|
@@ -39,6 +39,7 @@ def unit_vector(vector):
|
|
""" Returns the unit vector of the vector. """
|
|
""" Returns the unit vector of the vector. """
|
|
return vector / np.linalg.norm(vector)
|
|
return vector / np.linalg.norm(vector)
|
|
|
|
|
|
|
|
+
|
|
def angle_between(v1, v2):
|
|
def angle_between(v1, v2):
|
|
""" Returns the angle in radians between vectors 'v1' and 'v2'::
|
|
""" Returns the angle in radians between vectors 'v1' and 'v2'::
|
|
|
|
|
|
@@ -59,66 +60,70 @@ def angle_between(v1, v2):
|
|
return np.pi
|
|
return np.pi
|
|
return angle
|
|
return angle
|
|
###############################################################################
|
|
###############################################################################
|
|
|
|
+
|
|
|
|
+
|
|
def GetFlow3D(x0, y0, z0, max_length, max_angle, x, m, pl):
|
|
def GetFlow3D(x0, y0, z0, max_length, max_angle, x, m, pl):
|
|
# Initial position
|
|
# Initial position
|
|
flow_x = [x0]
|
|
flow_x = [x0]
|
|
flow_y = [y0]
|
|
flow_y = [y0]
|
|
flow_z = [z0]
|
|
flow_z = [z0]
|
|
- max_step = x[-1]/3
|
|
|
|
- min_step = x[0]/2000
|
|
|
|
|
|
+ max_step = x[-1] / 3
|
|
|
|
+ min_step = x[0] / 2000
|
|
# max_step = min_step
|
|
# max_step = min_step
|
|
- step = min_step*2.0
|
|
|
|
|
|
+ step = min_step * 2.0
|
|
if max_step < min_step:
|
|
if max_step < min_step:
|
|
max_step = min_step
|
|
max_step = min_step
|
|
coord = np.vstack(([flow_x[-1]], [flow_y[-1]], [flow_z[-1]])).transpose()
|
|
coord = np.vstack(([flow_x[-1]], [flow_y[-1]], [flow_z[-1]])).transpose()
|
|
- terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord,pl=pl)
|
|
|
|
|
|
+ terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord, pl=pl)
|
|
Ec, Hc = E[0, 0, :], H[0, 0, :]
|
|
Ec, Hc = E[0, 0, :], H[0, 0, :]
|
|
S = np.cross(Ec, Hc.conjugate()).real
|
|
S = np.cross(Ec, Hc.conjugate()).real
|
|
- Snorm_prev = S/np.linalg.norm(S)
|
|
|
|
|
|
+ Snorm_prev = S / np.linalg.norm(S)
|
|
Sprev = S
|
|
Sprev = S
|
|
length = 0
|
|
length = 0
|
|
dpos = step
|
|
dpos = step
|
|
count = 0
|
|
count = 0
|
|
while length < max_length:
|
|
while length < max_length:
|
|
count = count + 1
|
|
count = count + 1
|
|
- if (count>3000): # Limit length of the absorbed power streamlines
|
|
|
|
|
|
+ if (count > 4000): # Limit length of the absorbed power streamlines
|
|
break
|
|
break
|
|
- if step<max_step:
|
|
|
|
- step = step*2.0
|
|
|
|
|
|
+ if step < max_step:
|
|
|
|
+ step = step * 2.0
|
|
r = np.sqrt(flow_x[-1]**2 + flow_y[-1]**2 + flow_z[-1]**2)
|
|
r = np.sqrt(flow_x[-1]**2 + flow_y[-1]**2 + flow_z[-1]**2)
|
|
while step > min_step:
|
|
while step > min_step:
|
|
- #Evaluate displacement from previous poynting vector
|
|
|
|
|
|
+ # Evaluate displacement from previous poynting vector
|
|
dpos = step
|
|
dpos = step
|
|
