Procházet zdrojové kódy

Changes to error handling

Konstantin Ladutenko před 10 roky
rodič
revize
687a1ae5f7
2 změnil soubory, kde provedl 780 přidání a 778 odebrání
  1. 769 776
      nmie-wrapper.cc
  2. 11 2
      nmie-wrapper.h

+ 769 - 776
nmie-wrapper.cc

@@ -47,23 +47,29 @@ namespace nmie {
         throw std::invalid_argument("Declared number of layers do not fit x and m!");
     if (Theta.size() != nTheta)
         throw std::invalid_argument("Declared number of sample for Theta is not correct!");
-
-    MultiLayerMie multi_layer_mie;  
-    multi_layer_mie.SetWidthSP(x);
-    multi_layer_mie.SetIndexSP(m);
-    multi_layer_mie.SetAngles(Theta);
+    try {
+      MultiLayerMie multi_layer_mie;  
+      multi_layer_mie.SetWidthSP(x);
+      multi_layer_mie.SetIndexSP(m);
+      multi_layer_mie.SetAngles(Theta);
     
-    multi_layer_mie.RunMieCalculations();
-
-    *Qext = multi_layer_mie.GetQext();
-    *Qsca = multi_layer_mie.GetQsca();
-    *Qabs = multi_layer_mie.GetQabs();
-    *Qbk = multi_layer_mie.GetQbk();
-    *Qpr = multi_layer_mie.GetQpr();
-    *g = multi_layer_mie.GetAsymmetryFactor();
-    *Albedo = multi_layer_mie.GetAlbedo();
-    S1 = multi_layer_mie.GetS1();
-    S2 = multi_layer_mie.GetS2();
+      multi_layer_mie.RunMieCalculations();
+
+      *Qext = multi_layer_mie.GetQext();
+      *Qsca = multi_layer_mie.GetQsca();
+      *Qabs = multi_layer_mie.GetQabs();
+      *Qbk = multi_layer_mie.GetQbk();
+      *Qpr = multi_layer_mie.GetQpr();
+      *g = multi_layer_mie.GetAsymmetryFactor();
+      *Albedo = multi_layer_mie.GetAlbedo();
+      S1 = multi_layer_mie.GetS1();
+      S2 = multi_layer_mie.GetS2();
+    } catch( const std::invalid_argument& ia ) {
+      // Will catch if  multi_layer_mie fails or other errors.
+      std::cerr << "Invalid argument: " << ia.what() << std::endl;
+      return -1;
+    }  
+
     return 0;
   }
   // ********************************************************************** //
@@ -233,200 +239,188 @@ namespace nmie {
   // ********************************************************************** //
   // ********************************************************************** //
   // ********************************************************************** //
-///MultiLayerMie::
-#define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
-
-const double PI=3.14159265358979323846;
-// light speed [m s-1]
-double const cc = 2.99792458e8;
-// assume non-magnetic (MU=MU0=const) [N A-2]
-double const mu = 4.0*PI*1.0e-7;
-
-// Calculate Nstop - equation (17)
-int MultiLayerMie::Nstop(double xL) {
-  int result;
-
-  if (xL <= 8) {
-    result = round(xL + 4*pow(xL, 1/3) + 1);
-  } else if (xL <= 4200) {
-    result = round(xL + 4.05*pow(xL, 1/3) + 2);
-  } else {
-    result = round(xL + 4*pow(xL, 1/3) + 2);
-  }
-
-  return result;
-}
-
-//**********************************************************************************//
-int MultiLayerMie::Nmax(int L, int fl) {
-  int i, result, ri, riM1;
-  const std::vector<double>& x = size_parameter_;
-  const std::vector<std::complex<double> >& m = index_;
-  const int& pl = PEC_layer_position_;
-
-  result = Nstop(x[L - 1]);
-  for (i = fl; i < L; i++) {
-    if (i > pl) {
-      ri = round(std::abs(x[i]*m[i]));
+  // Calculate Nstop - equation (17)
+  int MultiLayerMie::Nstop(double xL) {
+    int result;
+
+    if (xL <= 8) {
+      result = round(xL + 4*pow(xL, 1/3) + 1);
+    } else if (xL <= 4200) {
+      result = round(xL + 4.05*pow(xL, 1/3) + 2);
     } else {
-      ri = 0;
-    }
-    if (result < ri) {
-      result = ri;
+      result = round(xL + 4*pow(xL, 1/3) + 2);
     }
+    
+    return result;
+  }
+  // ********************************************************************** //
+  // ********************************************************************** //
+  // ********************************************************************** //
+  int MultiLayerMie::Nmax(int L, int fl) {
+    int i, result, ri, riM1;
+    const std::vector<double>& x = size_parameter_;
+    const std::vector<std::complex<double> >& m = index_;
+    const int& pl = PEC_layer_position_;
+    
+    result = Nstop(x[L - 1]);
+    for (i = fl; i < L; i++) {
+      if (i > pl) {
+	ri = round(std::abs(x[i]*m[i]));
+      } else {
+	ri = 0;
+      }
+      if (result < ri) {
+	result = ri;
+      }
 
-    if ((i > fl) && ((i - 1) > pl)) {
-      riM1 = round(std::abs(x[i - 1]* m[i]));
-      // TODO Ovidio, should we check?
-      // riM2 = round(std::abs(x[i]* m[i-1]))
-    } else {
-      riM1 = 0;
-    }
-    if (result < riM1) {
-      result = riM1;
+      if ((i > fl) && ((i - 1) > pl)) {
+	riM1 = round(std::abs(x[i - 1]* m[i]));
+	// TODO Ovidio, should we check?
+	// riM2 = round(std::abs(x[i]* m[i-1]))
+      } else {
+	riM1 = 0;
+      }
+      if (result < riM1) {
+	result = riM1;
+      }
     }
-  }
-  return result + 15;
-}
-
-//**********************************************************************************//
-// This function calculates the spherical Bessel (jn) and Hankel (h1n) functions    //
-// and their derivatives for a given complex value z. See pag. 87 B&H.              //
-//                                                                                  //
-// Input parameters:                                                                //
-//   z: Real argument to evaluate jn and h1n                                        //
-//   nmax_: Maximum number of terms to calculate jn and h1n                          //
-//                                                                                  //
-// Output parameters:                                                               //
-//   jn, h1n: Spherical Bessel and Hankel functions                                 //
-//   jnp, h1np: Derivatives of the spherical Bessel and Hankel functions            //
-//                                                                                  //
-// The implementation follows the algorithm by I.J. Thompson and A.R. Barnett,      //
-// Comp. Phys. Comm. 47 (1987) 245-257.                                             //
-//                                                                                  //
-// Complex spherical Bessel functions from n=0..nmax_-1 for z in the upper half      //
-// plane (Im(z) > -3).                                                              //
-//                                                                                  //
-//     j[n]   = j/n(z)                Regular solution: j[0]=sin(z)/z               //
-//     j'[n]  = d[j/n(z)]/dz                                                        //
-//     h1[n]  = h[0]/n(z)             Irregular Hankel function:                    //
-//     h1'[n] = d[h[0]/n(z)]/dz                h1[0] = j0(z) + i*y0(z)              //
-//                                                   = (sin(z)-i*cos(z))/z          //
-//                                                   = -i*exp(i*z)/z                //
-// Using complex CF1, and trigonometric forms for n=0 solutions.                    //
-//**********************************************************************************//
-int MultiLayerMie::sbesjh(std::complex<double> z, std::vector<std::complex<double> >& jn, std::vector<std::complex<double> >& jnp, std::vector<std::complex<double> >& h1n, std::vector<std::complex<double> >& h1np) {
-
-  const int limit = 20000;
-  double const accur = 1.0e-12;
-  double const tm30 = 1e-30;
-
-  int n;
-  double absc;
-  std::complex<double> zi, w;
-  std::complex<double> pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb;
-
-  absc = std::abs(std::real(z)) + std::abs(std::imag(z));
-  if ((absc < accur) || (std::imag(z) < -3.0)) {
-    return -1;
+    return result + 15;
   }
 
-  zi = 1.0/z;
-  w = zi + zi;
+  //**********************************************************************************//
+  // This function calculates the spherical Bessel (jn) and Hankel (h1n) functions    //
+  // and their derivatives for a given complex value z. See pag. 87 B&H.              //
+  //                                                                                  //
+  // Input parameters:                                                                //
+  //   z: Real argument to evaluate jn and h1n                                        //
+  //   nmax_: Maximum number of terms to calculate jn and h1n                          //
+  //                                                                                  //
+  // Output parameters:                                                               //
+  //   jn, h1n: Spherical Bessel and Hankel functions                                 //
+  //   jnp, h1np: Derivatives of the spherical Bessel and Hankel functions            //
+  //                                                                                  //
+  // The implementation follows the algorithm by I.J. Thompson and A.R. Barnett,      //
+  // Comp. Phys. Comm. 47 (1987) 245-257.                                             //
+  //                                                                                  //
+  // Complex spherical Bessel functions from n=0..nmax_-1 for z in the upper half      //
+  // plane (Im(z) > -3).                                                              //
+  //                                                                                  //
+  //     j[n]   = j/n(z)                Regular solution: j[0]=sin(z)/z               //
+  //     j'[n]  = d[j/n(z)]/dz                                                        //
+  //     h1[n]  = h[0]/n(z)             Irregular Hankel function:                    //
+  //     h1'[n] = d[h[0]/n(z)]/dz                h1[0] = j0(z) + i*y0(z)              //
+  //                                                   = (sin(z)-i*cos(z))/z          //
+  //                                                   = -i*exp(i*z)/z                //
+  // Using complex CF1, and trigonometric forms for n=0 solutions.                    //
+  //**********************************************************************************//
+  void MultiLayerMie::sbesjh(std::complex<double> z, std::vector<std::complex<double> >& jn, std::vector<std::complex<double> >& jnp, std::vector<std::complex<double> >& h1n, std::vector<std::complex<double> >& h1np) {
+
+    const int limit = 20000;
+    const double accur = 1.0e-12;
+    const double tm30 = 1e-30;
+
+    int n;
+    double absc;
+    std::complex<double> zi, w;
+    std::complex<double> pl, f, b, d, c, del, jn0, jndb, h1nldb, h1nbdb;
+
+    absc = std::abs(std::real(z)) + std::abs(std::imag(z));
+    if ((absc < accur) || (std::imag(z) < -3.0)) {
+      throw std::invalid_argument("TODO add error description for condition if ((absc < accur) || (std::imag(z) < -3.0))");
+    }
 
