. //
|
|
|
-// Equations (26a) - (26c) //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// nmax_: Maximum number of terms to calculate Pi and Tau //
|
|
|
-// nTheta: Number of scattering angles //
|
|
|
-// Theta: Array containing all the scattering angles where the scattering //
|
|
|
-// amplitudes will be calculated //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
|
|
|
-//**********************************************************************************//
|
|
|
-void MultiLayerMie::calcPiTau(double Theta, std::vector<double>& Pi, std::vector<double>& Tau) {
|
|
|
-
|
|
|
- int n;
|
|
|
- //****************************************************//
|
|
|
- // Equations (26a) - (26c) //
|
|
|
- //****************************************************//
|
|
|
- for (n = 0; n < nmax_; n++) {
|
|
|
- if (n == 0) {
|
|
|
- // Initialize Pi and Tau
|
|
|
- Pi[n] = 1.0;
|
|
|
- Tau[n] = (n + 1)*cos(Theta);
|
|
|
- } else {
|
|
|
- // Calculate the actual values
|
|
|
- Pi[n] = ((n == 1) ? ((n + n + 1)*cos(Theta)*Pi[n - 1]/n)
|
|
|
- : (((n + n + 1)*cos(Theta)*Pi[n - 1] - (n + 1)*Pi[n - 2])/n));
|
|
|
- Tau[n] = (n + 1)*cos(Theta)*Pi[n] - (n + 2)*Pi[n - 1];
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function calculates the logarithmic derivatives of the Riccati-Bessel //
|
|
|
+ // functions (D1 and D3) for a complex argument (z). //
|
|
|
+ // Equations (16a), (16b) and (18a) - (18d) //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // z: Complex argument to evaluate D1 and D3 //
|
|
|
+ // nmax_: Maximum number of terms to calculate D1 and D3 //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // D1, D3: Logarithmic derivatives of the Riccati-Bessel functions //
|
|
|
+ //**********************************************************************************//
|
|
|
+ void MultiLayerMie::calcD1D3(std::complex<double> z,
|
|
|
+ std::vector<std::complex<double> >& D1,
|
|
|
+ std::vector<std::complex<double> >& D3) {
|
|
|
+
|
|
|
+ int n;
|
|
|
+ std::vector<std::complex<double> > PsiZeta;
|
|
|
+ PsiZeta.resize(nmax_ + 1);
|
|
|
+
|
|
|
+ // Downward recurrence for D1 - equations (16a) and (16b)
|
|
|
+ D1[nmax_] = std::complex<double>(0.0, 0.0);
|
|
|
+ for (n = nmax_; n > 0; n--) {
|
|
|
+ D1[n - 1] = double(n)/z - 1.0/(D1[n] + double(n)/z);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
|
|
|
+ PsiZeta[0] = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag()));
|
|
|
+ D3[0] = std::complex<double>(0.0, 1.0);
|
|
|
+ for (n = 1; n <= nmax_; n++) {
|
|
|
+ PsiZeta[n] = PsiZeta[n - 1]*(double(n)/z - D1[n - 1])*(double(n)/z- D3[n - 1]);
|
|
|
+ D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta[n];
|
|
|
}
|
|
|
}
|
|
|
-}
|
|
|
-
|
|
|
-//**********************************************************************************//
|
|
|
-// This function calculates the scattering coefficients required to calculate //
|
|
|
-// both the near- and far-field parameters. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// L: Number of layers //
|
|
|
-// pl: Index of PEC layer. If there is none just send -1 //
|
|
|
-// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
-// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
-// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
-// calculations. Only use it if you know what you are doing, otherwise //
|
|
|
-// set this parameter to -1 and the function will calculate it. //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// an, bn: Complex scattering amplitudes //
|
|
|
-// //
|
|
|
-// Return value: //
|
|
|
-// Number of multipolar expansion terms used for the calculations //
|
|
|
-//**********************************************************************************//
|
|
|
-void MultiLayerMie::ScattCoeffs(int L,
|
|
|
- std::vector<std::complex<double> >& an, std::vector<std::complex<double> >& bn) {
|
|
|
- //************************************************************************//
|
|
|
- // Calculate the index of the first layer. It can be either 0 (default) //
|
|
|
- // or the index of the outermost PEC layer. In the latter case all layers //
|
|
|
- // below the PEC are discarded. //
|
|
|
- //************************************************************************//
|
|
|
- const std::vector<double>& x = size_parameter_;
|
|
|
- const std::vector<std::complex<double> >& m = index_;
|
|
|
- const int& pl = PEC_layer_position_;
|
|
|
-
|
|
|
- int fl = (pl > 0) ? pl : 0;
|
|
|
-
|
|
|
- if (nmax_ <= 0) {
|
|
|
- nmax_ = Nmax(L, fl);
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function calculates Pi and Tau for all values of Theta. //
|
|
|
+ // Equations (26a) - (26c) //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // nmax_: Maximum number of terms to calculate Pi and Tau //
|
|
|
+ // nTheta: Number of scattering angles //
|
|
|
+ // Theta: Array containing all the scattering angles where the scattering //
|
|
|
+ // amplitudes will be calculated //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
|
|
|
+ //**********************************************************************************//
|
|
|
+ void MultiLayerMie::calcPiTau(double Theta, std::vector<double>& Pi, std::vector<double>& Tau) {
|
|
|
+
|
|
|
+ int n;
|
|
|
+ //****************************************************//