- dx = dpos*Snorm_prev[0];
|
|
|
|
- dy = dpos*Snorm_prev[1];
|
|
|
|
- dz = dpos*Snorm_prev[2];
|
|
|
|
- #Test the next position not to turn\chang size for more than max_angle
|
|
|
|
- coord = np.vstack(([flow_x[-1]+dx], [flow_y[-1]+dy], [flow_z[-1]+dz])).transpose()
|
|
|
|
- terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord,pl=pl)
|
|
|
|
|
|
+ dx = dpos * Snorm_prev[0]
|
|
|
|
+ dy = dpos * Snorm_prev[1]
|
|
|
|
+ dz = dpos * Snorm_prev[2]
|
|
|
|
+ # Test the next position not to turn\chang size for more than
|
|
|
|
+ # max_angle
|
|
|
|
+ coord = np.vstack(([flow_x[-1] + dx], [flow_y[-1] + dy],
|
|
|
|
+ [flow_z[-1] + dz])).transpose()
|
|
|
|
+ terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord, pl=pl)
|
|
Ec, Hc = E[0, 0, :], H[0, 0, :]
|
|
Ec, Hc = E[0, 0, :], H[0, 0, :]
|
|
- Eth = max(np.absolute(Ec))/1e10
|
|
|
|
- Hth = max(np.absolute(Hc))/1e10
|
|
|
|
- for i in xrange(0,len(Ec)):
|
|
|
|
|
|
+ Eth = max(np.absolute(Ec)) / 1e10
|
|
|
|
+ Hth = max(np.absolute(Hc)) / 1e10
|
|
|
|
+ for i in xrange(0, len(Ec)):
|
|
if abs(Ec[i]) < Eth:
|
|
if abs(Ec[i]) < Eth:
|
|
- Ec[i] = 0+0j
|
|
|
|
|
|
+ Ec[i] = 0 + 0j
|
|
if abs(Hc[i]) < Hth:
|
|
if abs(Hc[i]) < Hth:
|
|
- Hc[i] = 0+0j
|
|
|
|
|
|
+ Hc[i] = 0 + 0j
|
|
S = np.cross(Ec, Hc.conjugate()).real
|
|
S = np.cross(Ec, Hc.conjugate()).real
|
|
if not np.isfinite(S).all():
|
|
if not np.isfinite(S).all():
|
|
break
|
|
break
|
|
- Snorm = S/np.linalg.norm(S)
|
|
|
|
- diff = (S-Sprev)/max(np.linalg.norm(S), np.linalg.norm(Sprev))
|
|
|
|
- if np.linalg.norm(diff)<max_angle:
|
|
|
|
- # angle = angle_between(Snorm, Snorm_prev)
|
|
|
|
- # if abs(angle) < max_angle:
|
|
|
|
|
|
+ Snorm = S / np.linalg.norm(S)
|
|
|
|
+ diff = (S - Sprev) / max(np.linalg.norm(S), np.linalg.norm(Sprev))
|
|
|
|
+ if np.linalg.norm(diff) < max_angle:
|
|
|
|
+ # angle = angle_between(Snorm, Snorm_prev)
|
|
|
|
+ # if abs(angle) < max_angle:
|
|
break
|
|
break
|
|
- step = step/2.0
|
|
|
|
- #3. Save result
|
|
|
|
|
|
+ step = step / 2.0
|
|
|
|
+ # 3. Save result
|
|
Sprev = S
|
|
Sprev = S
|
|
Snorm_prev = Snorm
|
|
Snorm_prev = Snorm
|
|
- dx = dpos*Snorm_prev[0];
|
|
|
|
- dy = dpos*Snorm_prev[1];
|
|
|
|
- dz = dpos*Snorm_prev[2];
|
|
|
|
|
|
+ dx = dpos * Snorm_prev[0]
|
|
|
|
+ dy = dpos * Snorm_prev[1]
|
|
|
|
+ dz = dpos * Snorm_prev[2]
|
|
length = length + step
|
|
length = length + step
|
|
flow_x.append(flow_x[-1] + dx)
|
|
flow_x.append(flow_x[-1] + dx)
|
|
flow_y.append(flow_y[-1] + dy)
|
|
flow_y.append(flow_y[-1] + dy)
|
|
@@ -129,216 +134,201 @@ def GetFlow3D(x0, y0, z0, max_length, max_angle, x, m, pl):
|
|
###############################################################################
|
|
###############################################################################
|
|