-  pl = double(nmax_)*zi;
+    zi = 1.0/z;
+    w = zi + zi;
 
-  f = pl + zi;
-  b = f + f + zi;
-  d = 0.0;
-  c = f;
-  for (n = 0; n < limit; n++) {
-    d = b - d;
-    c = b - 1.0/c;
+    pl = double(nmax_)*zi;
 
-    absc = std::abs(std::real(d)) + std::abs(std::imag(d));
-    if (absc < tm30) {
-      d = tm30;
-    }
+    f = pl + zi;
+    b = f + f + zi;
+    d = 0.0;
+    c = f;
+    for (n = 0; n < limit; n++) {
+      d = b - d;
+      c = b - 1.0/c;
 
-    absc = std::abs(std::real(c)) + std::abs(std::imag(c));
-    if (absc < tm30) {
-      c = tm30;
-    }
+      absc = std::abs(std::real(d)) + std::abs(std::imag(d));
+      if (absc < tm30) {
+	d = tm30;
+      }
+
+      absc = std::abs(std::real(c)) + std::abs(std::imag(c));
+      if (absc < tm30) {
+	c = tm30;
+      }
 
-    d = 1.0/d;
-    del = d*c;
-    f = f*del;
-    b += w;
+      d = 1.0/d;
+      del = d*c;
+      f = f*del;
+      b += w;
 
-    absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
+      absc = std::abs(std::real(del - 1.0)) + std::abs(std::imag(del - 1.0));
 
-    if (absc < accur) {
-      // We have obtained the desired accuracy
-      break;
+      if (absc < accur) {
+	// We have obtained the desired accuracy
+	break;
+      }
     }
-  }
 
-  if (absc > accur) {
-    // We were not able to obtain the desired accuracy
-    return -2;
-  }
+    if (absc > accur) {
+      throw std::invalid_argument("We were not able to obtain the desired accuracy");
+    }
 
-  jn[nmax_ - 1] = tm30;
-  jnp[nmax_ - 1] = f*jn[nmax_ - 1];
+    jn[nmax_ - 1] = tm30;
+    jnp[nmax_ - 1] = f*jn[nmax_ - 1];
 
-  // Downward recursion to n=0 (N.B.  Coulomb Functions)
-  for (n = nmax_ - 2; n >= 0; n--) {
-    jn[n] = pl*jn[n + 1] + jnp[n + 1];
-    jnp[n] = pl*jn[n] - jn[n + 1];
-    pl = pl - zi;
-  }
+    // Downward recursion to n=0 (N.B.  Coulomb Functions)
+    for (n = nmax_ - 2; n >= 0; n--) {
+      jn[n] = pl*jn[n + 1] + jnp[n + 1];
+      jnp[n] = pl*jn[n] - jn[n + 1];
+      pl = pl - zi;
+    }
 
-  // Calculate the n=0 Bessel Functions
-  jn0 = zi*std::sin(z);
-  h1n[0] = std::exp(std::complex<double>(0.0, 1.0)*z)*zi*(-std::complex<double>(0.0, 1.0));
-  h1np[0] = h1n[0]*(std::complex<double>(0.0, 1.0) - zi);
-
-  // Rescale j[n], j'[n], converting to spherical Bessel functions.
-  // Recur   h1[n], h1'[n] as spherical Bessel functions.
-  w = 1.0/jn[0];
-  pl = zi;
-  for (n = 0; n < nmax_; n++) {
-    jn[n] = jn0*(w*jn[n]);
-    jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
-    if (n != 0) {
-      h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
-
-      // check if hankel is increasing (upward stable)
-      if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
-        jndb = z;
-        h1nldb = h1n[n];
-        h1nbdb = h1n[n - 1];
+    // Calculate the n=0 Bessel Functions
+    jn0 = zi*std::sin(z);
+    h1n[0] = std::exp(std::complex<double>(0.0, 1.0)*z)*zi*(-std::complex<double>(0.0, 1.0));
+    h1np[0] = h1n[0]*(std::complex<double>(0.0, 1.0) - zi);
+
+    // Rescale j[n], j'[n], converting to spherical Bessel functions.
+    // Recur   h1[n], h1'[n] as spherical Bessel functions.
+    w = 1.0/jn[0];
+    pl = zi;
+    for (n = 0; n < nmax_; n++) {
+      jn[n] = jn0*(w*jn[n]);
+      jnp[n] = jn0*(w*jnp[n]) - zi*jn[n];
+      if (n != 0) {
+	h1n[n] = (pl - zi)*h1n[n - 1] - h1np[n - 1];
+
+	// check if hankel is increasing (upward stable)
+	if (std::abs(h1n[n]) < std::abs(h1n[n - 1])) {
+	  jndb = z;
+	  h1nldb = h1n[n];
+	  h1nbdb = h1n[n - 1];
+	}
+
+	pl += zi;
+
+	h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
       }
-
-      pl += zi;
-
-      h1np[n] = -(pl*h1n[n]) + h1n[n - 1];
     }
   }
 
-  // success
-  return 0;
-}
-
-//**********************************************************************************//
-// This function calculates the spherical Bessel functions (bj and by) and the      //
-// logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H.        //
-//                                                                                  //
-// Input parameters:                                                                //
-//   z: Complex argument to evaluate bj, by and bd                                  //
-//   nmax_: Maximum number of terms to calculate bj, by and bd                       //
-//                                                                                  //
-// Output parameters:                                                               //
-//   bj, by: Spherical Bessel functions                                             //
-//   bd: Logarithmic derivative                                                     //
-//**********************************************************************************//
-void MultiLayerMie::sphericalBessel(std::complex<double> z, std::vector<std::complex<double> >& bj, std::vector<std::complex<double> >& by, std::vector<std::complex<double> >& bd) {
+  //**********************************************************************************//
+  // This function calculates the spherical Bessel functions (bj and by) and the      //
+  // logarithmic derivative (bd) for a given complex value z. See pag. 87 B&H.        //
+  //                                                                                  //
+  // Input parameters:                                                                //
+  //   z: Complex argument to evaluate bj, by and bd                                  //
+  //   nmax_: Maximum number of terms to calculate bj, by and bd                       //
+  //                                                                                  //
+  // Output parameters:                                                               //
+  //   bj, by: Spherical Bessel functions                                             //
+  //   bd: Logarithmic derivative                                                     //
+  //**********************************************************************************//
+  void MultiLayerMie::sphericalBessel(std::complex<double> z, std::vector<std::complex<double> >& bj, std::vector<std::complex<double> >& by, std::vector<std::complex<double> >& bd) {
 
     std::vector<std::complex<double> > jn, jnp, h1n, h1np;
     jn.resize(nmax_);
@@ -434,663 +428,662 @@ void MultiLayerMie::sphericalBessel(std::complex<double> z, std::vector<std::com
     h1n.resize(nmax_);
     h1np.resize(nmax_);
 
-    // TODO verify that the function succeeds
-    int ifail = sbesjh(z, jn, jnp, h1n, h1np);
+    sbesjh(z, jn, jnp, h1n, h1np);
 
