|  | @@ -39,6 +39,7 @@ def unit_vector(vector):
 | 
	
		
			
				|  |  |      """ Returns the unit vector of the vector.  """
 | 
	
		
			
				|  |  |      return vector / np.linalg.norm(vector)
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  |  def angle_between(v1, v2):
 | 
	
		
			
				|  |  |      """ Returns the angle in radians between vectors 'v1' and 'v2'::
 | 
	
		
			
				|  |  |  
 | 
	
	
		
			
				|  | @@ -59,66 +60,70 @@ def angle_between(v1, v2):
 | 
	
		
			
				|  |  |              return np.pi
 | 
	
		
			
				|  |  |      return angle
 | 
	
		
			
				|  |  |  ###############################################################################
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  |  def GetFlow3D(x0, y0, z0, max_length, max_angle, x, m, pl):
 | 
	
		
			
				|  |  |      # Initial position
 | 
	
		
			
				|  |  |      flow_x = [x0]
 | 
	
		
			
				|  |  |      flow_y = [y0]
 | 
	
		
			
				|  |  |      flow_z = [z0]
 | 
	
		
			
				|  |  | -    max_step = x[-1]/3
 | 
	
		
			
				|  |  | -    min_step = x[0]/2000
 | 
	
		
			
				|  |  | +    max_step = x[-1] / 3
 | 
	
		
			
				|  |  | +    min_step = x[0] / 2000
 | 
	
		
			
				|  |  |  #    max_step = min_step
 | 
	
		
			
				|  |  | -    step = min_step*2.0
 | 
	
		
			
				|  |  | +    step = min_step * 2.0
 | 
	
		
			
				|  |  |      if max_step < min_step:
 | 
	
		
			
				|  |  |          max_step = min_step
 | 
	
		
			
				|  |  |      coord = np.vstack(([flow_x[-1]], [flow_y[-1]], [flow_z[-1]])).transpose()
 | 
	
		
			
				|  |  | -    terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord,pl=pl)
 | 
	
		
			
				|  |  | +    terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord, pl=pl)
 | 
	
		
			
				|  |  |      Ec, Hc = E[0, 0, :], H[0, 0, :]
 | 
	
		
			
				|  |  |      S = np.cross(Ec, Hc.conjugate()).real
 | 
	
		
			
				|  |  | -    Snorm_prev = S/np.linalg.norm(S)
 | 
	
		
			
				|  |  | +    Snorm_prev = S / np.linalg.norm(S)
 | 
	
		
			
				|  |  |      Sprev = S
 | 
	
		
			
				|  |  |      length = 0
 | 
	
		
			
				|  |  |      dpos = step
 | 
	
		
			
				|  |  |      count = 0
 | 
	
		
			
				|  |  |      while length < max_length:
 | 
	
		
			
				|  |  |          count = count + 1
 | 
	
		
			
				|  |  | -        if (count>3000): # Limit length of the absorbed power streamlines
 | 
	
		
			
				|  |  | +        if (count > 4000):  # Limit length of the absorbed power streamlines
 | 
	
		
			
				|  |  |              break
 | 
	
		
			
				|  |  | -        if step<max_step:
 | 
	
		
			
				|  |  | -                step = step*2.0
 | 
	
		
			
				|  |  | +        if step < max_step:
 | 
	
		
			
				|  |  | +            step = step * 2.0
 | 
	
		
			
				|  |  |          r = np.sqrt(flow_x[-1]**2 + flow_y[-1]**2 + flow_z[-1]**2)
 | 
	
		
			
				|  |  |          while step > min_step:
 | 
	
		
			
				|  |  | -            #Evaluate displacement from previous poynting vector
 | 
	
		
			
				|  |  | +            # Evaluate displacement from previous poynting vector
 | 
	
		
			
				|  |  |              dpos = step
 | 
	
		
			
				|  |  | -            dx = dpos*Snorm_prev[0];
 | 
	
		
			
				|  |  | -            dy = dpos*Snorm_prev[1];
 | 
	
		
			
				|  |  | -            dz = dpos*Snorm_prev[2];
 | 
	
		
			
				|  |  | -            #Test the next position not to turn\chang size for more than max_angle
 | 
	
		
			
				|  |  | -            coord = np.vstack(([flow_x[-1]+dx], [flow_y[-1]+dy], [flow_z[-1]+dz])).transpose()
 | 
	
		
			
				|  |  | -            terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord,pl=pl)
 | 
	