|
|
|
+ // Equations (26a) - (26c) //
|
|
|
+ //****************************************************//
|
|
|
+ for (n = 0; n < nmax_; n++) {
|
|
|
+ if (n == 0) {
|
|
|
+ // Initialize Pi and Tau
|
|
|
+ Pi[n] = 1.0;
|
|
|
+ Tau[n] = (n + 1)*cos(Theta);
|
|
|
+ } else {
|
|
|
+ // Calculate the actual values
|
|
|
+ Pi[n] = ((n == 1) ? ((n + n + 1)*cos(Theta)*Pi[n - 1]/n)
|
|
|
+ : (((n + n + 1)*cos(Theta)*Pi[n - 1] - (n + 1)*Pi[n - 2])/n));
|
|
|
+ Tau[n] = (n + 1)*cos(Theta)*Pi[n] - (n + 2)*Pi[n - 1];
|
|
|
+ }
|
|
|
+ }
|
|
|
}
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function calculates the scattering coefficients required to calculate //
|
|
|
+ // both the near- and far-field parameters. //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // L: Number of layers //
|
|
|
+ // pl: Index of PEC layer. If there is none just send -1 //
|
|
|
+ // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+ // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+ // nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+ // calculations. Only use it if you know what you are doing, otherwise //
|
|
|
+ // set this parameter to -1 and the function will calculate it. //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // an, bn: Complex scattering amplitudes //
|
|
|
+ // //
|
|
|
+ // Return value: //
|
|
|
+ // Number of multipolar expansion terms used for the calculations //
|
|
|
+ //**********************************************************************************//
|
|
|
+ void MultiLayerMie::ScattCoeffs(int L,
|
|
|
+ std::vector<std::complex<double> >& an, std::vector<std::complex<double> >& bn) {
|
|
|
+ //************************************************************************//
|
|
|
+ // Calculate the index of the first layer. It can be either 0 (default) //
|
|
|
+ // or the index of the outermost PEC layer. In the latter case all layers //
|
|
|
+ // below the PEC are discarded. //
|
|
|
+ //************************************************************************//
|
|
|
+ const std::vector<double>& x = size_parameter_;
|
|
|
+ const std::vector<std::complex<double> >& m = index_;
|
|
|
+ const int& pl = PEC_layer_position_;
|
|
|
+
|
|
|
+ int fl = (pl > 0) ? pl : 0;
|
|
|
+
|
|
|
+ if (nmax_ <= 0) {
|
|
|
+ nmax_ = Nmax(L, fl);
|
|
|
+ }
|
|
|
|
|
|
- std::complex<double> z1, z2;
|
|
|
- std::complex<double> Num, Denom;
|
|
|
- std::complex<double> G1, G2;
|
|
|
- std::complex<double> Temp;
|
|
|
+ std::complex<double> z1, z2;
|
|
|
+ std::complex<double> Num, Denom;
|
|
|
+ std::complex<double> G1, G2;
|
|
|
+ std::complex<double> Temp;
|
|
|
|
|
|
- int n, l;
|
|
|
+ int n, l;
|
|
|
|
|
|
- //**************************************************************************//
|
|
|
- // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
|
|
|
- // means that index = layer number - 1 or index = n - 1. The only exception //
|
|
|
- // are the arrays for representing D1, D3 and Q because they need a value //
|
|
|
- // for the index 0 (zero), hence it is important to consider this shift //
|
|
|
- // between different arrays. The change was done to optimize memory usage. //
|
|
|
- //**************************************************************************//
|
|
|
+ //**************************************************************************//
|
|
|
+ // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which //
|
|
|
+ // means that index = layer number - 1 or index = n - 1. The only exception //
|
|
|
+ // are the arrays for representing D1, D3 and Q because they need a value //
|
|
|
+ // for the index 0 (zero), hence it is important to consider this shift //
|
|
|
+ // between different arrays. The change was done to optimize memory usage. //
|
|
|
+ //**************************************************************************//
|
|
|
|
|
|
- // Allocate memory to the arrays
|
|
|
- std::vector<std::vector<std::complex<double> > > D1_mlxl, D1_mlxlM1;
|
|
|
- D1_mlxl.resize(L);
|
|
|
- D1_mlxlM1.resize(L);
|
|
|
+ // Allocate memory to the arrays
|
|
|
+ std::vector<std::vector<std::complex<double> > > D1_mlxl, D1_mlxlM1;
|
|
|
+ D1_mlxl.resize(L);
|
|
|
+ D1_mlxlM1.resize(L);
|
|
|
|
|
|
- std::vector<std::vector<std::complex<double> > > D3_mlxl, D3_mlxlM1;
|
|
|
- D3_mlxl.resize(L);
|
|
|
- D3_mlxlM1.resize(L);
|
|
|
+ std::vector<std::vector<std::complex<double> > > D3_mlxl, D3_mlxlM1;
|
|
|
+ D3_mlxl.resize(L);
|
|
|
+ D3_mlxlM1.resize(L);
|
|
|
|
|
|
- std::vector<std::vector<std::complex<double> > > Q;
|
|
|
- Q.resize(L);
|
|
|
+ std::vector<std::vector<std::complex<double> > > Q;
|
|
|
+ Q.resize(L);
|
|
|
|
|
|
- std::vector<std::vector<std::complex<double> > > Ha, Hb;
|
|
|
- Ha.resize(L);
|
|
|
- Hb.resize(L);
|
|
|
+ std::vector<std::vector<std::complex<double> > > Ha, Hb;
|
|
|
+ Ha.resize(L);
|
|
|
+ Hb.resize(L);
|
|
|
|
|
|
- for (l = 0; l < L; l++) {
|
|
|
- D1_mlxl[l].resize(nmax_ + 1);
|
|
|
- D1_mlxlM1[l].resize(nmax_ + 1);
|
|
|
+ for (l = 0; l < L; l++) {
|
|
|
+ D1_mlxl[l].resize(nmax_ + 1);
|
|
|
+ D1_mlxlM1[l].resize(nmax_ + 1);
|
|
|
|
|
|
- D3_mlxl[l].resize(nmax_ + 1);
|
|
|
- D3_mlxlM1[l].resize(nmax_ + 1);
|
|
|
+ D3_mlxl[l].resize(nmax_ + 1);
|
|
|
+ D3_mlxlM1[l].resize(nmax_ + 1);
|
|
|
|
|
|
- Q[l].resize(nmax_ + 1);
|