     for (int n = 0; n < nmax_; n++) {
       bj[n] = jn[n];
       by[n] = (h1n[n] - jn[n])/std::complex<double>(0.0, 1.0);
       bd[n] = jnp[n]/jn[n] + 1.0/z;
     }
-}
-
-// external scattering field = incident + scattered
-// BH p.92 (4.37), 94 (4.45), 95 (4.50)
-// assume: medium is non-absorbing; refim = 0; Uabs = 0
-void MultiLayerMie::fieldExt(double Rho, double Phi, double Theta, std::vector<double> Pi, std::vector<double> Tau,
-             std::vector<std::complex<double> > an, std::vector<std::complex<double> > bn,
-		     std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H)  {
-
-  int i, n;
-  double rn = 0.0;
-  std::complex<double> zn, xxip, encap;
-  std::vector<std::complex<double> > vm3o1n, vm3e1n, vn3o1n, vn3e1n;
-  vm3o1n.resize(3);
-  vm3e1n.resize(3);
-  vn3o1n.resize(3);
-  vn3e1n.resize(3);
-
-  std::vector<std::complex<double> > Ei, Hi, Es, Hs;
-  Ei.resize(3);
-  Hi.resize(3);
-  Es.resize(3);
-  Hs.resize(3);
-  for (i = 0; i < 3; i++) {
-    Ei[i] = std::complex<double>(0.0, 0.0);
-    Hi[i] = std::complex<double>(0.0, 0.0);
-    Es[i] = std::complex<double>(0.0, 0.0);
-    Hs[i] = std::complex<double>(0.0, 0.0);
-  }
-
-  std::vector<std::complex<double> > bj, by, bd;
-  bj.resize(nmax_);
-  by.resize(nmax_);
-  bd.resize(nmax_);
-
-  // Calculate spherical Bessel and Hankel functions
-  sphericalBessel(Rho, bj, by, bd);
-
-  for (n = 0; n < nmax_; n++) {
-    rn = double(n + 1);
-
-    zn = bj[n] + std::complex<double>(0.0, 1.0)*by[n];
-    xxip = Rho*(bj[n] + std::complex<double>(0.0, 1.0)*by[n]) - rn*zn;
-
-    vm3o1n[0] = std::complex<double>(0.0, 0.0);
-    vm3o1n[1] = std::cos(Phi)*Pi[n]*zn;
-    vm3o1n[2] = -(std::sin(Phi)*Tau[n]*zn);
-    vm3e1n[0] = std::complex<double>(0.0, 0.0);
-    vm3e1n[1] = -(std::sin(Phi)*Pi[n]*zn);
-    vm3e1n[2] = -(std::cos(Phi)*Tau[n]*zn);
-    vn3o1n[0] = std::sin(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
-    vn3o1n[1] = std::sin(Phi)*Tau[n]*xxip/Rho;
-    vn3o1n[2] = std::cos(Phi)*Pi[n]*xxip/Rho;
-    vn3e1n[0] = std::cos(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
-    vn3e1n[1] = std::cos(Phi)*Tau[n]*xxip/Rho;
-    vn3e1n[2] = -(std::sin(Phi)*Pi[n]*xxip/Rho);
-
-    // scattered field: BH p.94 (4.45)
-    encap = std::pow(std::complex<double>(0.0, 1.0), rn)*(2.0*rn + 1.0)/(rn*(rn + 1.0));
-    for (i = 0; i < 3; i++) {
-      Es[i] = Es[i] + encap*(std::complex<double>(0.0, 1.0)*an[n]*vn3e1n[i] - bn[n]*vm3o1n[i]);
-      Hs[i] = Hs[i] + encap*(std::complex<double>(0.0, 1.0)*bn[n]*vn3o1n[i] + an[n]*vm3e1n[i]);
-    }
   }
+  // ********************************************************************** //
+  // ********************************************************************** //
+  // ********************************************************************** //
+  // Calculate an - equation (5)
+  std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
+					      std::complex<double> PsiXL, std::complex<double> ZetaXL,
+					      std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
 
-  // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
-  // basis unit vectors = er, etheta, ephi
-  std::complex<double> eifac = std::exp(std::complex<double>(0.0, 1.0)*Rho*std::cos(Theta));
-
-  Ei[0] = eifac*std::sin(Theta)*std::cos(Phi);
-  Ei[1] = eifac*std::cos(Theta)*std::cos(Phi);
-  Ei[2] = -(eifac*std::sin(Phi));
+    std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
+    std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
 
-  // magnetic field
-  double hffact = 1.0/(cc*mu);
-  for (i = 0; i < 3; i++) {
-    Hs[i] = hffact*Hs[i];
+    return Num/Denom;
   }
+  // ********************************************************************** //
+  // ********************************************************************** //
+  // ********************************************************************** //
+  // Calculate bn - equation (6)
+  std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
+					      std::complex<double> PsiXL, std::complex<double> ZetaXL,
+					      std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
 
-  // incident H field: BH p.26 (2.43), p.89 (4.21)
-  std::complex<double> hffacta = hffact;
-  std::complex<double> hifac = eifac*hffacta;
-
-  Hi[0] = hifac*std::sin(Theta)*std::sin(Phi);
-  Hi[1] = hifac*std::cos(Theta)*std::sin(Phi);
-  Hi[2] = hifac*std::cos(Phi);
+    std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
+    std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
 