		
			
				|  |  | +            dx = dpos * Snorm_prev[0]
 | 
	
		
			
				|  |  | +            dy = dpos * Snorm_prev[1]
 | 
	
		
			
				|  |  | +            dz = dpos * Snorm_prev[2]
 | 
	
		
			
				|  |  | +            # Test the next position not to turn\chang size for more than
 | 
	
		
			
				|  |  | +            # max_angle
 | 
	
		
			
				|  |  | +            coord = np.vstack(([flow_x[-1] + dx], [flow_y[-1] + dy],
 | 
	
		
			
				|  |  | +                               [flow_z[-1] + dz])).transpose()
 | 
	
		
			
				|  |  | +            terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord, pl=pl)
 | 
	
		
			
				|  |  |              Ec, Hc = E[0, 0, :], H[0, 0, :]
 | 
	
		
			
				|  |  | -            Eth = max(np.absolute(Ec))/1e10
 | 
	
		
			
				|  |  | -            Hth = max(np.absolute(Hc))/1e10
 | 
	
		
			
				|  |  | -            for i in xrange(0,len(Ec)):
 | 
	
		
			
				|  |  | +            Eth = max(np.absolute(Ec)) / 1e10
 | 
	
		
			
				|  |  | +            Hth = max(np.absolute(Hc)) / 1e10
 | 
	
		
			
				|  |  | +            for i in xrange(0, len(Ec)):
 | 
	
		
			
				|  |  |                  if abs(Ec[i]) < Eth:
 | 
	
		
			
				|  |  | -                    Ec[i] = 0+0j
 | 
	
		
			
				|  |  | +                    Ec[i] = 0 + 0j
 | 
	
		
			
				|  |  |                  if abs(Hc[i]) < Hth:
 | 
	
		
			
				|  |  | -                    Hc[i] = 0+0j
 | 
	
		
			
				|  |  | +                    Hc[i] = 0 + 0j
 | 
	
		
			
				|  |  |              S = np.cross(Ec, Hc.conjugate()).real
 | 
	
		
			
				|  |  |              if not np.isfinite(S).all():
 | 
	
		
			
				|  |  |                  break
 | 
	
		
			
				|  |  | -            Snorm = S/np.linalg.norm(S)
 | 
	
		
			
				|  |  | -            diff = (S-Sprev)/max(np.linalg.norm(S), np.linalg.norm(Sprev))
 | 
	
		
			
				|  |  | -            if np.linalg.norm(diff)<max_angle:
 | 
	
		
			
				|  |  | -            # angle = angle_between(Snorm, Snorm_prev)
 | 
	
		
			
				|  |  | -            # if abs(angle) < max_angle:
 | 
	
		
			
				|  |  | +            Snorm = S / np.linalg.norm(S)
 | 
	
		
			
				|  |  | +            diff = (S - Sprev) / max(np.linalg.norm(S), np.linalg.norm(Sprev))
 | 
	
		
			
				|  |  | +            if np.linalg.norm(diff) < max_angle:
 | 
	
		
			
				|  |  | +                # angle = angle_between(Snorm, Snorm_prev)
 | 
	
		
			
				|  |  | +                # if abs(angle) < max_angle:
 | 
	
		
			
				|  |  |                  break
 | 
	
		
			
				|  |  | -            step = step/2.0
 | 
	
		
			
				|  |  | -        #3. Save result
 | 
	
		
			
				|  |  | +            step = step / 2.0
 | 
	
		
			
				|  |  | +        # 3. Save result
 | 
	
		
			
				|  |  |          Sprev = S
 | 
	
		
			
				|  |  |          Snorm_prev = Snorm
 | 
	
		
			
				|  |  | -        dx = dpos*Snorm_prev[0];
 | 
	
		
			
				|  |  | -        dy = dpos*Snorm_prev[1];
 | 
	
		
			
				|  |  | -        dz = dpos*Snorm_prev[2];
 | 
	
		
			
				|  |  | +        dx = dpos * Snorm_prev[0]
 | 
	
		
			
				|  |  | +        dy = dpos * Snorm_prev[1]
 | 
	
		
			
				|  |  | +        dz = dpos * Snorm_prev[2]
 | 
	
		
			
				|  |  |          length = length + step
 | 
	
		
			
				|  |  |          flow_x.append(flow_x[-1] + dx)
 | 
	
		
			
				|  |  |          flow_y.append(flow_y[-1] + dy)
 | 
	
	
		
			
				|  | @@ -129,216 +134,201 @@ def GetFlow3D(x0, y0, z0, max_length, max_angle, x, m, pl):
 | 
	