def GetField(crossplane, npts, factor, x, m, pl):
|
|
def GetField(crossplane, npts, factor, x, m, pl):
|
|
"""
|
|
"""
|
|
- crossplane: XZ, YZ, XY, or XYZ (half is XZ, half is YZ)
|
|
|
|
|
|
+ crossplane: XZ, YZ, XY
|
|
npts: number of point in each direction
|
|
npts: number of point in each direction
|
|
factor: ratio of plotting size to outer size of the particle
|
|
factor: ratio of plotting size to outer size of the particle
|
|
x: size parameters for particle layers
|
|
x: size parameters for particle layers
|
|
m: relative index values for particle layers
|
|
m: relative index values for particle layers
|
|
"""
|
|
"""
|
|
- scan = np.linspace(-factor*x[-1], factor*x[-1], npts)
|
|
|
|
- zero = np.zeros(npts*npts, dtype = np.float64)
|
|
|
|
-
|
|
|
|
- if crossplane=='XZ':
|
|
|
|
|
|
+ scan = np.linspace(-factor * x[-1], factor * x[-1], npts)
|
|
|
|
+ zero = np.zeros(npts * npts, dtype=np.float64)
|
|
|
|
+ if crossplane == 'XZ':
|
|
coordX, coordZ = np.meshgrid(scan, scan)
|
|
coordX, coordZ = np.meshgrid(scan, scan)
|
|
- coordX.resize(npts*npts)
|
|
|
|
- coordZ.resize(npts*npts)
|
|
|
|
|
|
+ coordX.resize(npts * npts)
|
|
|
|
+ coordZ.resize(npts * npts)
|
|
coordY = zero
|
|
coordY = zero
|
|
- elif crossplane=='YZ':
|
|
|
|
|
|
+ coordPlot1 = coordX
|
|
|
|
+ coordPlot2 = coordZ
|
|
|
|
+ elif crossplane == 'YZ':
|
|
coordY, coordZ = np.meshgrid(scan, scan)
|
|
coordY, coordZ = np.meshgrid(scan, scan)
|
|
- coordY.resize(npts*npts)
|
|
|
|
- coordZ.resize(npts*npts)
|
|
|
|
|
|
+ coordY.resize(npts * npts)
|
|
|
|
+ coordZ.resize(npts * npts)
|
|
coordX = zero
|
|
coordX = zero
|
|
- elif crossplane=='XY':
|
|
|
|
|
|
+ coordPlot1 = coordY
|
|
|
|
+ coordPlot2 = coordZ
|
|
|
|
+ elif crossplane == 'XY':
|
|
coordX, coordY = np.meshgrid(scan, scan)
|
|
coordX, coordY = np.meshgrid(scan, scan)
|
|
- coordX.resize(npts*npts)
|
|
|
|
- coordY.resize(npts*npts)
|
|
|
|
|
|
+ coordX.resize(npts * npts)
|
|
|
|
+ coordY.resize(npts * npts)
|
|
coordZ = zero
|
|
coordZ = zero
|
|
- elif crossplane=='XYZ':
|
|
|
|
- coordX, coordZ = np.meshgrid(scan, scan)
|
|
|
|
- coordY, coordZ = np.meshgrid(scan, scan)
|
|
|
|
- half=npts//2
|
|
|
|
- # coordX = np.copy(coordX)
|
|
|
|
- # coordY = np.copy(coordY)
|
|
|
|
- coordX[:,:half]=0
|
|
|
|
- coordY[:,half:]=0
|
|
|
|
- coordX.resize(npts*npts)
|
|
|
|
- coordY.resize(npts*npts)
|
|
|
|
- coordZ.resize(npts*npts)
|
|
|
|
-
|
|
|
|
|
|
+ coordPlot1 = coordY
|
|
|
|
+ coordPlot2 = coordX
|
|
|
|
+
|
|
coord = np.vstack((coordX, coordY, coordZ)).transpose()
|
|
coord = np.vstack((coordX, coordY, coordZ)).transpose()
|
|
terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord, pl=pl)
|
|
terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord, pl=pl)
|
|
Ec = E[0, :, :]
|
|
Ec = E[0, :, :]
|
|
Hc = H[0, :, :]
|
|