-  for (i = 0; i < 3; i++) {
-    // electric field E [V m-1] = EF*E0
-    E[i] = Ei[i] + Es[i];
-    H[i] = Hi[i] + Hs[i];
+    return Num/Denom;
   }
-}
-
-// Calculate an - equation (5)
-std::complex<double> MultiLayerMie::calc_an(int n, double XL, std::complex<double> Ha, std::complex<double> mL,
-	                         std::complex<double> PsiXL, std::complex<double> ZetaXL,
-	                         std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
-
-  std::complex<double> Num = (Ha/mL + n/XL)*PsiXL - PsiXLM1;
-  std::complex<double> Denom = (Ha/mL + n/XL)*ZetaXL - ZetaXLM1;
-
-  return Num/Denom;
-}
-
-// Calculate bn - equation (6)
-std::complex<double> MultiLayerMie::calc_bn(int n, double XL, std::complex<double> Hb, std::complex<double> mL,
-	                         std::complex<double> PsiXL, std::complex<double> ZetaXL,
-	                         std::complex<double> PsiXLM1, std::complex<double> ZetaXLM1) {
-
-  std::complex<double> Num = (mL*Hb + n/XL)*PsiXL - PsiXLM1;
-  std::complex<double> Denom = (mL*Hb + n/XL)*ZetaXL - ZetaXLM1;
-
-  return Num/Denom;
-}
-
-// Calculates S1 - equation (25a)
-std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,
-		                     double Pi, double Tau) {
-
-  return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
-}
-
-// Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
-std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,
-				             double Pi, double Tau) {
-
-  return calc_S1(n, an, bn, Tau, Pi);
-}
-
-
-//**********************************************************************************//
-// This function calculates the Riccati-Bessel functions (Psi and Zeta) for a       //
-// real argument (x).                                                               //
-// Equations (20a) - (21b)                                                          //
-//                                                                                  //
-// Input parameters:                                                                //
-//   x: Real argument to evaluate Psi and Zeta                                      //
-//   nmax: Maximum number of terms to calculate Psi and Zeta                        //
-//                                                                                  //
-// Output parameters:                                                               //
-//   Psi, Zeta: Riccati-Bessel functions                                            //
-//**********************************************************************************//
-void MultiLayerMie::calcPsiZeta(double x,
-		         std::vector<std::complex<double> > D1,
-		         std::vector<std::complex<double> > D3,
-		         std::vector<std::complex<double> >& Psi,
-		         std::vector<std::complex<double> >& Zeta) {
-
-  int n;
-
-  //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
-  Psi[0] = std::complex<double>(sin(x), 0);
-  Zeta[0] = std::complex<double>(sin(x), -cos(x));
-  for (n = 1; n <= nmax_; n++) {
-    Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
-    Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
+  // ********************************************************************** //
+  // ********************************************************************** //
+  // ********************************************************************** //
+  // Calculates S1 - equation (25a)
+  std::complex<double> MultiLayerMie::calc_S1(int n, std::complex<double> an, std::complex<double> bn,
+					      double Pi, double Tau) {
+    return double(n + n + 1)*(Pi*an + Tau*bn)/double(n*n + n);
   }
-}
-
-//**********************************************************************************//
-// This function calculates the logarithmic derivatives of the Riccati-Bessel       //
-// functions (D1 and D3) for a complex argument (z).                                //
-// Equations (16a), (16b) and (18a) - (18d)                                         //
-//                                                                                  //
-// Input parameters:                                                                //
-//   z: Complex argument to evaluate D1 and D3                                      //
-//   nmax_: Maximum number of terms to calculate D1 and D3                           //
-//                                                                                  //
-// Output parameters:                                                               //
-//   D1, D3: Logarithmic derivatives of the Riccati-Bessel functions                //
-//**********************************************************************************//
-void MultiLayerMie::calcD1D3(std::complex<double> z,
-		      std::vector<std::complex<double> >& D1,
-		      std::vector<std::complex<double> >& D3) {
-
-  int n;
-  std::vector<std::complex<double> > PsiZeta;
-  PsiZeta.resize(nmax_ + 1);
-
-  // Downward recurrence for D1 - equations (16a) and (16b)
-  D1[nmax_] = std::complex<double>(0.0, 0.0);
-  for (n = nmax_; n > 0; n--) {
-    D1[n - 1] = double(n)/z - 1.0/(D1[n] + double(n)/z);
+  // ********************************************************************** //
+  // ********************************************************************** //
+  // ********************************************************************** //
+  // Calculates S2 - equation (25b) (it's the same as (25a), just switches Pi and Tau)
+  std::complex<double> MultiLayerMie::calc_S2(int n, std::complex<double> an, std::complex<double> bn,
+					      double Pi, double Tau) {
+    return calc_S1(n, an, bn, Tau, Pi);
   }
-
-  // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
-  PsiZeta[0] = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag()));
-  D3[0] = std::complex<double>(0.0, 1.0);
-  for (n = 1; n <= nmax_; n++) {
-    PsiZeta[n] = PsiZeta[n - 1]*(double(n)/z - D1[n - 1])*(double(n)/z- D3[n - 1]);
-    D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta[n];
+  //**********************************************************************************//
+  // This function calculates the Riccati-Bessel functions (Psi and Zeta) for a       //
+  // real argument (x).                                                               //
+  // Equations (20a) - (21b)                                                          //
+  //                                                                                  //
+  // Input parameters:                                                                //
+  //   x: Real argument to evaluate Psi and Zeta                                      //
+  //   nmax: Maximum number of terms to calculate Psi and Zeta                        //
+  //                                                                                  //
+  // Output parameters:                                                               //
+  //   Psi, Zeta: Riccati-Bessel functions                                            //
+  //**********************************************************************************//
+  void MultiLayerMie::calcPsiZeta(double x,
+				  std::vector<std::complex<double> > D1,
+				  std::vector<std::complex<double> > D3,
+				  std::vector<std::complex<double> >& Psi,
+				  std::vector<std::complex<double> >& Zeta) {
+
+    int n;
+
+    //Upward recurrence for Psi and Zeta - equations (20a) - (21b)
+    Psi[0] = std::complex<double>(sin(x), 0);
+    Zeta[0] = std::complex<double>(sin(x), -cos(x));
+    for (n = 1; n <= nmax_; n++) {
+      Psi[n] = Psi[n - 1]*(n/x - D1[n - 1]);
+      Zeta[n] = Zeta[n - 1]*(n/x - D3[n - 1]);
+    }
   }
-}
-
-//**********************************************************************************//
-// This function calculates Pi and Tau for all values of Theta.                     //
-// Equations (26a) - (26c)                                                          //
-//                                                                                  //
-// Input parameters:                                                                //
-//   nmax_: Maximum number of terms to calculate Pi and Tau                          //
-//   nTheta: Number of scattering angles                                            //
-//   Theta: Array containing all the scattering angles where the scattering         //
-//          amplitudes will be calculated                                           //
-//                                                                                  //
-// Output parameters:                                                               //
-//   Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c)   //
-//**********************************************************************************//
-void MultiLayerMie::calcPiTau(double Theta, std::vector<double>& Pi, std::vector<double>& Tau) {
-
-  int n;
-  //****************************************************//
-  // Equations (26a) - (26c)                            //
-  //****************************************************//
-  for (n = 0; n < nmax_; n++) {
-    if (n == 0) {
-      // Initialize Pi and Tau
-      Pi[n] = 1.0;
-      Tau[n] = (n + 1)*cos(Theta);
-    } else {
-      // Calculate the actual values
-      Pi[n] = ((n == 1) ? ((n + n + 1)*cos(Theta)*Pi[n - 1]/n)
-                           : (((n + n + 1)*cos(Theta)*Pi[n - 1] - (n + 1)*Pi[n - 2])/n));
-      Tau[n] = (n + 1)*cos(Theta)*Pi[n] - (n + 2)*Pi[n - 1];
+  //**********************************************************************************//
+  // This function calculates the logarithmic derivatives of the Riccati-Bessel       //
+  // functions (D1 and D3) for a complex argument (z).                                //
+  // Equations (16a), (16b) and (18a) - (18d)                                         //
+  //                                                                                  //
+  // Input parameters:                                                                //
+  //   z: Complex argument to evaluate D1 and D3                                      //
+  //   nmax_: Maximum number of terms to calculate D1 and D3                           //
+  //                                                                                  //
+  // Output parameters:                                                               //
+  //   D1, D3: Logarithmic derivatives of the Riccati-Bessel functions                //
+  //**********************************************************************************//
+  void MultiLayerMie::calcD1D3(std::complex<double> z,
+			       std::vector<std::complex<double> >& D1,
+			       std::vector<std::complex<double> >& D3) {
+
+    int n;
+    std::vector<std::complex<double> > PsiZeta;
+    PsiZeta.resize(nmax_ + 1);
+
+    // Downward recurrence for D1 - equations (16a) and (16b)
+    D1[nmax_] = std::complex<double>(0.0, 0.0);
+    for (n = nmax_; n > 0; n--) {
+      D1[n - 1] = double(n)/z - 1.0/(D1[n] + double(n)/z);
+    }
+
+    // Upward recurrence for PsiZeta and D3 - equations (18a) - (18d)
+    PsiZeta[0] = 0.5*(1.0 - std::complex<double>(cos(2.0*z.real()), sin(2.0*z.real()))*exp(-2.0*z.imag()));
+    D3[0] = std::complex<double>(0.0, 1.0);
+    for (n = 1; n <= nmax_; n++) {
+      PsiZeta[n] = PsiZeta[n - 1]*(double(n)/z - D1[n - 1])*(double(n)/z- D3[n - 1]);
+      D3[n] = D1[n] + std::complex<double>(0.0, 1.0)/PsiZeta[n];
     }
   }
-}
-
-//**********************************************************************************//
-// This function calculates the scattering coefficients required to calculate       //
-// both the near- and far-field parameters.                                         //
-//                                                                                  //
-// Input parameters:                                                                //
-//   L: Number of layers                                                            //
-//   pl: Index of PEC layer. If there is none just send -1                          //
-//   x: Array containing the size parameters of the layers [0..L-1]                 //
-//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
-//   nmax: Maximum number of multipolar expansion terms to be used for the          //
-//         calculations. Only use it if you know what you are doing, otherwise      //
-//         set this parameter to -1 and the function will calculate it.             //
-//                                                                                  //
-// Output parameters:                                                               //
-//   an, bn: Complex scattering amplitudes                                          //
-//                                                                                  //
-// Return value:                                                                    //
-//   Number of multipolar expansion terms used for the calculations                 //
-//**********************************************************************************//
-void MultiLayerMie::ScattCoeffs(int L,
-		        std::vector<std::complex<double> >& an, std::vector<std::complex<double> >& bn) {
-  //************************************************************************//
-  // Calculate the index of the first layer. It can be either 0 (default)   //
-  // or the index of the outermost PEC layer. In the latter case all layers //
-  // below the PEC are discarded.                                           //
-  //************************************************************************//
-  const std::vector<double>& x = size_parameter_;
-  const std::vector<std::complex<double> >& m = index_;
-  const int& pl = PEC_layer_position_;
-
-  int fl = (pl > 0) ? pl : 0;
-
-  if (nmax_ <= 0) {
-    nmax_ = Nmax(L, fl);
+  //**********************************************************************************//
+  // This function calculates Pi and Tau for all values of Theta.                     //
+  // Equations (26a) - (26c)                                                          //
+  //                                                                                  //
+  // Input parameters:                                                                //
+  //   nmax_: Maximum number of terms to calculate Pi and Tau                          //
+  //   nTheta: Number of scattering angles                                            //
+  //   Theta: Array containing all the scattering angles where the scattering         //
+  //          amplitudes will be calculated                                           //
+  //                                                                                  //
+  // Output parameters:                                                               //
+  //   Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c)   //
+  //**********************************************************************************//
+  void MultiLayerMie::calcPiTau(double Theta, std::vector<double>& Pi, std::vector<double>& Tau) {
+
+    int n;
+    //****************************************************//
+    // Equations (26a) - (26c)                            //
+    //****************************************************//
+    for (n = 0; n < nmax_; n++) {
+      if (n == 0) {
+	// Initialize Pi and Tau
+	Pi[n] = 1.0;
+	Tau[n] = (n + 1)*cos(Theta);
+      } else {
+	// Calculate the actual values
+	Pi[n] = ((n == 1) ? ((n + n + 1)*cos(Theta)*Pi[n - 1]/n)
+		 : (((n + n + 1)*cos(Theta)*Pi[n - 1] - (n + 1)*Pi[n - 2])/n));
+	Tau[n] = (n + 1)*cos(Theta)*Pi[n] - (n + 2)*Pi[n - 1];
+      }
+    }
   }
+  //**********************************************************************************//
+  // This function calculates the scattering coefficients required to calculate       //
+  // both the near- and far-field parameters.                                         //
+  //                                                                                  //
+  // Input parameters:                                                                //
+  //   L: Number of layers                                                            //
+  //   pl: Index of PEC layer. If there is none just send -1                          //
+  //   x: Array containing the size parameters of the layers [0..L-1]                 //
+  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
+  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
+  //         calculations. Only use it if you know what you are doing, otherwise      //
+  //         set this parameter to -1 and the function will calculate it.             //
+  //                                                                                  //
+  // Output parameters:                                                               //
+  //   an, bn: Complex scattering amplitudes                                          //
+  //                                                                                  //
+  // Return value:                                                                    //
+  //   Number of multipolar expansion terms used for the calculations                 //
+  //**********************************************************************************//
+  void MultiLayerMie::ScattCoeffs(int L,
+				  std::vector<std::complex<double> >& an, std::vector<std::complex<double> >& bn) {
+    //************************************************************************//
+    // Calculate the index of the first layer. It can be either 0 (default)   //
+    // or the index of the outermost PEC layer. In the latter case all layers //
+    // below the PEC are discarded.                                           //
+    //************************************************************************//
+    const std::vector<double>& x = size_parameter_;
+    const std::vector<std::complex<double> >& m = index_;
+    const int& pl = PEC_layer_position_;
+
+    int fl = (pl > 0) ? pl : 0;
+
+    if (nmax_ <= 0) {
+      nmax_ = Nmax(L, fl);
+    }
 
-  std::complex<double> z1, z2;
-  std::complex<double> Num, Denom;
-  std::complex<double> G1, G2;
-  std::complex<double> Temp;
+    std::complex<double> z1, z2;
+    std::complex<double> Num, Denom;
+    std::complex<double> G1, G2;
+    std::complex<double> Temp;
 
-  int n, l;
+    int n, l;
 
-  //**************************************************************************//
-  // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which  //
-  // means that index = layer number - 1 or index = n - 1. The only exception //
-  // are the arrays for representing D1, D3 and Q because they need a value   //
-  // for the index 0 (zero), hence it is important to consider this shift     //
-  // between different arrays. The change was done to optimize memory usage.  //
-  //**************************************************************************//
+    //**************************************************************************//
+    // Note that since Fri, Nov 14, 2014 all arrays start from 0 (zero), which  //
+    // means that index = layer number - 1 or index = n - 1. The only exception //
+    // are the arrays for representing D1, D3 and Q because they need a value   //
+    // for the index 0 (zero), hence it is important to consider this shift     //
+    // between different arrays. The change was done to optimize memory usage.  //
+    //**************************************************************************//
 