|
|
+ Q[l].resize(nmax_ + 1);
|
|
|
|
|
|
- Ha[l].resize(nmax_);
|
|
|
- Hb[l].resize(nmax_);
|
|
|
- }
|
|
|
+ Ha[l].resize(nmax_);
|
|
|
+ Hb[l].resize(nmax_);
|
|
|
+ }
|
|
|
|
|
|
- an.resize(nmax_);
|
|
|
- bn.resize(nmax_);
|
|
|
+ an.resize(nmax_);
|
|
|
+ bn.resize(nmax_);
|
|
|
|
|
|
- std::vector<std::complex<double> > D1XL, D3XL;
|
|
|
- D1XL.resize(nmax_ + 1);
|
|
|
- D3XL.resize(nmax_ + 1);
|
|
|
+ std::vector<std::complex<double> > D1XL, D3XL;
|
|
|
+ D1XL.resize(nmax_ + 1);
|
|
|
+ D3XL.resize(nmax_ + 1);
|
|
|
|
|
|
+ std::vector<std::complex<double> > PsiXL, ZetaXL;
|
|
|
+ PsiXL.resize(nmax_ + 1);
|
|
|
+ ZetaXL.resize(nmax_ + 1);
|
|
|
|
|
|
- std::vector<std::complex<double> > PsiXL, ZetaXL;
|
|
|
- PsiXL.resize(nmax_ + 1);
|
|
|
- ZetaXL.resize(nmax_ + 1);
|
|
|
+ //*************************************************//
|
|
|
+ // Calculate D1 and D3 for z1 in the first layer //
|
|
|
+ //*************************************************//
|
|
|
+ if (fl == pl) { // PEC layer
|
|
|
+ for (n = 0; n <= nmax_; n++) {
|
|
|
+ D1_mlxl[fl][n] = std::complex<double>(0.0, -1.0);
|
|
|
+ D3_mlxl[fl][n] = std::complex<double>(0.0, 1.0);
|
|
|
+ }
|
|
|
+ } else { // Regular layer
|
|
|
+ z1 = x[fl]* m[fl];
|
|
|
|
|
|
- //*************************************************//
|
|
|
- // Calculate D1 and D3 for z1 in the first layer //
|
|
|
- //*************************************************//
|
|
|
- if (fl == pl) { // PEC layer
|
|
|
- for (n = 0; n <= nmax_; n++) {
|
|
|
- D1_mlxl[fl][n] = std::complex<double>(0.0, -1.0);
|
|
|
- D3_mlxl[fl][n] = std::complex<double>(0.0, 1.0);
|
|
|
+ // Calculate D1 and D3
|
|
|
+ calcD1D3(z1, D1_mlxl[fl], D3_mlxl[fl]);
|
|
|
}
|
|
|
- } else { // Regular layer
|
|
|
- z1 = x[fl]* m[fl];
|
|
|
-
|
|
|
- // Calculate D1 and D3
|
|
|
- calcD1D3(z1, D1_mlxl[fl], D3_mlxl[fl]);
|
|
|
- }
|
|
|
|
|
|
- //******************************************************************//
|
|
|
- // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
|
|
|
- //******************************************************************//
|
|
|
- for (n = 0; n < nmax_; n++) {
|
|
|
- Ha[fl][n] = D1_mlxl[fl][n + 1];
|
|
|
- Hb[fl][n] = D1_mlxl[fl][n + 1];
|
|
|
- }
|
|
|
-
|
|
|
- //*****************************************************//
|
|
|
- // Iteration from the second layer to the last one (L) //
|
|
|
- //*****************************************************//
|
|
|
- for (l = fl + 1; l < L; l++) {
|
|
|
- //************************************************************//
|
|
|
- //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L //
|
|
|
- //************************************************************//
|
|
|
- z1 = x[l]*m[l];
|
|
|
- z2 = x[l - 1]*m[l];
|
|
|
+ //******************************************************************//
|
|
|
+ // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
|
|
|
+ //******************************************************************//
|
|
|
+ for (n = 0; n < nmax_; n++) {
|
|
|
+ Ha[fl][n] = D1_mlxl[fl][n + 1];
|
|
|
+ Hb[fl][n] = D1_mlxl[fl][n + 1];
|
|
|
+ }
|
|
|
|
|
|
- //Calculate D1 and D3 for z1
|
|
|
- calcD1D3(z1, D1_mlxl[l], D3_mlxl[l]);
|
|
|
+ //*****************************************************//
|
|
|
+ // Iteration from the second layer to the last one (L) //
|
|
|
+ //*****************************************************//
|
|
|
+ for (l = fl + 1; l < L; l++) {
|
|
|
+ //************************************************************//
|
|
|
+ //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L //
|
|
|
+ //************************************************************//
|
|
|
+ z1 = x[l]*m[l];
|
|
|
+ z2 = x[l - 1]*m[l];
|
|
|
|
|
|
- //Calculate D1 and D3 for z2
|
|
|
- calcD1D3(z2, D1_mlxlM1[l], D3_mlxlM1[l]);
|
|
|
+ //Calculate D1 and D3 for z1
|
|
|
+ calcD1D3(z1, D1_mlxl[l], D3_mlxl[l]);
|
|
|
|
|
|
- //*********************************************//
|
|
|
- //Calculate Q, Ha and Hb in the layers fl+1..L //
|
|
|
- //*********************************************//
|
|
|
+ //Calculate D1 and D3 for z2
|
|
|
+ calcD1D3(z2, D1_mlxlM1[l], D3_mlxlM1[l]);
|
|
|
|
|
|
- // Upward recurrence for Q - equations (19a) and (19b)
|
|
|
- Num = exp(-2.0*(z1.imag() - z2.imag()))*std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
|
|
|
- Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
|
|
|
- Q[l][0] = Num/Denom;
|
|
|
+ //*********************************************//
|
|
|
+ //Calculate Q, Ha and Hb in the layers fl+1..L //
|
|
|
+ //*********************************************//
|
|
|
|
|
|
- for (n = 1; n <= nmax_; n++) {
|
|
|
- Num = (z1*D1_mlxl[l][n] + double(n))*(double(n) - z1*D3_mlxl[l][n - 1]);
|
|
|
- Denom = (z2*D1_mlxlM1[l][n] + double(n))*(double(n) - z2*D3_mlxlM1[l][n - 1]);
|
|
|
+ // Upward recurrence for Q - equations (19a) and (19b)
|
|
|
+ Num = exp(-2.0*(z1.imag() - z2.imag()))*std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
|
|
|
+ Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
|
|
|
+ Q[l][0] = Num/Denom;
|
|
|
|
|
|
- Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1])*Num)/Denom;
|
|
|
- }
|
|
|
+ for (n = 1; n <= nmax_; n++) {
|
|
|
+ Num = (z1*D1_mlxl[l][n] + double(n))*(double(n) - z1*D3_mlxl[l][n - 1]);
|
|
|
+ Denom = (z2*D1_mlxlM1[l][n] + double(n))*(double(n) - z2*D3_mlxlM1[l][n - 1]);