Hc = H[0, :, :]
|
|
- P=[]
|
|
|
|
- P = np.array(map(lambda n: np.linalg.norm(np.cross(Ec[n], Hc[n])), range(0, len(E[0]))))
|
|
|
|
|
|
+ P = []
|
|
|
|
+ P = np.array(map(lambda n: np.linalg.norm(np.cross(Ec[n], Hc[n])).real,
|
|
|
|
+ range(0, len(E[0]))))
|
|
|
|
|
|
# for n in range(0, len(E[0])):
|
|
# for n in range(0, len(E[0])):
|
|
# P.append(np.linalg.norm( np.cross(Ec[n], np.conjugate(Hc[n]) ).real/2 ))
|
|
# P.append(np.linalg.norm( np.cross(Ec[n], np.conjugate(Hc[n]) ).real/2 ))
|
|
- return Ec, Hc, P
|
|
|
|
|
|
+ return Ec, Hc, P, coordPlot1, coordPlot2
|
|
###############################################################################
|
|
###############################################################################
|
|
-def fieldplot(x,m, WL, comment='', WL_units=' ', crossplane='XZ', field_to_plot='Pabs',npts=101, factor=2.1, flow_total=11, is_flow_extend=True, pl=-1, outline_width=1):
|
|
|
|
- Ec, Hc, P = GetField(crossplane, npts, factor, x, m, pl)
|
|
|
|
- scan = np.linspace(-factor*x[-1], factor*x[-1], npts)
|
|
|
|
- coordX1, coordZ1 = np.meshgrid(scan, scan)
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
+def fieldplot(fig, ax, x, m, WL, comment='', WL_units=' ', crossplane='XZ',
|
|
|
|
+ field_to_plot='Pabs', npts=101, factor=2.1, flow_total=11,
|
|
|
|
+ is_flow_extend=True, pl=-1, outline_width=1, subplot_label=' '):
|
|
|
|
+ Ec, Hc, P, coordX, coordZ = GetField(crossplane, npts, factor, x, m, pl)
|
|
Er = np.absolute(Ec)
|
|
Er = np.absolute(Ec)
|
|
Hr = np.absolute(Hc)
|
|
Hr = np.absolute(Hc)
|
|
-
|
|
|
|
try:
|
|
try:
|
|
- import matplotlib.pyplot as plt
|
|
|
|
from matplotlib import cm
|
|
from matplotlib import cm
|
|
from matplotlib.colors import LogNorm
|
|
from matplotlib.colors import LogNorm
|
|
if field_to_plot == 'Pabs':
|
|
if field_to_plot == 'Pabs':
|
|
- Eabs_data = np.resize(P, (npts, npts)).T
|
|
|
|
- #label = r'$\operatorname{Re}(E \times H^*)$'
|
|
|
|
- label = r'$\left |E \times H\right|$'
|
|
|
|
|
|
+ Eabs_data = np.resize(P, (npts, npts)).T
|
|
|
|
+ label = r'$\operatorname{Re}(E \times H)$'
|
|
elif field_to_plot == 'Eabs':
|
|
elif field_to_plot == 'Eabs':
|
|
- Eabs = np.sqrt(Er[ :, 0]**2 + Er[ :, 1]**2 + Er[ :, 2]**2)
|
|
|
|
- Eabs_data = np.resize(Eabs, (npts, npts)).T
|
|
|
|
|
|
+ Eabs = np.sqrt(Er[:, 0]**2 + Er[:, 1]**2 + Er[:, 2]**2)
|
|
|
|
+ Eabs_data = np.resize(Eabs, (npts, npts)).T
|
|
label = r'$|E|$'
|
|
label = r'$|E|$'
|
|
elif field_to_plot == 'Habs':
|
|
elif field_to_plot == 'Habs':
|
|
- Habs= np.sqrt(Hr[ :, 0]**2 + Hr[ :, 1]**2 + Hr[ :, 2]**2)
|
|
|
|
- Eabs_data = np.resize(Habs, (npts, npts)).T
|
|
|
|
|
|
+ Habs = np.sqrt(Hr[:, 0]**2 + Hr[:, 1]**2 + Hr[:, 2]**2)
|
|
|
|
+ Eabs_data = np.resize(Habs, (npts, npts)).T
|
|
label = r'$|H|$'
|
|
label = r'$|H|$'
|
|