-  // Allocate memory to the arrays
-  std::vector<std::vector<std::complex<double> > > D1_mlxl, D1_mlxlM1;
-  D1_mlxl.resize(L);
-  D1_mlxlM1.resize(L);
+    // Allocate memory to the arrays
+    std::vector<std::vector<std::complex<double> > > D1_mlxl, D1_mlxlM1;
+    D1_mlxl.resize(L);
+    D1_mlxlM1.resize(L);
 
-  std::vector<std::vector<std::complex<double> > > D3_mlxl, D3_mlxlM1;
-  D3_mlxl.resize(L);
-  D3_mlxlM1.resize(L);
+    std::vector<std::vector<std::complex<double> > > D3_mlxl, D3_mlxlM1;
+    D3_mlxl.resize(L);
+    D3_mlxlM1.resize(L);
 
-  std::vector<std::vector<std::complex<double> > > Q;
-  Q.resize(L);
+    std::vector<std::vector<std::complex<double> > > Q;
+    Q.resize(L);
 
-  std::vector<std::vector<std::complex<double> > > Ha, Hb;
-  Ha.resize(L);
-  Hb.resize(L);
+    std::vector<std::vector<std::complex<double> > > Ha, Hb;
+    Ha.resize(L);
+    Hb.resize(L);
 
-  for (l = 0; l < L; l++) {
-    D1_mlxl[l].resize(nmax_ + 1);
-    D1_mlxlM1[l].resize(nmax_ + 1);
+    for (l = 0; l < L; l++) {
+      D1_mlxl[l].resize(nmax_ + 1);
+      D1_mlxlM1[l].resize(nmax_ + 1);
 
-    D3_mlxl[l].resize(nmax_ + 1);
-    D3_mlxlM1[l].resize(nmax_ + 1);
+      D3_mlxl[l].resize(nmax_ + 1);
+      D3_mlxlM1[l].resize(nmax_ + 1);
 
-    Q[l].resize(nmax_ + 1);
+      Q[l].resize(nmax_ + 1);
 
-    Ha[l].resize(nmax_);
-    Hb[l].resize(nmax_);
-  }
+      Ha[l].resize(nmax_);
+      Hb[l].resize(nmax_);
+    }
 
-  an.resize(nmax_);
-  bn.resize(nmax_);
+    an.resize(nmax_);
+    bn.resize(nmax_);
 
-  std::vector<std::complex<double> > D1XL, D3XL;
-  D1XL.resize(nmax_ + 1);
-  D3XL.resize(nmax_ + 1);
+    std::vector<std::complex<double> > D1XL, D3XL;
+    D1XL.resize(nmax_ + 1);
+    D3XL.resize(nmax_ + 1);
 
+    std::vector<std::complex<double> > PsiXL, ZetaXL;
+    PsiXL.resize(nmax_ + 1);
+    ZetaXL.resize(nmax_ + 1);
 
-  std::vector<std::complex<double> > PsiXL, ZetaXL;
-  PsiXL.resize(nmax_ + 1);
-  ZetaXL.resize(nmax_ + 1);
+    //*************************************************//
+    // Calculate D1 and D3 for z1 in the first layer   //
+    //*************************************************//
+    if (fl == pl) {  // PEC layer
+      for (n = 0; n <= nmax_; n++) {
+	D1_mlxl[fl][n] = std::complex<double>(0.0, -1.0);
+	D3_mlxl[fl][n] = std::complex<double>(0.0, 1.0);
+      }
+    } else { // Regular layer
+      z1 = x[fl]* m[fl];
 
-  //*************************************************//
-  // Calculate D1 and D3 for z1 in the first layer   //
-  //*************************************************//
-  if (fl == pl) {  // PEC layer
-    for (n = 0; n <= nmax_; n++) {
-      D1_mlxl[fl][n] = std::complex<double>(0.0, -1.0);
-      D3_mlxl[fl][n] = std::complex<double>(0.0, 1.0);
+      // Calculate D1 and D3
+      calcD1D3(z1, D1_mlxl[fl], D3_mlxl[fl]);
     }
-  } else { // Regular layer
-    z1 = x[fl]* m[fl];
-
-    // Calculate D1 and D3
-    calcD1D3(z1, D1_mlxl[fl], D3_mlxl[fl]);
-  }
 
-  //******************************************************************//
-  // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
-  //******************************************************************//
-  for (n = 0; n < nmax_; n++) {
-    Ha[fl][n] = D1_mlxl[fl][n + 1];
-    Hb[fl][n] = D1_mlxl[fl][n + 1];
-  }
-
-  //*****************************************************//
-  // Iteration from the second layer to the last one (L) //
-  //*****************************************************//
-  for (l = fl + 1; l < L; l++) {
-    //************************************************************//
-    //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L     //
-    //************************************************************//
-    z1 = x[l]*m[l];
-    z2 = x[l - 1]*m[l];
+    //******************************************************************//
+    // Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
+    //******************************************************************//
+    for (n = 0; n < nmax_; n++) {
+      Ha[fl][n] = D1_mlxl[fl][n + 1];
+      Hb[fl][n] = D1_mlxl[fl][n + 1];
+    }
 
-    //Calculate D1 and D3 for z1
-    calcD1D3(z1, D1_mlxl[l], D3_mlxl[l]);
+    //*****************************************************//
+    // Iteration from the second layer to the last one (L) //
+    //*****************************************************//
+    for (l = fl + 1; l < L; l++) {
+      //************************************************************//
+      //Calculate D1 and D3 for z1 and z2 in the layers fl+1..L     //
+      //************************************************************//
+      z1 = x[l]*m[l];
+      z2 = x[l - 1]*m[l];
 
-    //Calculate D1 and D3 for z2
-    calcD1D3(z2, D1_mlxlM1[l], D3_mlxlM1[l]);
+      //Calculate D1 and D3 for z1
+      calcD1D3(z1, D1_mlxl[l], D3_mlxl[l]);
 
-    //*********************************************//
-    //Calculate Q, Ha and Hb in the layers fl+1..L //
-    //*********************************************//
+      //Calculate D1 and D3 for z2
+      calcD1D3(z2, D1_mlxlM1[l], D3_mlxlM1[l]);
 
-    // Upward recurrence for Q - equations (19a) and (19b)
-    Num = exp(-2.0*(z1.imag() - z2.imag()))*std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
-    Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
-    Q[l][0] = Num/Denom;
+      //*********************************************//
+      //Calculate Q, Ha and Hb in the layers fl+1..L //
+      //*********************************************//
 
-    for (n = 1; n <= nmax_; n++) {
-      Num = (z1*D1_mlxl[l][n] + double(n))*(double(n) - z1*D3_mlxl[l][n - 1]);
-      Denom = (z2*D1_mlxlM1[l][n] + double(n))*(double(n) - z2*D3_mlxlM1[l][n - 1]);
+      // Upward recurrence for Q - equations (19a) and (19b)
+      Num = exp(-2.0*(z1.imag() - z2.imag()))*std::complex<double>(cos(-2.0*z2.real()) - exp(-2.0*z2.imag()), sin(-2.0*z2.real()));
+      Denom = std::complex<double>(cos(-2.0*z1.real()) - exp(-2.0*z1.imag()), sin(-2.0*z1.real()));
+      Q[l][0] = Num/Denom;
 
-      Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1])*Num)/Denom;
-    }
+      for (n = 1; n <= nmax_; n++) {
+	Num = (z1*D1_mlxl[l][n] + double(n))*(double(n) - z1*D3_mlxl[l][n - 1]);
+	Denom = (z2*D1_mlxlM1[l][n] + double(n))*(double(n) - z2*D3_mlxlM1[l][n - 1]);
 
-    // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
-    for (n = 1; n <= nmax_; n++) {
-      //Ha
-      if ((l - 1) == pl) { // The layer below the current one is a PEC layer
-        G1 = -D1_mlxlM1[l][n];
-        G2 = -D3_mlxlM1[l][n];
-      } else {
-        G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[l][n]);
-        G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[l][n]);
+	Q[l][n] = (((x[l - 1]*x[l - 1])/(x[l]*x[l])* Q[l][n - 1])*Num)/Denom;
       }
 
-      Temp = Q[l][n]*G1;
+      // Upward recurrence for Ha and Hb - equations (7b), (8b) and (12) - (15)
+      for (n = 1; n <= nmax_; n++) {
+	//Ha
+	if ((l - 1) == pl) { // The layer below the current one is a PEC layer
+	  G1 = -D1_mlxlM1[l][n];
+	  G2 = -D3_mlxlM1[l][n];
+	} else {
+	  G1 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D1_mlxlM1[l][n]);
+	  G2 = (m[l]*Ha[l - 1][n - 1]) - (m[l - 1]*D3_mlxlM1[l][n]);
+	}
 
-      Num = (G2*D1_mlxl[l][n]) - (Temp*D3_mlxl[l][n]);
-      Denom = G2 - Temp;
+	Temp = Q[l][n]*G1;
 
-      Ha[l][n - 1] = Num/Denom;
+	Num = (G2*D1_mlxl[l][n]) - (Temp*D3_mlxl[l][n]);
+	Denom = G2 - Temp;
 