|
|
|
|
|
|
- // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
|
|
|
- for (n = 1; n <= nmax_; n++) {
|
|
|
- //Ha
|
|
|
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
- G1 = -D1_mlxlM1[l][n];
|
|
|
- G2 = -D3_mlxlM1[l][n];
|
|
|
- } else {
|
|
|
- G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[l][n]);
|
|
|
- G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[l][n]);
|
|
|
+ Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1])*Num)/Denom;
|
|
|
}
|
|
|
|
|
|
- Temp = Q[l][n]*G1;
|
|
|
+ // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
|
|
|
+ for (n = 1; n <= nmax_; n++) {
|
|
|
+ //Ha
|
|
|
+ if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
+ G1 = -D1_mlxlM1[l][n];
|
|
|
+ G2 = -D3_mlxlM1[l][n];
|
|
|
+ } else {
|
|
|
+ G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[l][n]);
|
|
|
+ G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[l][n]);
|
|
|
+ }
|
|
|
|
|
|
- Num = (G2*D1_mlxl[l][n]) - (Temp*D3_mlxl[l][n]);
|
|
|
- Denom = G2 - Temp;
|
|
|
+ Temp = Q[l][n]*G1;
|
|
|
|
|
|
- Ha[l][n - 1] = Num/Denom;
|
|
|
+ Num = (G2*D1_mlxl[l][n]) - (Temp*D3_mlxl[l][n]);
|
|
|
+ Denom = G2 - Temp;
|
|
|
|
|
|
- //Hb
|
|
|
- if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
- G1 = Hb[l - 1][n - 1];
|
|
|
- G2 = Hb[l - 1][n - 1];
|
|
|
- } else {
|
|
|
- G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[l][n]);
|
|
|
- G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[l][n]);
|
|
|
- }
|
|
|
+ Ha[l][n - 1] = Num/Denom;
|
|
|
+
|
|
|
+ //Hb
|
|
|
+ if ((l - 1) == pl) { // The layer below the current one is a PEC layer
|
|
|
+ G1 = Hb[l - 1][n - 1];
|
|
|
+ G2 = Hb[l - 1][n - 1];
|
|
|
+ } else {
|
|
|
+ G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[l][n]);
|
|
|
+ G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[l][n]);
|
|
|
+ }
|
|
|
|
|
|
- Temp = Q[l][n]*G1;
|
|
|
+ Temp = Q[l][n]*G1;
|
|
|
|
|
|
- Num = (G2*D1_mlxl[l][n]) - (Temp* D3_mlxl[l][n]);
|
|
|
- Denom = (G2- Temp);
|
|
|
+ Num = (G2*D1_mlxl[l][n]) - (Temp* D3_mlxl[l][n]);
|
|
|
+ Denom = (G2- Temp);
|
|
|
|
|
|
- Hb[l][n - 1] = (Num/ Denom);
|
|
|
+ Hb[l][n - 1] = (Num/ Denom);
|
|
|
+ }
|
|
|
}
|
|
|
- }
|
|
|
|
|
|
- //**************************************//
|
|
|
- //Calculate D1, D3, Psi and Zeta for XL //
|
|
|
- //**************************************//
|
|
|
-
|
|
|
- // Calculate D1XL and D3XL
|
|
|
- calcD1D3(x[L - 1], D1XL, D3XL);
|
|
|
-
|
|
|
- // Calculate PsiXL and ZetaXL
|
|
|
- calcPsiZeta(x[L - 1], D1XL, D3XL, PsiXL, ZetaXL);
|
|
|
-
|
|
|
- //*********************************************************************//
|
|
|
- // Finally, we calculate the scattering coefficients (an and bn) and //
|
|
|
- // the angular functions (Pi and Tau). Note that for these arrays the //
|
|
|
- // first layer is 0 (zero), in future versions all arrays will follow //
|
|
|
- // this convention to save memory. (13 Nov, 2014) //
|
|
|
- //*********************************************************************//
|
|
|
- for (n = 0; n < nmax_; n++) {
|
|
|
- //********************************************************************//
|
|
|
- //Expressions for calculating an and bn coefficients are not valid if //
|
|
|
- //there is only one PEC layer (ie, for a simple PEC sphere). //
|
|
|
- //********************************************************************//
|
|
|
- if (pl < (L - 1)) {
|
|
|
- an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
- bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
- } else {
|
|
|
- an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
- bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
|
|
|
+ //**************************************//
|
|
|
+ //Calculate D1, D3, Psi and Zeta for XL //
|
|
|
+ //**************************************//
|
|
|
+
|
|
|
+ // Calculate D1XL and D3XL
|
|
|
+ calcD1D3(x[L - 1], D1XL, D3XL);
|
|
|
+
|
|
|
+ // Calculate PsiXL and ZetaXL
|
|
|
+ calcPsiZeta(x[L - 1], D1XL, D3XL, PsiXL, ZetaXL);
|
|
|
+
|
|
|
+ //*********************************************************************//
|
|
|
+ // Finally, we calculate the scattering coefficients (an and bn) and //
|
|
|
+ // the angular functions (Pi and Tau). Note that for these arrays the //
|
|
|
+ // first layer is 0 (zero), in future versions all arrays will follow //
|
|
|
+ // this convention to save memory. (13 Nov, 2014) //
|
|
|
+ //*********************************************************************//
|
|
|
+ for (n = 0; n < nmax_; n++) {
|
|
|
+ //********************************************************************//
|
|
|
+ //Expressions for calculating an and bn coefficients are not valid if //
|
|
|
+ //there is only one PEC layer (ie, for a simple PEC sphere). //
|
|
|
+ //********************************************************************//
|
|
|
+ if (pl < (L - 1)) {
|
|
|
+ an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
+ bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
+ } else {
|
|
|
+ an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
+ bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
|
|
|
+ }
|
|
|
}
|
|
|
+
|
|
|
}
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
|
|
|
-}
|
|
|
-
|
|
|
-//**********************************************************************************//