elif field_to_plot == 'angleEx':
|
|
elif field_to_plot == 'angleEx':
|
|
- Eangle = np.angle(Ec[ :, 0])/np.pi*180
|
|
|
|
- Eabs_data = np.resize(Eangle, (npts, npts)).T
|
|
|
|
|
|
+ Eangle = np.angle(Ec[:, 0]) / np.pi * 180
|
|
|
|
+ Eabs_data = np.resize(Eangle, (npts, npts)).T
|
|
label = r'$arg(E_x)$'
|
|
label = r'$arg(E_x)$'
|
|
elif field_to_plot == 'angleHy':
|
|
elif field_to_plot == 'angleHy':
|
|
- Hangle = np.angle(Hc[ :, 1])/np.pi*180
|
|
|
|
- Eabs_data = np.resize(Hangle, (npts, npts)).T
|
|
|
|
|
|
+ Hangle = np.angle(Hc[:, 1]) / np.pi * 180
|
|
|
|
+ Eabs_data = np.resize(Hangle, (npts, npts)).T
|
|
label = r'$arg(H_y)$'
|
|
label = r'$arg(H_y)$'
|
|
|
|
|
|
- fig, ax = plt.subplots(1,1)
|
|
|
|
# Rescale to better show the axes
|
|
# Rescale to better show the axes
|
|
- # scale_x = np.linspace(min(coordX1)*WL/2.0/np.pi, max(coordX1)*WL/2.0/np.pi, npts)
|
|
|
|
- # scale_z = np.linspace(min(coordZ1)*WL/2.0/np.pi, max(coordZ1)*WL/2.0/np.pi, npts)
|
|
|
|
- scale_x = np.linspace(-factor*x[-1]*WL/2.0/np.pi, factor*x[-1]*WL/2.0/np.pi, npts)
|
|
|
|
- scale_z = np.linspace(-factor*x[-1]*WL/2.0/np.pi, factor*x[-1]*WL/2.0/np.pi, npts)
|
|
|
|
|
|
+ scale_x = np.linspace(
|
|
|
|
+ min(coordX) * WL / 2.0 / np.pi, max(coordX) * WL / 2.0 / np.pi, npts)
|
|
|
|
+ scale_z = np.linspace(
|
|
|
|
+ min(coordZ) * WL / 2.0 / np.pi, max(coordZ) * WL / 2.0 / np.pi, npts)
|
|
|
|
|
|
# Define scale ticks
|
|
# Define scale ticks
|
|
min_tick = np.amin(Eabs_data[~np.isnan(Eabs_data)])
|
|
min_tick = np.amin(Eabs_data[~np.isnan(Eabs_data)])
|
|
|
|
+ #min_tick = 0.1
|
|
max_tick = np.amax(Eabs_data[~np.isnan(Eabs_data)])
|
|
max_tick = np.amax(Eabs_data[~np.isnan(Eabs_data)])
|
|
- scale_ticks = np.linspace(min_tick, max_tick, 6)
|
|
|
|
-
|
|
|
|
|
|
+ #max_tick = 60
|
|
|
|
+ scale_ticks = np.linspace(min_tick, max_tick, 5)
|
|
|
|
+ #scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6))
|
|
|
|
+ #scale_ticks = [0.1,0.3,1,3,10, max_tick]
|
|
# Interpolation can be 'nearest', 'bilinear' or 'bicubic'
|
|
# Interpolation can be 'nearest', 'bilinear' or 'bicubic'
|
|
ax.set_title(label)
|
|
ax.set_title(label)
|
|
- my_cmap = cm.jet
|
|
|
|
- if not (field_to_plot == 'angleEx' or field_to_plot == 'angleHy'):
|
|
|
|
- my_cmap.set_under('w')
|
|
|
|
- cax = ax.imshow(Eabs_data, interpolation = 'nearest', cmap = my_cmap,
|
|
|
|
- origin = 'lower'
|
|
|
|
- , vmin = min_tick+max_tick*1e-15, vmax = max_tick
|
|
|
|
- , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z))
|
|
|
|
- #,norm = LogNorm()
|
|
|
|
|
|
+ # build a rectangle in axes coords
|
|
|
|
+ ax.annotate(subplot_label, xy=(0.0, 1.1), xycoords='axes fraction', # fontsize=10,
|
|
|
|
+ horizontalalignment='left', verticalalignment='top')
|
|
|
|
+ # ax.text(right, top, subplot_label,
|
|
|
|