-      //Hb
-      if ((l - 1) == pl) { // The layer below the current one is a PEC layer
-        G1 = Hb[l - 1][n - 1];
-        G2 = Hb[l - 1][n - 1];
-      } else {
-        G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[l][n]);
-        G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[l][n]);
-      }
+	Ha[l][n - 1] = Num/Denom;
+
+	//Hb
+	if ((l - 1) == pl) { // The layer below the current one is a PEC layer
+	  G1 = Hb[l - 1][n - 1];
+	  G2 = Hb[l - 1][n - 1];
+	} else {
+	  G1 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D1_mlxlM1[l][n]);
+	  G2 = (m[l - 1]*Hb[l - 1][n - 1]) - (m[l]*D3_mlxlM1[l][n]);
+	}
 
-      Temp = Q[l][n]*G1;
+	Temp = Q[l][n]*G1;
 
-      Num = (G2*D1_mlxl[l][n]) - (Temp* D3_mlxl[l][n]);
-      Denom = (G2- Temp);
+	Num = (G2*D1_mlxl[l][n]) - (Temp* D3_mlxl[l][n]);
+	Denom = (G2- Temp);
 
-      Hb[l][n - 1] = (Num/ Denom);
+	Hb[l][n - 1] = (Num/ Denom);
+      }
     }
-  }
 
-  //**************************************//
-  //Calculate D1, D3, Psi and Zeta for XL //
-  //**************************************//
-
-  // Calculate D1XL and D3XL
-  calcD1D3(x[L - 1],  D1XL, D3XL);
-
-  // Calculate PsiXL and ZetaXL
-  calcPsiZeta(x[L - 1], D1XL, D3XL, PsiXL, ZetaXL);
-
-  //*********************************************************************//
-  // Finally, we calculate the scattering coefficients (an and bn) and   //
-  // the angular functions (Pi and Tau). Note that for these arrays the  //
-  // first layer is 0 (zero), in future versions all arrays will follow  //
-  // this convention to save memory. (13 Nov, 2014)                      //
-  //*********************************************************************//
-  for (n = 0; n < nmax_; n++) {
-    //********************************************************************//
-    //Expressions for calculating an and bn coefficients are not valid if //
-    //there is only one PEC layer (ie, for a simple PEC sphere).          //
-    //********************************************************************//
-    if (pl < (L - 1)) {
-      an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
-      bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
-    } else {
-      an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
-      bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
+    //**************************************//
+    //Calculate D1, D3, Psi and Zeta for XL //
+    //**************************************//
+
+    // Calculate D1XL and D3XL
+    calcD1D3(x[L - 1],  D1XL, D3XL);
+
+    // Calculate PsiXL and ZetaXL
+    calcPsiZeta(x[L - 1], D1XL, D3XL, PsiXL, ZetaXL);
+
+    //*********************************************************************//
+    // Finally, we calculate the scattering coefficients (an and bn) and   //
+    // the angular functions (Pi and Tau). Note that for these arrays the  //
+    // first layer is 0 (zero), in future versions all arrays will follow  //
+    // this convention to save memory. (13 Nov, 2014)                      //
+    //*********************************************************************//
+    for (n = 0; n < nmax_; n++) {
+      //********************************************************************//
+      //Expressions for calculating an and bn coefficients are not valid if //
+      //there is only one PEC layer (ie, for a simple PEC sphere).          //
+      //********************************************************************//
+      if (pl < (L - 1)) {
+	an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
+	bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
+      } else {
+	an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
+	bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
+      }
     }
+
   }
+  // ********************************************************************** //
+  // ********************************************************************** //
+  // ********************************************************************** //
 
-}
-
-//**********************************************************************************//
-// This function calculates the actual scattering parameters and amplitudes         //
-//                                                                                  //
-// Input parameters:                                                                //
-//   L: Number of layers                                                            //
-//   pl: Index of PEC layer. If there is none just send -1                          //
-//   x: Array containing the size parameters of the layers [0..L-1]                 //
-//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
-//   nTheta: Number of scattering angles                                            //
-//   Theta: Array containing all the scattering angles where the scattering         //
-//          amplitudes will be calculated                                           //
-//   nmax_: Maximum number of multipolar expansion terms to be used for the          //
-//         calculations. Only use it if you know what you are doing, otherwise      //
-//         set this parameter to -1 and the function will calculate it              //
-//                                                                                  //
-// Output parameters:                                                               //
-//   Qext: Efficiency factor for extinction                                         //
-//   Qsca: Efficiency factor for scattering                                         //
-//   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
-//   Qbk: Efficiency factor for backscattering                                      //
-//   Qpr: Efficiency factor for the radiation pressure                              //
-//   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
-//   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
-//   S1, S2: Complex scattering amplitudes                                          //
-//                                                                                  //
-// Return value:                                                                    //
-//   Number of multipolar expansion terms used for the calculations                 //
-//**********************************************************************************//
+  //**********************************************************************************//
+  // This function calculates the actual scattering parameters and amplitudes         //
+  //                                                                                  //
+  // Input parameters:                                                                //
+  //   L: Number of layers                                                            //
+  //   pl: Index of PEC layer. If there is none just send -1                          //
+  //   x: Array containing the size parameters of the layers [0..L-1]                 //
+  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
+  //   nTheta: Number of scattering angles                                            //
+  //   Theta: Array containing all the scattering angles where the scattering         //
+  //          amplitudes will be calculated                                           //
+  //   nmax_: Maximum number of multipolar expansion terms to be used for the          //
+  //         calculations. Only use it if you know what you are doing, otherwise      //
+  //         set this parameter to -1 and the function will calculate it              //
+  //                                                                                  //
+  // Output parameters:                                                               //
+  //   Qext: Efficiency factor for extinction                                         //
+  //   Qsca: Efficiency factor for scattering                                         //
+  //   Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca)                    //
+  //   Qbk: Efficiency factor for backscattering                                      //
+  //   Qpr: Efficiency factor for the radiation pressure                              //
+  //   g: Asymmetry factor (g = (Qext-Qpr)/Qsca)                                      //
+  //   Albedo: Single scattering albedo (Albedo = Qsca/Qext)                          //
+  //   S1, S2: Complex scattering amplitudes                                          //
+  //                                                                                  //
+  // Return value:                                                                    //
+  //   Number of multipolar expansion terms used for the calculations                 //
+  //**********************************************************************************//
 
   void MultiLayerMie::RunMieCalculations() {
     if (size_parameter_.size() != index_.size())
       throw std::invalid_argument("Each size parameter should have only one index!");
 
-// int nMie(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m,
-//          int nTheta, std::vector<double> Theta, int nmax,
-//          double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo,
-// 		 std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2)  {
-
-  int i, n, t;
-  std::vector<std::complex<double> > an, bn;
-  std::complex<double> Qbktmp;
-  const std::vector<double>& x = size_parameter_;
-  const std::vector<std::complex<double> >& m = index_;
-  int L = index_.size();
-  // Calculate scattering coefficients
-  ScattCoeffs(L, an, bn);
-
-  std::vector<double> Pi, Tau;
-  Pi.resize(nmax_);
-  Tau.resize(nmax_);
-
-  double x2 = x[L - 1]*x[L - 1];
-
-  // Initialize the scattering parameters
-  Qext_ = 0;
-  Qsca_ = 0;
-  Qabs_ = 0;
-  Qbk_ = 0;
-  Qbktmp = std::complex<double>(0.0, 0.0);
-  Qpr_ = 0;
-  asymmetry_factor_ = 0;
-  albedo_ = 0;
-
-  // Initialize the scattering amplitudes
-  int nTheta = theta_.size();  
-  S1_.resize(nTheta);
-  S2_.resize(nTheta);
-  for (t = 0; t < nTheta; t++) {
-    S1_[t] = std::complex<double>(0.0, 0.0);
-    S2_[t] = std::complex<double>(0.0, 0.0);
-  }
+    int i, n, t;
+    std::vector<std::complex<double> > an, bn;
+    std::complex<double> Qbktmp;
+    const std::vector<double>& x = size_parameter_;
+    const std::vector<std::complex<double> >& m = index_;
+    int L = index_.size();
+    // Calculate scattering coefficients
+    ScattCoeffs(L, an, bn);
+
+    std::vector<double> Pi, Tau;
+    Pi.resize(nmax_);
+    Tau.resize(nmax_);
+
+    double x2 = x[L - 1]*x[L - 1];
+
+    // Initialize the scattering parameters
+    Qext_ = 0;
+    Qsca_ = 0;
+    Qabs_ = 0;
+    Qbk_ = 0;
+    Qbktmp = std::complex<double>(0.0, 0.0);
+    Qpr_ = 0;
+    asymmetry_factor_ = 0;
+    albedo_ = 0;
+
+    // Initialize the scattering amplitudes
+    int nTheta = theta_.size();  
+    S1_.resize(nTheta);
+    S2_.resize(nTheta);
+    for (t = 0; t < nTheta; t++) {
+      S1_[t] = std::complex<double>(0.0, 0.0);
+      S2_[t] = std::complex<double>(0.0, 0.0);
+    }
   
 
 