|
|
|
-// This function calculates the actual scattering parameters and amplitudes //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// L: Number of layers //
|
|
|
-// pl: Index of PEC layer. If there is none just send -1 //
|
|
|
-// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
-// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
-// nTheta: Number of scattering angles //
|
|
|
-// Theta: Array containing all the scattering angles where the scattering //
|
|
|
-// amplitudes will be calculated //
|
|
|
-// nmax_: Maximum number of multipolar expansion terms to be used for the //
|
|
|
-// calculations. Only use it if you know what you are doing, otherwise //
|
|
|
-// set this parameter to -1 and the function will calculate it //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// Qext: Efficiency factor for extinction //
|
|
|
-// Qsca: Efficiency factor for scattering //
|
|
|
-// Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
-// Qbk: Efficiency factor for backscattering //
|
|
|
-// Qpr: Efficiency factor for the radiation pressure //
|
|
|
-// g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
-// Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
-// S1, S2: Complex scattering amplitudes //
|
|
|
-// //
|
|
|
-// Return value: //
|
|
|
-// Number of multipolar expansion terms used for the calculations //
|
|
|
-//**********************************************************************************//
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function calculates the actual scattering parameters and amplitudes //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // L: Number of layers //
|
|
|
+ // pl: Index of PEC layer. If there is none just send -1 //
|
|
|
+ // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+ // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+ // nTheta: Number of scattering angles //
|
|
|
+ // Theta: Array containing all the scattering angles where the scattering //
|
|
|
+ // amplitudes will be calculated //
|
|
|
+ // nmax_: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+ // calculations. Only use it if you know what you are doing, otherwise //
|
|
|
+ // set this parameter to -1 and the function will calculate it //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // Qext: Efficiency factor for extinction //
|
|
|
+ // Qsca: Efficiency factor for scattering //
|
|
|
+ // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
+ // Qbk: Efficiency factor for backscattering //
|
|
|
+ // Qpr: Efficiency factor for the radiation pressure //
|
|
|
+ // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
+ // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
+ // S1, S2: Complex scattering amplitudes //
|
|
|
+ // //
|
|
|
+ // Return value: //
|
|
|
+ // Number of multipolar expansion terms used for the calculations //
|
|
|
+ //**********************************************************************************//
|
|
|
|
|
|
void MultiLayerMie::RunMieCalculations() {
|
|
|
if (size_parameter_.size() != index_.size())
|
|
|
throw std::invalid_argument("Each size parameter should have only one index!");
|
|
|
|
|
|
-// int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
|
|
|
-// int nTheta, std::vector<double> Theta, int nmax,
|
|
|
-// double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
|
|
|
-// std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
-
|
|
|
- int i, n, t;
|
|
|
- std::vector<std::complex<double> > an, bn;
|
|
|
- std::complex<double> Qbktmp;
|
|
|
- const std::vector<double>& x = size_parameter_;
|
|
|
- const std::vector<std::complex<double> >& m = index_;
|
|
|
- int L = index_.size();
|
|
|
- // Calculate scattering coefficients
|
|
|
- ScattCoeffs(L, an, bn);
|
|
|
-
|
|
|
- std::vector<double> Pi, Tau;
|
|
|
- Pi.resize(nmax_);
|
|
|
- Tau.resize(nmax_);
|
|
|
-
|
|
|
- double x2 = x[L - 1]*x[L - 1];
|
|
|
-
|
|
|
- // Initialize the scattering parameters
|
|
|
- Qext_ = 0;
|
|
|
- Qsca_ = 0;
|
|
|
- Qabs_ = 0;
|
|
|
- Qbk_ = 0;
|
|
|
- Qbktmp = std::complex<double>(0.0, 0.0);
|
|
|
- Qpr_ = 0;
|
|
|
- asymmetry_factor_ = 0;
|
|
|
- albedo_ = 0;
|
|
|
-
|
|
|
- // Initialize the scattering amplitudes
|
|
|
- int nTheta = theta_.size();
|
|
|
- S1_.resize(nTheta);
|
|
|
- S2_.resize(nTheta);
|
|
|
- for (t = 0; t < nTheta; t++) {
|
|
|
- S1_[t] = std::complex<double>(0.0, 0.0);
|
|
|
- S2_[t] = std::complex<double>(0.0, 0.0);
|
|
|
- }
|
|
|
+ int i, n, t;
|
|
|
+ std::vector<std::complex<double> > an, bn;
|
|
|
+ std::complex<double> Qbktmp;
|
|
|
+ const std::vector<double>& x = size_parameter_;
|
|
|
+ const std::vector<std::complex<double> >& m = index_;
|
|
|
+ int L = index_.size();
|
|
|
+ // Calculate scattering coefficients
|
|
|
+ ScattCoeffs(L, an, bn);
|
|
|
+
|
|
|
+ std::vector<double> Pi, Tau;
|
|
|
+ Pi.resize(nmax_);
|
|
|
+ Tau.resize(nmax_);
|
|
|
+
|
|
|
+ double x2 = x[L - 1]*x[L - 1];
|
|
|
+
|
|
|
+ // Initialize the scattering parameters
|
|
|
+ Qext_ = 0;
|
|
|
+ Qsca_ = 0;
|
|
|
+ Qabs_ = 0;
|
|
|
+ Qbk_ = 0;
|
|
|
+ Qbktmp = std::complex<double>(0.0, 0.0);
|
|
|
+ Qpr_ = 0;
|
|
|
+ asymmetry_factor_ = 0;
|
|
|
+ albedo_ = 0;
|
|
|
+
|
|
|
+ // Initialize the scattering amplitudes
|
|
|