+ # horizontalalignment='right',
|
|
|
|
+ # verticalalignment='bottom',
|
|
|
|
+ # transform=ax.transAxes)
|
|
|
|
+ cax = ax.imshow(Eabs_data, interpolation='nearest', cmap=cm.jet,
|
|
|
|
+ origin='lower', vmin=min_tick, vmax=max_tick, extent=(min(scale_x), max(scale_x), min(scale_z), max(scale_z))
|
|
|
|
+ # ,norm = LogNorm()
|
|
)
|
|
)
|
|
ax.axis("image")
|
|
ax.axis("image")
|
|
|
|
|
|
# Add colorbar
|
|
# Add colorbar
|
|
- cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
|
|
|
|
- cbar.ax.set_yticklabels(['%5.3g' % (a) for a in scale_ticks]) # vertically oriented colorbar
|
|
|
|
- pos = list(cbar.ax.get_position().bounds)
|
|
|
|
|
|
+ cbar = fig.colorbar(cax, ticks=[a for a in scale_ticks], ax=ax)
|
|
|
|
+ # vertically oriented colorbar
|
|
|
|
+ cbar.ax.set_yticklabels(['%3.2f' % (a) for a in scale_ticks])
|
|
|
|
+ # pos = list(cbar.ax.get_position().bounds)
|
|
#fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
|
|
#fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
|
|
- if crossplane=='XZ':
|
|
|
|
- plt.xlabel('Z, '+WL_units)
|
|
|
|
- plt.ylabel('X, '+WL_units)
|
|
|
|
- elif crossplane=='YZ':
|
|
|
|
- plt.xlabel('Z, '+WL_units)
|
|
|
|
- plt.ylabel('Y, '+WL_units)
|
|
|
|
- elif crossplane=='XYZ':
|
|
|
|
- plt.xlabel('Z, '+WL_units)
|
|
|
|
- plt.ylabel('Y:X, '+WL_units)
|
|
|
|
- elif crossplane=='XY':
|
|
|
|
- plt.xlabel('Y, '+WL_units)
|
|
|
|
- plt.ylabel('X, '+WL_units)
|
|
|
|
-
|
|
|
|
-
|
|
|
|
|
|
+ lp2 = -10.0
|
|
|
|
+ lp1 = -1.0
|
|
|
|
+ if crossplane == 'XZ':
|
|
|
|
+ ax.set_xlabel('Z, ' + WL_units, labelpad=lp1)
|
|
|
|
+ ax.set_ylabel('X, ' + WL_units, labelpad=lp2)
|
|
|
|
+ elif crossplane == 'YZ':
|
|
|
|
+ ax.set_xlabel('Z, ' + WL_units, labelpad=lp1)
|
|
|
|
+ ax.set_ylabel('Y, ' + WL_units, labelpad=lp2)
|
|
|
|
+ elif crossplane == 'XY':
|
|
|
|
+ ax.set_xlabel('Y, ' + WL_units, labelpad=lp1)
|
|
|
|
+ ax.set_ylabel('X, ' + WL_units, labelpad=lp2)
|
|
# # This part draws the nanoshell
|
|
# # This part draws the nanoshell
|
|
from matplotlib import patches
|
|
from matplotlib import patches
|
|
from matplotlib.path import Path
|
|
from matplotlib.path import Path
|
|
- x_edge = (x[-1], x[0])
|
|
|
|
- for xx in x_edge:
|
|
|
|
- r= xx*WL/2.0/np.pi
|
|
|
|
- s1 = patches.Arc((0, 0), 2.0*r, 2.0*r, angle=0.0, zorder=1.8,
|
|
|
|
|
|
+ for xx in x:
|
|
|
|
+ r = xx * WL / 2.0 / np.pi
|
|
|
|
+ s1 = patches.Arc((0, 0), 2.0 * r, 2.0 * r, angle=0.0, zorder=1.8,
|
|
theta1=0.0, theta2=360.0, linewidth=outline_width, color='black')
|
|
theta1=0.0, theta2=360.0, linewidth=outline_width, color='black')
|
|
ax.add_patch(s1)
|
|
ax.add_patch(s1)
|
|
- if (not crossplane=='XY') and flow_total>0:
|
|
|
|
|
|
+ #
|
|
|
|
+ # for flow in range(0,flow_total):
|
|
|
|
+ # flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