-  // By using downward recurrence we avoid loss of precision due to float rounding errors
-  // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
-  //      http://en.wikipedia.org/wiki/Loss_of_significance
-  for (i = nmax_ - 2; i >= 0; i--) {
-    n = i + 1;
-    // Equation (27)
-    Qext_ += (n + n + 1)*(an[i].real() + bn[i].real());
-    // Equation (28)
-    Qsca_ += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag() + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag());
-    // Equation (29) TODO We must check carefully this equation. If we
-    // remove the typecast to double then the result changes. Which is
-    // the correct one??? Ovidio (2014/12/10) With cast ratio will
-    // give double, without cast (n + n + 1)/(n*(n + 1)) will be
-    // rounded to integer. Tig (2015/02/24)
-    Qpr_ += ((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real());
-    // Equation (33)
-    Qbktmp = Qbktmp + (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]);
+    // By using downward recurrence we avoid loss of precision due to float rounding errors
+    // See: https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
+    //      http://en.wikipedia.org/wiki/Loss_of_significance
+    for (i = nmax_ - 2; i >= 0; i--) {
+      n = i + 1;
+      // Equation (27)
+      Qext_ += (n + n + 1)*(an[i].real() + bn[i].real());
+      // Equation (28)
+      Qsca_ += (n + n + 1)*(an[i].real()*an[i].real() + an[i].imag()*an[i].imag() + bn[i].real()*bn[i].real() + bn[i].imag()*bn[i].imag());
+      // Equation (29) TODO We must check carefully this equation. If we
+      // remove the typecast to double then the result changes. Which is
+      // the correct one??? Ovidio (2014/12/10) With cast ratio will
+      // give double, without cast (n + n + 1)/(n*(n + 1)) will be
+      // rounded to integer. Tig (2015/02/24)
+      Qpr_ += ((n*(n + 2)/(n + 1))*((an[i]*std::conj(an[n]) + bn[i]*std::conj(bn[n])).real()) + ((double)(n + n + 1)/(n*(n + 1)))*(an[i]*std::conj(bn[i])).real());
+      // Equation (33)
+      Qbktmp = Qbktmp + (double)(n + n + 1)*(1 - 2*(n % 2))*(an[i]- bn[i]);
+
+      //****************************************************//
+      // Calculate the scattering amplitudes (S1 and S2)    //
+      // Equations (25a) - (25b)                            //
+      //****************************************************//
+      for (t = 0; t < nTheta; t++) {
+	calcPiTau(theta_[t], Pi, Tau);
+
+	S1_[t] += calc_S1(n, an[i], bn[i], Pi[i], Tau[i]);
+	S2_[t] += calc_S2(n, an[i], bn[i], Pi[i], Tau[i]);
+      }
+    }
+
+    Qext_ = 2*(Qext_)/x2;                                 // Equation (27)
+    Qsca_ = 2*(Qsca_)/x2;                                 // Equation (28)
+    Qpr_ = Qext_ - 4*(Qpr_)/x2;                           // Equation (29)
 
-    //****************************************************//
-    // Calculate the scattering amplitudes (S1 and S2)    //
-    // Equations (25a) - (25b)                            //
-    //****************************************************//
-    for (t = 0; t < nTheta; t++) {
-      calcPiTau(theta_[t], Pi, Tau);
+    Qabs_ = Qext_ - Qsca_;                                // Equation (30)
+    albedo_ = Qsca_ / Qext_;                              // Equation (31)
+    asymmetry_factor_ = (Qext_ - Qpr_) / Qsca_;                          // Equation (32)
 
-      S1_[t] += calc_S1(n, an[i], bn[i], Pi[i], Tau[i]);
-      S2_[t] += calc_S2(n, an[i], bn[i], Pi[i], Tau[i]);
+    Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2;    // Equation (33)
+
+    isMieCalculated_ = true;
+    //return nmax;
+  }
+  // ********************************************************************** //
+  // ********************************************************************** //
+  // ********************************************************************** //
+  // external scattering field = incident + scattered
+  // BH p.92 (4.37), 94 (4.45), 95 (4.50)
+  // assume: medium is non-absorbing; refim = 0; Uabs = 0
+  void MultiLayerMie::fieldExt(double Rho, double Phi, double Theta, std::vector<double> Pi, std::vector<double> Tau,
+			       std::vector<std::complex<double> > an, std::vector<std::complex<double> > bn,
+			       std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H)  {
+
+    int i, n;
+    double rn = 0.0;
+    std::complex<double> zn, xxip, encap;
+    std::vector<std::complex<double> > vm3o1n, vm3e1n, vn3o1n, vn3e1n;
+    vm3o1n.resize(3);
+    vm3e1n.resize(3);
+    vn3o1n.resize(3);
+    vn3e1n.resize(3);
+
+    std::vector<std::complex<double> > Ei, Hi, Es, Hs;
+    Ei.resize(3);
+    Hi.resize(3);
+    Es.resize(3);
+    Hs.resize(3);
+    for (i = 0; i < 3; i++) {
+      Ei[i] = std::complex<double>(0.0, 0.0);
+      Hi[i] = std::complex<double>(0.0, 0.0);
+      Es[i] = std::complex<double>(0.0, 0.0);
+      Hs[i] = std::complex<double>(0.0, 0.0);
+    }
+
+    std::vector<std::complex<double> > bj, by, bd;
+    bj.resize(nmax_);
+    by.resize(nmax_);
+    bd.resize(nmax_);
+
+    // Calculate spherical Bessel and Hankel functions
+    sphericalBessel(Rho, bj, by, bd);
+
+    for (n = 0; n < nmax_; n++) {
+      rn = double(n + 1);
+
+      zn = bj[n] + std::complex<double>(0.0, 1.0)*by[n];
+      xxip = Rho*(bj[n] + std::complex<double>(0.0, 1.0)*by[n]) - rn*zn;
+
+      vm3o1n[0] = std::complex<double>(0.0, 0.0);
+      vm3o1n[1] = std::cos(Phi)*Pi[n]*zn;
+      vm3o1n[2] = -(std::sin(Phi)*Tau[n]*zn);
+      vm3e1n[0] = std::complex<double>(0.0, 0.0);
+      vm3e1n[1] = -(std::sin(Phi)*Pi[n]*zn);
+      vm3e1n[2] = -(std::cos(Phi)*Tau[n]*zn);
+      vn3o1n[0] = std::sin(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
+      vn3o1n[1] = std::sin(Phi)*Tau[n]*xxip/Rho;
+      vn3o1n[2] = std::cos(Phi)*Pi[n]*xxip/Rho;
+      vn3e1n[0] = std::cos(Phi)*rn*(rn + 1.0)*std::sin(Theta)*Pi[n]*zn/Rho;
+      vn3e1n[1] = std::cos(Phi)*Tau[n]*xxip/Rho;
+      vn3e1n[2] = -(std::sin(Phi)*Pi[n]*xxip/Rho);
+
+      // scattered field: BH p.94 (4.45)
+      encap = std::pow(std::complex<double>(0.0, 1.0), rn)*(2.0*rn + 1.0)/(rn*(rn + 1.0));
+      for (i = 0; i < 3; i++) {
+	Es[i] = Es[i] + encap*(std::complex<double>(0.0, 1.0)*an[n]*vn3e1n[i] - bn[n]*vm3o1n[i]);
+	Hs[i] = Hs[i] + encap*(std::complex<double>(0.0, 1.0)*bn[n]*vn3o1n[i] + an[n]*vm3e1n[i]);
+      }
+    }
+
+    // incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
+    // basis unit vectors = er, etheta, ephi
+    std::complex<double> eifac = std::exp(std::complex<double>(0.0, 1.0)*Rho*std::cos(Theta));
+
+    Ei[0] = eifac*std::sin(Theta)*std::cos(Phi);
+    Ei[1] = eifac*std::cos(Theta)*std::cos(Phi);
+    Ei[2] = -(eifac*std::sin(Phi));
+
+    // magnetic field
+    double hffact = 1.0/(cc*mu);
+    for (i = 0; i < 3; i++) {
+      Hs[i] = hffact*Hs[i];
+    }
+
+    // incident H field: BH p.26 (2.43), p.89 (4.21)
+    std::complex<double> hffacta = hffact;
+    std::complex<double> hifac = eifac*hffacta;
+
+    Hi[0] = hifac*std::sin(Theta)*std::sin(Phi);
+    Hi[1] = hifac*std::cos(Theta)*std::sin(Phi);
+    Hi[2] = hifac*std::cos(Phi);
+
+    for (i = 0; i < 3; i++) {
+      // electric field E [V m-1] = EF*E0
+      E[i] = Ei[i] + Es[i];
+      H[i] = Hi[i] + Hs[i];
     }
   }
 