+ int nTheta = theta_.size();
|
|
|
+ S1_.resize(nTheta);
|
|
|
+ S2_.resize(nTheta);
|
|
|
+ for (t = 0; t < nTheta; t++) {
|
|
|
+ S1_[t] = std::complex<double>(0.0, 0.0);
|
|
|
+ S2_[t] = std::complex<double>(0.0, 0.0);
|
|
|
+ }
|
|
|
|
|
|
|
|
|
|
|
|
- // By using downward recurrence we avoid loss of precision due to float rounding errors
|
|
|
- // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
|
|
|
- // http://en.wikipedia.org/wiki/Loss_of_significance
|
|
|
- for (i = nmax_ - 2; i >= 0; i--) {
|
|
|
- n = i + 1;
|
|
|
- // Equation (27)
|
|
|
- Qext_ += (n + n + 1)*(an[i].real() + bn[i].real());
|
|
|
- // Equation (28)
|
|
|
- Qsca_ += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag() + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag());
|
|
|
- // Equation (29) TODO We must check carefully this equation. If we
|
|
|
- // remove the typecast to double then the result changes. Which is
|
|
|
- // the correct one??? Ovidio (2014/12/10) With cast ratio will
|
|
|
- // give double, without cast (n + n + 1)/(n*(n + 1)) will be
|
|
|
- // rounded to integer. Tig (2015/02/24)
|
|
|
- Qpr_ += ((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real());
|
|
|
- // Equation (33)
|
|
|
- Qbktmp = Qbktmp + (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]);
|
|
|
+ // By using downward recurrence we avoid loss of precision due to float rounding errors
|
|
|
+ // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
|
|
|
+ // http://en.wikipedia.org/wiki/Loss_of_significance
|
|
|
+ for (i = nmax_ - 2; i >= 0; i--) {
|
|
|
+ n = i + 1;
|
|
|
+ // Equation (27)
|
|
|
+ Qext_ += (n + n + 1)*(an[i].real() + bn[i].real());
|
|
|
+ // Equation (28)
|
|
|
+ Qsca_ += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag() + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag());
|
|
|
+ // Equation (29) TODO We must check carefully this equation. If we
|
|
|
+ // remove the typecast to double then the result changes. Which is
|
|
|
+ // the correct one??? Ovidio (2014/12/10) With cast ratio will
|
|
|
+ // give double, without cast (n + n + 1)/(n*(n + 1)) will be
|
|
|
+ // rounded to integer. Tig (2015/02/24)
|
|
|
+ Qpr_ += ((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real());
|
|
|
+ // Equation (33)
|
|
|
+ Qbktmp = Qbktmp + (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]);
|
|
|
+
|
|
|
+ //****************************************************//
|
|
|
+ // Calculate the scattering amplitudes (S1 and S2) //
|
|
|
+ // Equations (25a) - (25b) //
|
|
|
+ //****************************************************//
|
|
|
+ for (t = 0; t < nTheta; t++) {
|
|
|
+ calcPiTau(theta_[t], Pi, Tau);
|
|
|
+
|
|
|
+ S1_[t] += calc_S1(n, an[i], bn[i], Pi[i], Tau[i]);
|
|
|
+ S2_[t] += calc_S2(n, an[i], bn[i], Pi[i], Tau[i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ Qext_ = 2*(Qext_)/x2; // Equation (27)
|
|
|
+ Qsca_ = 2*(Qsca_)/x2; // Equation (28)
|
|
|
+ Qpr_ = Qext_ - 4*(Qpr_)/x2; // Equation (29)
|
|
|
|
|
|
- //****************************************************//
|
|
|
- // Calculate the scattering amplitudes (S1 and S2) //
|
|
|
- // Equations (25a) - (25b) //
|
|
|
- //****************************************************//
|
|
|
- for (t = 0; t < nTheta; t++) {
|
|
|
- calcPiTau(theta_[t], Pi, Tau);
|
|
|
+ Qabs_ = Qext_ - Qsca_; // Equation (30)
|
|
|
+ albedo_ = Qsca_ / Qext_; // Equation (31)
|
|
|
+ asymmetry_factor_ = (Qext_ - Qpr_) / Qsca_; // Equation (32)
|
|
|
|
|
|
- S1_[t] += calc_S1(n, an[i], bn[i], Pi[i], Tau[i]);
|
|
|
- S2_[t] += calc_S2(n, an[i], bn[i], Pi[i], Tau[i]);
|
|
|
+ Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
|
|
|
+
|
|
|
+ isMieCalculated_ = true;
|
|
|
+ //return nmax;
|
|
|
+ }
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // external scattering field = incident + scattered
|
|
|
+ // BH p.92 (4.37), 94 (4.45), 95 (4.50)
|
|
|
+ // assume: medium is non-absorbing; refim = 0; Uabs = 0
|
|
|
+ void MultiLayerMie::fieldExt(double Rho, double Phi, double Theta, std::vector<double> Pi, std::vector<double> Tau,
|
|
|
+ std::vector<std::complex<double> > an, std::vector<std::complex<double> > bn,
|
|
|
+ std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
|
|
|
+
|
|
|
+ int i, n;
|
|
|
+ double rn = 0.0;
|
|
|
+ std::complex<double> zn, xxip, encap;
|
|
|
+ std::vector<std::complex<double> > vm3o1n, vm3e1n, vn3o1n, vn3e1n;
|
|
|
+ vm3o1n.resize(3);
|
|
|
+ vm3e1n.resize(3);
|
|
|
+ vn3o1n.resize(3);
|
|
|
+ vn3e1n.resize(3);
|
|
|
+
|
|
|
+ std::vector<std::complex<double> > Ei, Hi, Es, Hs;
|
|
|
+ Ei.resize(3);
|
|
|
+ Hi.resize(3);
|
|
|
+ Es.resize(3);
|
|
|
+ Hs.resize(3);
|
|
|
+ for (i = 0; i < 3; i++) {
|
|
|
+ Ei[i] = std::complex<double>(0.0, 0.0);
|
|
|
+ Hi[i] = std::complex<double>(0.0, 0.0);
|
|
|
+ Es[i] = std::complex<double>(0.0, 0.0);
|
|
|
+ Hs[i] = std::complex<double>(0.0, 0.0);
|
|
|
+ }
|
|
|
+
|
|
|
+ std::vector<std::complex<double> > bj, by, bd;
|
|
|
+ bj.resize(nmax_);
|
|
|
+ by.resize(nmax_);
|
|
|
+ bd.resize(nmax_);
|
|
|
+
|
|
|
+ // Calculate spherical Bessel and Hankel functions
|
|
|
+ sphericalBessel(Rho, bj, by, bd);
|
|
|
+
|
|
|
+ for (n = 0; n < nmax_; n++) {
|
|
|
+ rn = double(n + 1);
|
|
|
+
|
|
|
+ zn = bj[n] + std::complex<double>(0.0, 1.0)*by[n];
|
|
|