|
|
|
|
+ # min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),
|
|
|
|
+ # min(scale_z),
|
|
|
|
+ # #0.0,
|
|
|
|
+ # npts*16)
|
|
|
|
+ # verts = np.vstack((flow_z, flow_x)).transpose().tolist()
|
|
|
|
+ # #codes = [Path.CURVE4]*len(verts)
|
|
|
|
+ # codes = [Path.LINETO]*len(verts)
|
|
|
|
+ # codes[0] = Path.MOVETO
|
|
|
|
+ # path = Path(verts, codes)
|
|
|
|
+ # patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='yellow')
|
|
|
|
+ # ax.add_patch(patch)
|
|
|
|
+ if (crossplane == 'XZ' or crossplane == 'YZ') and flow_total > 0:
|
|
|
|
+
|
|
from matplotlib.path import Path
|
|
from matplotlib.path import Path
|
|
- scanSP = np.linspace(-factor*x[-1], factor*x[-1], npts)
|
|
|
|
- min_SP = -factor*x[-1]
|
|
|
|
- step_SP = 2.0*factor*x[-1]/(flow_total-1)
|
|
|
|
- x0, y0, z0, f = 0, 0, 0, 0
|
|
|
|
- max_length=factor*x[-1]*8
|
|
|
|
- #max_length=factor*x[-1]*4
|
|
|
|
- max_angle = np.pi/160
|
|
|
|
|
|
+ scanSP = np.linspace(-factor * x[-1], factor * x[-1], npts)
|
|
|
|
+ min_SP = -factor * x[-1]
|
|
|
|
+ step_SP = 2.0 * factor * x[-1] / (flow_total - 1)
|
|
|
|
+ x0, y0, z0 = 0, 0, 0
|
|
|
|
+ max_length = factor * x[-1] * 10
|
|
|
|
+ # max_length=factor*x[-1]*5
|
|
|
|
+ max_angle = np.pi / 160
|
|
if is_flow_extend:
|
|
if is_flow_extend:
|
|
- rg = range(0,flow_total*2+1)
|
|
|
|
|
|
+ rg = range(0, flow_total * 5 + 1)
|
|
else:
|
|
else:
|
|
- rg = range(0,flow_total)
|
|
|
|
|
|
+ rg = range(0, flow_total)
|
|
for flow in rg:
|
|
for flow in rg:
|
|
- if is_flow_extend:
|
|
|
|
- f = min_SP*2 + flow*step_SP
|
|
|
|
- else:
|
|
|
|
- f = min_SP + flow*step_SP
|
|
|
|
- if crossplane=='XZ':
|
|
|
|
- x0 = f
|
|
|
|
- elif crossplane=='YZ':
|
|
|
|
- y0 = f
|
|
|
|
- elif crossplane=='XYZ':
|
|
|
|
- x0 = 0
|
|
|
|
- y0 = 0
|
|
|
|
- if f > 0:
|
|
|
|
- x0 = f
|
|
|
|
|
|
+ if crossplane == 'XZ':
|
|
|
|
+ if is_flow_extend:
|
|
|
|
+ x0 = min_SP * 2 + flow * step_SP
|
|
else:
|
|
else:
|
|
- y0 = f
|
|
|
|
- z0 = min_SP
|
|
|
|
-
|
|
|
|
- flow_xSP, flow_ySP, flow_zSP = GetFlow3D(x0, y0, z0, max_length, max_angle, x, m,pl)
|
|
|
|
- if crossplane=='XZ':
|
|
|
|
- flow_z_plot = flow_zSP*WL/2.0/np.pi
|
|
|
|
- flow_f_plot = flow_xSP*WL/2.0/np.pi
|
|
|
|
- elif crossplane=='YZ':
|
|
|
|
- flow_z_plot = flow_zSP*WL/2.0/np.pi
|
|
|
|
- flow_f_plot = flow_ySP*WL/2.0/np.pi
|
|
|
|
- elif crossplane=='XYZ':
|
|
|
|
- if f > 0:
|
|
|
|
- flow_z_plot = flow_zSP*WL/2.0/np.pi
|
|
|
|
- flow_f_plot = flow_xSP*WL/2.0/np.pi
|
|
|
|
|
|
+ x0 = min_SP + flow * step_SP
|
|
|
|
+ z0 = min_SP
|
|
|
|
+ # y0 = x[-1]/20
|
|
|
|
+ elif crossplane == 'YZ':
|
|
|
|
+ if is_flow_extend:
|
|
|
|
+ y0 = min_SP * 2 + flow * step_SP
|
|
else:
|
|
else:
|
|
- flow_z_plot = flow_zSP*WL/2.0/np.pi
|
|
|
|
- flow_f_plot = flow_ySP*WL/2.0/np.pi
|
|
|
|