-  Qext_ = 2*(Qext_)/x2;                                 // Equation (27)
-  Qsca_ = 2*(Qsca_)/x2;                                 // Equation (28)
-  Qpr_ = Qext_ - 4*(Qpr_)/x2;                           // Equation (29)
-
-  Qabs_ = Qext_ - Qsca_;                                // Equation (30)
-  albedo_ = Qsca_ / Qext_;                              // Equation (31)
-  asymmetry_factor_ = (Qext_ - Qpr_) / Qsca_;                          // Equation (32)
-
-  Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2;    // Equation (33)
-
-  isMieCalculated_ = true;
-  //return nmax;
-}
-
-
-
-
-
-//**********************************************************************************//
-// This function calculates complex electric and magnetic field in the surroundings //
-// and inside (TODO) the particle.                                                  //
-//                                                                                  //
-// Input parameters:                                                                //
-//   L: Number of layers                                                            //
-//   pl: Index of PEC layer. If there is none just send 0 (zero)                    //
-//   x: Array containing the size parameters of the layers [0..L-1]                 //
-//   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
-//   nmax: Maximum number of multipolar expansion terms to be used for the          //
-//         calculations. Only use it if you know what you are doing, otherwise      //
-//         set this parameter to 0 (zero) and the function will calculate it.       //
-//   ncoord: Number of coordinate points                                            //
-//   Coords: Array containing all coordinates where the complex electric and        //
-//           magnetic fields will be calculated                                     //
-//                                                                                  //
-// Output parameters:                                                               //
-//   E, H: Complex electric and magnetic field at the provided coordinates          //
-//                                                                                  //
-// Return value:                                                                    //
-//   Number of multipolar expansion terms used for the calculations                 //
-//**********************************************************************************//
-
-//   int MultiLayerMie::nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
-//            int ncoord, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp,
-// 		   std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
-
-//   int i, c;
-//   double Rho, Phi, Theta;
-//   std::vector<std::complex<double> > an, bn;
-
-//   // This array contains the fields in spherical coordinates
-//   std::vector<std::complex<double> > Es, Hs;
-//   Es.resize(3);
-//   Hs.resize(3);
-
-
-//   // Calculate scattering coefficients
-//   ScattCoeffs(L, pl, an, bn);
-
-//   std::vector<double> Pi, Tau;
-//   Pi.resize(nmax_);
-//   Tau.resize(nmax_);
-
-//   for (c = 0; c < ncoord; c++) {
-//     // Convert to spherical coordinates
-//     Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
-//     if (Rho < 1e-3) {
-//       // Avoid convergence problems
-//       Rho = 1e-3;
-//     }
-//     Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
-//     Theta = acos(Xp[c]/Rho);
-
-//     calcPiTau(Theta, Pi, Tau);
-
-//     //*******************************************************//
-//     // external scattering field = incident + scattered      //
-//     // BH p.92 (4.37), 94 (4.45), 95 (4.50)                  //
-//     // assume: medium is non-absorbing; refim = 0; Uabs = 0  //
-//     //*******************************************************//
-
-//     // Firstly the easiest case: the field outside the particle
-//     if (Rho >= x[L - 1]) {
-//       fieldExt(Rho, Phi, Theta, Pi, Tau, an, bn, Es, Hs);
-//     } else {
-//       // TODO, for now just set all the fields to zero
-//       for (i = 0; i < 3; i++) {
-//         Es[i] = std::complex<double>(0.0, 0.0);
-//         Hs[i] = std::complex<double>(0.0, 0.0);
-//       }
-//     }
-
-//     //Now, convert the fields back to cartesian coordinates
-//     E[c][0] = std::sin(Theta)*std::cos(Phi)*Es[0] + std::cos(Theta)*std::cos(Phi)*Es[1] - std::sin(Phi)*Es[2];
-//     E[c][1] = std::sin(Theta)*std::sin(Phi)*Es[0] + std::cos(Theta)*std::sin(Phi)*Es[1] + std::cos(Phi)*Es[2];
-//     E[c][2] = std::cos(Theta)*Es[0] - std::sin(Theta)*Es[1];
-
-//     H[c][0] = std::sin(Theta)*std::cos(Phi)*Hs[0] + std::cos(Theta)*std::cos(Phi)*Hs[1] - std::sin(Phi)*Hs[2];
-//     H[c][1] = std::sin(Theta)*std::sin(Phi)*Hs[0] + std::cos(Theta)*std::sin(Phi)*Hs[1] + std::cos(Phi)*Hs[2];
-//     H[c][2] = std::cos(Theta)*Hs[0] - std::sin(Theta)*Hs[1];
-//   }
-
-//   return nmax;
-// }  // end of int nField()
+  // ********************************************************************** //
+  // ********************************************************************** //
+  // ********************************************************************** //
+
+  //**********************************************************************************//
+  // This function calculates complex electric and magnetic field in the surroundings //
+  // and inside (TODO) the particle.                                                  //
+  //                                                                                  //
+  // Input parameters:                                                                //
+  //   L: Number of layers                                                            //
+  //   pl: Index of PEC layer. If there is none just send 0 (zero)                    //
+  //   x: Array containing the size parameters of the layers [0..L-1]                 //
+  //   m: Array containing the relative refractive indexes of the layers [0..L-1]     //
+  //   nmax: Maximum number of multipolar expansion terms to be used for the          //
+  //         calculations. Only use it if you know what you are doing, otherwise      //
+  //         set this parameter to 0 (zero) and the function will calculate it.       //
+  //   ncoord: Number of coordinate points                                            //
+  //   Coords: Array containing all coordinates where the complex electric and        //
+  //           magnetic fields will be calculated                                     //
+  //                                                                                  //
+  // Output parameters:                                                               //
+  //   E, H: Complex electric and magnetic field at the provided coordinates          //
+  //                                                                                  //
+  // Return value:                                                                    //
+  //   Number of multipolar expansion terms used for the calculations                 //
+  //**********************************************************************************//
+
+  //   int MultiLayerMie::nField(int L, int pl, std::vector<double> x, std::vector<std::complex<double> > m, int nmax,
+  //            int ncoord, std::vector<double> Xp, std::vector<double> Yp, std::vector<double> Zp,
+  // 		   std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
+
+  //   int i, c;
+  //   double Rho, Phi, Theta;
+  //   std::vector<std::complex<double> > an, bn;
+
+  //   // This array contains the fields in spherical coordinates
+  //   std::vector<std::complex<double> > Es, Hs;
+  //   Es.resize(3);
+  //   Hs.resize(3);
+
+
+  //   // Calculate scattering coefficients
+  //   ScattCoeffs(L, pl, an, bn);
+
+  //   std::vector<double> Pi, Tau;
+  //   Pi.resize(nmax_);
+  //   Tau.resize(nmax_);
+
+  //   for (c = 0; c < ncoord; c++) {
+  //     // Convert to spherical coordinates
+  //     Rho = sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c] + Zp[c]*Zp[c]);
+  //     if (Rho < 1e-3) {
+  //       // Avoid convergence problems
+  //       Rho = 1e-3;
+  //     }
+  //     Phi = acos(Xp[c]/sqrt(Xp[c]*Xp[c] + Yp[c]*Yp[c]));
+  //     Theta = acos(Xp[c]/Rho);
+
+  //     calcPiTau(Theta, Pi, Tau);
+
+  //     //*******************************************************//
+  //     // external scattering field = incident + scattered      //
+  //     // BH p.92 (4.37), 94 (4.45), 95 (4.50)                  //
+  //     // assume: medium is non-absorbing; refim = 0; Uabs = 0  //
+  //     //*******************************************************//
+
+  //     // Firstly the easiest case: the field outside the particle
+  //     if (Rho >= x[L - 1]) {
+  //       fieldExt(Rho, Phi, Theta, Pi, Tau, an, bn, Es, Hs);
+  //     } else {
+  //       // TODO, for now just set all the fields to zero
+  //       for (i = 0; i < 3; i++) {
+  //         Es[i] = std::complex<double>(0.0, 0.0);
+  //         Hs[i] = std::complex<double>(0.0, 0.0);
+  //       }
+  //     }
+
+  //     //Now, convert the fields back to cartesian coordinates
+  //     E[c][0] = std::sin(Theta)*std::cos(Phi)*Es[0] + std::cos(Theta)*std::cos(Phi)*Es[1] - std::sin(Phi)*Es[2];
+  //     E[c][1] = std::sin(Theta)*std::sin(Phi)*Es[0] + std::cos(Theta)*std::sin(Phi)*Es[1] + std::cos(Phi)*Es[2];
+  //     E[c][2] = std::cos(Theta)*Es[0] - std::sin(Theta)*Es[1];
+
+  //     H[c][0] = std::sin(Theta)*std::cos(Phi)*Hs[0] + std::cos(Theta)*std::cos(Phi)*Hs[1] - std::sin(Phi)*Hs[2];
+  //     H[c][1] = std::sin(Theta)*std::sin(Phi)*Hs[0] + std::cos(Theta)*std::sin(Phi)*Hs[1] + std::cos(Phi)*Hs[2];
+  //     H[c][2] = std::cos(Theta)*Hs[0] - std::sin(Theta)*Hs[1];
+  //   }
+
+  //   return nmax;
+  // }  // end of int nField()
 
 }  // end of namespace nmie

+ 11 - 2
nmie-wrapper.h

@@ -155,7 +155,7 @@ namespace nmie {
 
     int Nstop(double xL);
     int Nmax(int L, int fl);
-    int sbesjh(std::complex<double> z, std::vector<std::complex<double> >& jn,
+    void sbesjh(std::complex<double> z, std::vector<std::complex<double> >& jn,
 	       std::vector<std::complex<double> >& jnp, std::vector<std::complex<double> >& h1n,
 	       std::vector<std::complex<double> >& h1np);
     void sphericalBessel(std::complex<double> z, std::vector<std::complex<double> >& bj,
@@ -184,7 +184,6 @@ namespace nmie {
     void calcPiTau( double Theta, std::vector<double>& Pi, std::vector<double>& Tau);
     void ScattCoeffs(int L, std::vector<std::complex<double> >& an, std::vector<std::complex<double> >& bn); 
     
-    const double PI=3.14159265358979323846;
     bool isMieCalculated_ = false;
     double wavelength_ = 1.0;
     double total_radius_ = 0.0;
@@ -205,6 +204,16 @@ namespace nmie {
     /// Store result
     double Qsca_ = 0.0, Qext_ = 0.0, Qabs_ = 0.0, Qbk_ = 0.0, Qpr_ = 0.0, asymmetry_factor_ = 0.0, albedo_ = 0.0;
     std::vector<std::complex<double> > S1_, S2_;
+
+    //Used constants
+    const double PI=3.14159265358979323846;  
+    // light speed [m s-1]
+    double const cc = 2.99792458e8;
+    // assume non-magnetic (MU=MU0=const) [N A-2]
+    double const mu = 4.0*PI*1.0e-7;
+
+#define round(x) ((x) >= 0 ? (int)((x) + 0.5):(int)((x) - 0.5))
+
   };  // end of class MultiLayerMie
 
 }  // end of namespace nmie