+ xxip = Rho*(bj[n] + std::complex<double>(0.0, 1.0)*by[n]) - rn*zn;
|
|
|
+
|
|
|
+ vm3o1n[0] = std::complex<double>(0.0, 0.0);
|
|
|
+ vm3o1n[1] = std::cos(Phi)*Pi[n]*zn;
|
|
|
+ vm3o1n[2] = -(std::sin(Phi)*Tau[n]*zn);
|
|
|
+ vm3e1n[0] = std::complex<double>(0.0, 0.0);
|
|
|
+ vm3e1n[1] = -(std::sin(Phi)*Pi[n]*zn);
|
|
|
+ vm3e1n[2] = -(std::cos(Phi)*Tau[n]*zn);
|
|
|
+ vn3o1n[0] = std::sin(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
|
|
|
+ vn3o1n[1] = std::sin(Phi)*Tau[n]*xxip/Rho;
|
|
|
+ vn3o1n[2] = std::cos(Phi)*Pi[n]*xxip/Rho;
|
|
|
+ vn3e1n[0] = std::cos(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
|
|
|
+ vn3e1n[1] = std::cos(Phi)*Tau[n]*xxip/Rho;
|
|
|
+ vn3e1n[2] = -(std::sin(Phi)*Pi[n]*xxip/Rho);
|
|
|
+
|
|
|
+ // scattered field: BH p.94 (4.45)
|
|
|
+ encap = std::pow(std::complex<double>(0.0, 1.0), rn)*(2.0*rn + 1.0)/(rn*(rn + 1.0));
|
|
|
+ for (i = 0; i < 3; i++) {
|
|
|
+ Es[i] = Es[i] + encap*(std::complex<double>(0.0, 1.0)*an[n]*vn3e1n[i] - bn[n]*vm3o1n[i]);
|
|
|
+ Hs[i] = Hs[i] + encap*(std::complex<double>(0.0, 1.0)*bn[n]*vn3o1n[i] + an[n]*vm3e1n[i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
|
|
|
+ // basis unit vectors = er, etheta, ephi
|
|
|
+ std::complex<double> eifac = std::exp(std::complex<double>(0.0, 1.0)*Rho*std::cos(Theta));
|
|
|
+
|
|
|
+ Ei[0] = eifac*std::sin(Theta)*std::cos(Phi);
|
|
|
+ Ei[1] = eifac*std::cos(Theta)*std::cos(Phi);
|
|
|
+ Ei[2] = -(eifac*std::sin(Phi));
|
|
|
+
|
|
|
+ // magnetic field
|
|
|
+ double hffact = 1.0/(cc*mu);
|
|
|
+ for (i = 0; i < 3; i++) {
|
|
|
+ Hs[i] = hffact*Hs[i];
|
|
|
+ }
|
|
|
+
|
|
|
+ // incident H field: BH p.26 (2.43), p.89 (4.21)
|
|
|
+ std::complex<double> hffacta = hffact;
|
|
|
+ std::complex<double> hifac = eifac*hffacta;
|
|
|
+
|
|
|
+ Hi[0] = hifac*std::sin(Theta)*std::sin(Phi);
|
|
|
+ Hi[1] = hifac*std::cos(Theta)*std::sin(Phi);
|
|
|
+ Hi[2] = hifac*std::cos(Phi);
|
|
|
+
|
|
|
+ for (i = 0; i < 3; i++) {
|
|
|
+ // electric field E [V m-1] = EF*E0
|
|
|
+ E[i] = Ei[i] + Es[i];
|
|
|
+ H[i] = Hi[i] + Hs[i];
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- Qext_ = 2*(Qext_)/x2; // Equation (27)
|
|
|
- Qsca_ = 2*(Qsca_)/x2; // Equation (28)
|
|
|
- Qpr_ = Qext_ - 4*(Qpr_)/x2; // Equation (29)
|
|
|
-
|
|
|
- Qabs_ = Qext_ - Qsca_; // Equation (30)
|
|
|
- albedo_ = Qsca_ / Qext_; // Equation (31)
|
|
|
- asymmetry_factor_ = (Qext_ - Qpr_) / Qsca_; // Equation (32)
|
|
|
-
|
|
|
- Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
|
|
|
-
|
|
|
- isMieCalculated_ = true;
|
|
|
- //return nmax;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-//**********************************************************************************//
|
|
|
-// This function calculates complex electric and magnetic field in the surroundings //
|
|
|
-// and inside (TODO) the particle. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// L: Number of layers //
|
|
|
-// pl: Index of PEC layer. If there is none just send 0 (zero) //
|
|
|
-// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
-// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
-// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
-// calculations. Only use it if you know what you are doing, otherwise //
|
|
|
-// set this parameter to 0 (zero) and the function will calculate it. //
|
|
|
-// ncoord: Number of coordinate points //
|
|
|
-// Coords: Array containing all coordinates where the complex electric and //
|
|
|
-// magnetic fields will be calculated //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// E, H: Complex electric and magnetic field at the provided coordinates //
|
|
|
-// //
|
|
|
-// Return value: //
|
|
|
-// Number of multipolar expansion terms used for the calculations //
|
|
|
-//**********************************************************************************//
|
|
|
-
|
|
|
-// int MultiLayerMie::nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
|
|
|
-// int ncoord, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp,
|
|
|
-// std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
|
|
|
-
|
|
|
-// int i, c;
|
|
|
-// double Rho, Phi, Theta;
|
|
|
-// std::vector<std::complex<double> > an, bn;
|
|
|
-
|
|
|
-// // This array contains the fields in spherical coordinates
|
|
|
-// std::vector<std::complex<double> > Es, Hs;
|
|
|
-// Es.resize(3);
|
|
|
-// Hs.resize(3);
|
|
|
-
|
|
|
-
|
|
|
-// // Calculate scattering coefficients
|
|
|
-// ScattCoeffs(L, pl, an, bn);
|
|
|
-
|
|
|
-// std::vector<double> Pi, Tau;
|
|
|
-// Pi.resize(nmax_);
|
|
|
-// Tau.resize(nmax_);
|
|
|
-
|
|
|
-// for (c = 0; c < ncoord; c++) {
|
|
|
-// // Convert to spherical coordinates
|
|
|
-// Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
|
|
|
-// if (Rho < 1e-3) {
|
|
|
-// // Avoid convergence problems
|
|
|
-// Rho = 1e-3;
|
|
|
-// }
|
|
|
-// Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
|
|
|
-// Theta = acos(Xp[c]/Rho);
|
|
|
-
|
|
|
-// calcPiTau(Theta, Pi, Tau);
|
|
|
-
|
|
|
-// //*******************************************************//
|
|
|
-// // external scattering field = incident + scattered //
|
|
|
-// // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
|
|
|
-// // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
|
|
|