|
|
+ y0 = min_SP + flow * step_SP
|
|
|
|
+ z0 = min_SP
|
|
|
|
+ # x0 = x[-1]/20
|
|
|
|
+ flow_xSP, flow_ySP, flow_zSP = GetFlow3D(
|
|
|
|
+ x0, y0, z0, max_length, max_angle, x, m, pl)
|
|
|
|
+ if crossplane == 'XZ':
|
|
|
|
+ flow_z_plot = flow_zSP * WL / 2.0 / np.pi
|
|
|
|
+ flow_f_plot = flow_xSP * WL / 2.0 / np.pi
|
|
|
|
+ elif crossplane == 'YZ':
|
|
|
|
+ flow_z_plot = flow_zSP * WL / 2.0 / np.pi
|
|
|
|
+ flow_f_plot = flow_ySP * WL / 2.0 / np.pi
|
|
|
|
|
|
- verts = np.vstack((flow_z_plot, flow_f_plot)).transpose().tolist()
|
|
|
|
- codes = [Path.LINETO]*len(verts)
|
|
|
|
|
|
+ verts = np.vstack(
|
|
|
|
+ (flow_z_plot, flow_f_plot)).transpose().tolist()
|
|
|
|
+ codes = [Path.LINETO] * len(verts)
|
|
codes[0] = Path.MOVETO
|
|
codes[0] = Path.MOVETO
|
|
path = Path(verts, codes)
|
|
path = Path(verts, codes)
|
|
#patch = patches.PathPatch(path, facecolor='none', lw=0.2, edgecolor='white',zorder = 2.7)
|
|
#patch = patches.PathPatch(path, facecolor='none', lw=0.2, edgecolor='white',zorder = 2.7)
|
|
- patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='white',zorder = 1.9)
|
|
|
|
|
|
+ patch = patches.PathPatch(
|
|
|
|
+ path, facecolor='none', lw=outline_width, edgecolor='white', zorder=1.9, alpha=0.7)
|
|
|
|
+ # patch = patches.PathPatch(
|
|
|
|
+ # path, facecolor='none', lw=0.7, edgecolor='white', zorder=1.9, alpha=0.7)
|
|
ax.add_patch(patch)
|
|
ax.add_patch(patch)
|
|
- #ax.plot(flow_z_plot, flow_f_plot, 'x',ms=2, mew=0.1, linewidth=0.5, color='k', fillstyle='none')
|
|
|
|
- bbox_props = dict(boxstyle="round,pad=0.3", fc="w", ec="w", lw=2)
|
|
|
|
- if crossplane=='XYZ':
|
|
|
|
- ax.annotate('E-k', xy=(0.96, 0.96), xycoords='axes fraction', fontsize=16,
|
|
|
|
- horizontalalignment='right', verticalalignment='top',
|
|
|
|
- bbox=bbox_props)
|
|
|
|
- ax.annotate('H-k', xy=(0.96, 0.04), xycoords='axes fraction', fontsize=16,
|
|
|
|
- horizontalalignment='right', verticalalignment='bottom',
|
|
|
|
- bbox=bbox_props)
|
|
|
|
- ax.axhline(y=0.0, ls='--', dashes=[5,3], color='gray', lw=1.5)
|
|
|
|
|
|
+# ax.plot(flow_z_plot, flow_f_plot, 'x', ms=2, mew=0.1,
|
|
|
|
+# linewidth=0.5, color='k', fillstyle='none')
|
|
|
|
|
|
- plt.savefig(comment+"-R"+str(int(round(x[-1]*WL/2.0/np.pi)))+"-"+crossplane+"-"
|
|
|
|
-# +field_to_plot+".png")
|
|
|
|
- +field_to_plot+".pdf")
|
|
|
|
- plt.draw()
|
|
|
|
-
|
|
|
|
- # plt.show()
|
|
|
|
-
|
|
|
|
- plt.clf()
|
|
|
|
- plt.close()
|
|
|
|
finally:
|
|
finally:
|
|
- terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(np.array([x]),
|
|
|
|
- np.array([m]))
|
|
|
|
- print("Qabs = "+str(Qabs));
|
|
|
|
|
|
+ terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(
|
|
|
|
+ np.array([x]), np.array([m]))
|
|
|
|
+ print("Qabs = " + str(Qabs))
|
|
#
|
|
#
|
|
-
|
|
|
|
-
|
|
|