		
			
				|  |  |  ###############################################################################
 | 
	
		
			
				|  |  |  def GetField(crossplane, npts, factor, x, m, pl):
 | 
	
		
			
				|  |  |      """
 | 
	
		
			
				|  |  | -    crossplane: XZ, YZ, XY, or XYZ (half is XZ, half is YZ)
 | 
	
		
			
				|  |  | +    crossplane: XZ, YZ, XY
 | 
	
		
			
				|  |  |      npts: number of point in each direction
 | 
	
		
			
				|  |  |      factor: ratio of plotting size to outer size of the particle
 | 
	
		
			
				|  |  |      x: size parameters for particle layers
 | 
	
		
			
				|  |  |      m: relative index values for particle layers
 | 
	
		
			
				|  |  |      """
 | 
	
		
			
				|  |  | -    scan = np.linspace(-factor*x[-1], factor*x[-1], npts)
 | 
	
		
			
				|  |  | -    zero = np.zeros(npts*npts, dtype = np.float64)
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    if crossplane=='XZ':
 | 
	
		
			
				|  |  | +    scan = np.linspace(-factor * x[-1], factor * x[-1], npts)
 | 
	
		
			
				|  |  | +    zero = np.zeros(npts * npts, dtype=np.float64)
 | 
	
		
			
				|  |  | +    if crossplane == 'XZ':
 | 
	
		
			
				|  |  |          coordX, coordZ = np.meshgrid(scan, scan)
 | 
	
		
			
				|  |  | -        coordX.resize(npts*npts)
 | 
	
		
			
				|  |  | -        coordZ.resize(npts*npts)
 | 
	
		
			
				|  |  | +        coordX.resize(npts * npts)
 | 
	
		
			
				|  |  | +        coordZ.resize(npts * npts)
 | 
	
		
			
				|  |  |          coordY = zero
 | 
	
		
			
				|  |  | -    elif crossplane=='YZ':
 | 
	
		
			
				|  |  | +        coordPlot1 = coordX
 | 
	
		
			
				|  |  | +        coordPlot2 = coordZ
 | 
	
		
			
				|  |  | +    elif crossplane == 'YZ':
 | 
	
		
			
				|  |  |          coordY, coordZ = np.meshgrid(scan, scan)
 | 
	
		
			
				|  |  | -        coordY.resize(npts*npts)
 | 
	
		
			
				|  |  | -        coordZ.resize(npts*npts)
 | 
	
		
			
				|  |  | +        coordY.resize(npts * npts)
 | 
	
		
			
				|  |  | +        coordZ.resize(npts * npts)
 | 
	
		
			
				|  |  |          coordX = zero
 | 
	
		
			
				|  |  | -    elif crossplane=='XY':
 | 
	
		
			
				|  |  | +        coordPlot1 = coordY
 | 
	
		
			
				|  |  | +        coordPlot2 = coordZ
 | 
	
		
			
				|  |  | +    elif crossplane == 'XY':
 | 
	
		
			
				|  |  |          coordX, coordY = np.meshgrid(scan, scan)
 | 
	
		
			
				|  |  | -        coordX.resize(npts*npts)
 | 
	
		
			
				|  |  | -        coordY.resize(npts*npts)
 | 
	
		
			
				|  |  | +        coordX.resize(npts * npts)
 | 
	
		
			
				|  |  | +        coordY.resize(npts * npts)
 | 
	
		
			
				|  |  |          coordZ = zero
 | 
	
		
			
				|  |  | -    elif crossplane=='XYZ':
 | 
	
		
			
				|  |  | -        coordX, coordZ = np.meshgrid(scan, scan)
 | 
	
		
			
				|  |  | -        coordY, coordZ = np.meshgrid(scan, scan)
 | 
	
		
			
				|  |  | -        half=npts//2
 | 
	
		
			
				|  |  | -        # coordX = np.copy(coordX)
 | 
	
		
			
				|  |  | -        # coordY = np.copy(coordY)
 | 
	
		
			
				|  |  | -        coordX[:,:half]=0
 | 
	
		
			
				|  |  | -        coordY[:,half:]=0
 | 
	
		
			
				|  |  | -        coordX.resize(npts*npts)
 | 
	
		
			
				|  |  | -        coordY.resize(npts*npts)
 | 
	
		
			
				|  |  | -        coordZ.resize(npts*npts)
 | 
	
		
			
				|  |  | -        
 | 
	
		
			
				|  |  | +        coordPlot1 = coordY
 | 
	
		
			
				|  |  | +        coordPlot2 = coordX
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  |      coord = np.vstack((coordX, coordY, coordZ)).transpose()
 | 
	