-// //*******************************************************//
|
|
|
-
|
|
|
-// // Firstly the easiest case: the field outside the particle
|
|
|
-// if (Rho >= x[L - 1]) {
|
|
|
-// fieldExt(Rho, Phi, Theta, Pi, Tau, an, bn, Es, Hs);
|
|
|
-// } else {
|
|
|
-// // TODO, for now just set all the fields to zero
|
|
|
-// for (i = 0; i < 3; i++) {
|
|
|
-// Es[i] = std::complex<double>(0.0, 0.0);
|
|
|
-// Hs[i] = std::complex<double>(0.0, 0.0);
|
|
|
-// }
|
|
|
-// }
|
|
|
-
|
|
|
-// //Now, convert the fields back to cartesian coordinates
|
|
|
-// E[c][0] = std::sin(Theta)*std::cos(Phi)*Es[0] + std::cos(Theta)*std::cos(Phi)*Es[1] - std::sin(Phi)*Es[2];
|
|
|
-// E[c][1] = std::sin(Theta)*std::sin(Phi)*Es[0] + std::cos(Theta)*std::sin(Phi)*Es[1] + std::cos(Phi)*Es[2];
|
|
|
-// E[c][2] = std::cos(Theta)*Es[0] - std::sin(Theta)*Es[1];
|
|
|
-
|
|
|
-// H[c][0] = std::sin(Theta)*std::cos(Phi)*Hs[0] + std::cos(Theta)*std::cos(Phi)*Hs[1] - std::sin(Phi)*Hs[2];
|
|
|
-// H[c][1] = std::sin(Theta)*std::sin(Phi)*Hs[0] + std::cos(Theta)*std::sin(Phi)*Hs[1] + std::cos(Phi)*Hs[2];
|
|
|
-// H[c][2] = std::cos(Theta)*Hs[0] - std::sin(Theta)*Hs[1];
|
|
|
-// }
|
|
|
-
|
|
|
-// return nmax;
|
|
|
-// } // end of int nField()
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+ // ********************************************************************** //
|
|
|
+
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function calculates complex electric and magnetic field in the surroundings //
|
|
|
+ // and inside (TODO) the particle. //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // L: Number of layers //
|
|
|
+ // pl: Index of PEC layer. If there is none just send 0 (zero) //
|
|
|
+ // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+ // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+ // nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+ // calculations. Only use it if you know what you are doing, otherwise //
|
|
|
+ // set this parameter to 0 (zero) and the function will calculate it. //
|
|
|
+ // ncoord: Number of coordinate points //
|
|
|
+ // Coords: Array containing all coordinates where the complex electric and //
|
|
|
+ // magnetic fields will be calculated //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // E, H: Complex electric and magnetic field at the provided coordinates //
|
|
|
+ // //
|
|
|
+ // Return value: //
|
|
|
+ // Number of multipolar expansion terms used for the calculations //
|
|
|
+ //**********************************************************************************//
|
|
|
+
|
|
|
+ // int MultiLayerMie::nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
|
|
|
+ // int ncoord, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp,
|
|
|
+ // std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
|
|
|
+
|
|
|
+ // int i, c;
|
|
|
+ // double Rho, Phi, Theta;
|
|
|
+ // std::vector<std::complex<double> > an, bn;
|
|
|
+
|
|
|
+ // // This array contains the fields in spherical coordinates
|
|
|
+ // std::vector<std::complex<double> > Es, Hs;
|
|
|
+ // Es.resize(3);
|
|
|
+ // Hs.resize(3);
|
|
|
+
|
|
|
+
|
|
|
+ // // Calculate scattering coefficients
|
|
|
+ // ScattCoeffs(L, pl, an, bn);
|
|
|
+
|
|
|
+ // std::vector<double> Pi, Tau;
|
|
|
+ // Pi.resize(nmax_);
|
|
|
+ // Tau.resize(nmax_);
|
|
|
+
|
|
|
+ // for (c = 0; c < ncoord; c++) {
|
|
|
+ // // Convert to spherical coordinates
|
|
|
+ // Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
|
|
|
+ // if (Rho < 1e-3) {
|
|
|
+ // // Avoid convergence problems
|
|
|
+ // Rho = 1e-3;
|
|
|
+ // }
|
|
|
+ // Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
|
|
|
+ // Theta = acos(Xp[c]/Rho);
|
|
|
+
|
|
|
+ // calcPiTau(Theta, Pi, Tau);
|
|
|
+
|
|
|
+ // //*******************************************************//
|
|
|
+ // // external scattering field = incident + scattered //
|
|
|
+ // // BH p.92 (4.37), 94 (4.45), 95 (4.50) //
|
|
|
+ // // assume: medium is non-absorbing; refim = 0; Uabs = 0 //
|
|
|
+ // //*******************************************************//
|
|
|
+
|
|
|
+ // // Firstly the easiest case: the field outside the particle
|
|
|
+ // if (Rho >= x[L - 1]) {
|
|
|
+ // fieldExt(Rho, Phi, Theta, Pi, Tau, an, bn, Es, Hs);
|
|
|
+ // } else {
|
|
|
+ // // TODO, for now just set all the fields to zero
|
|
|
+ // for (i = 0; i < 3; i++) {
|
|
|
+ // Es[i] = std::complex<double>(0.0, 0.0);
|
|
|
+ // Hs[i] = std::complex<double>(0.0, 0.0);
|
|
|
+ // }
|
|
|
+ // }
|
|
|
+
|
|
|
+ // //Now, convert the fields back to cartesian coordinates
|
|
|
+ // E[c][0] = std::sin(Theta)*std::cos(Phi)*Es[0] + std::cos(Theta)*std::cos(Phi)*Es[1] - std::sin(Phi)*Es[2];
|
|
|
+ // E[c][1] = std::sin(Theta)*std::sin(Phi)*Es[0] + std::cos(Theta)*std::sin(Phi)*Es[1] + std::cos(Phi)*Es[2];
|
|
|
+ // E[c][2] = std::cos(Theta)*Es[0] - std::sin(Theta)*Es[1];
|
|
|
+
|
|
|
+ // H[c][0] = std::sin(Theta)*std::cos(Phi)*Hs[0] + std::cos(Theta)*std::cos(Phi)*Hs[1] - std::sin(Phi)*Hs[2];
|
|
|
+ // H[c][1] = std::sin(Theta)*std::sin(Phi)*Hs[0] + std::cos(Theta)*std::sin(Phi)*Hs[1] + std::cos(Phi)*Hs[2];
|
|
|
+ // H[c][2] = std::cos(Theta)*Hs[0] - std::sin(Theta)*Hs[1];
|
|
|
+ // }
|
|
|
+
|
|
|
+ // return nmax;
|
|
|
+ // } // end of int nField()
|
|
|
|
|
|
} // end of namespace nmie
|