		
			
				|  |  |      terms, E, H = fieldnlay(np.array([x]), np.array([m]), coord, pl=pl)
 | 
	
		
			
				|  |  |      Ec = E[0, :, :]
 | 
	
		
			
				|  |  |      Hc = H[0, :, :]
 | 
	
		
			
				|  |  | -    P=[]
 | 
	
		
			
				|  |  | -    P = np.array(map(lambda n: np.linalg.norm(np.cross(Ec[n], Hc[n])), range(0, len(E[0]))))
 | 
	
		
			
				|  |  | +    P = []
 | 
	
		
			
				|  |  | +    P = np.array(map(lambda n: np.linalg.norm(np.cross(Ec[n], Hc[n])).real,
 | 
	
		
			
				|  |  | +                     range(0, len(E[0]))))
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      # for n in range(0, len(E[0])):
 | 
	
		
			
				|  |  |      #     P.append(np.linalg.norm( np.cross(Ec[n], np.conjugate(Hc[n]) ).real/2 ))
 | 
	
		
			
				|  |  | -    return Ec, Hc, P
 | 
	
		
			
				|  |  | +    return Ec, Hc, P, coordPlot1, coordPlot2
 | 
	
		
			
				|  |  |  ###############################################################################
 | 
	
		
			
				|  |  | -def fieldplot(x,m, WL, comment='', WL_units=' ', crossplane='XZ', field_to_plot='Pabs',npts=101, factor=2.1, flow_total=11, is_flow_extend=True, pl=-1, outline_width=1):
 | 
	
		
			
				|  |  | -    Ec, Hc, P = GetField(crossplane, npts, factor, x, m, pl)
 | 
	
		
			
				|  |  | -    scan = np.linspace(-factor*x[-1], factor*x[-1], npts)
 | 
	
		
			
				|  |  | -    coordX1, coordZ1 = np.meshgrid(scan, scan)
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +def fieldplot(fig, ax, x, m, WL, comment='', WL_units=' ', crossplane='XZ',
 | 
	
		
			
				|  |  | +              field_to_plot='Pabs', npts=101, factor=2.1, flow_total=11,
 | 
	
		
			
				|  |  | +              is_flow_extend=True, pl=-1, outline_width=1, subplot_label=' '):
 | 
	
		
			
				|  |  | +    Ec, Hc, P, coordX, coordZ = GetField(crossplane, npts, factor, x, m, pl)
 | 
	
		
			
				|  |  |      Er = np.absolute(Ec)
 | 
	
		
			
				|  |  |      Hr = np.absolute(Hc)
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  |      try:
 | 
	
		
			
				|  |  | -        import matplotlib.pyplot as plt
 | 
	
		
			
				|  |  |          from matplotlib import cm
 | 
	
		
			
				|  |  |          from matplotlib.colors import LogNorm
 | 
	
		
			
				|  |  |          if field_to_plot == 'Pabs':
 | 
	
		
			
				|  |  | -            Eabs_data = np.resize(P, (npts, npts)).T 
 | 
	
		
			
				|  |  | -            #label = r'$\operatorname{Re}(E \times H^*)$'
 | 
	
		
			
				|  |  | -            label = r'$\left |E \times H\right|$'
 | 
	
		
			
				|  |  | +            Eabs_data = np.resize(P, (npts, npts)).T
 | 
	
		
			
				|  |  | +            label = r'$\operatorname{Re}(E \times H)$'
 | 
	
		
			
				|  |  |          elif field_to_plot == 'Eabs':
 | 
	
		
			
				|  |  | -            Eabs = np.sqrt(Er[ :, 0]**2 + Er[ :, 1]**2 + Er[ :, 2]**2)
 | 
	
		
			
				|  |  | -            Eabs_data = np.resize(Eabs, (npts, npts)).T 
 | 
	
		
			
				|  |  | +            Eabs = np.sqrt(Er[:, 0]**2 + Er[:, 1]**2 + Er[:, 2]**2)
 | 
	
		
			
				|  |  | +            Eabs_data = np.resize(Eabs, (npts, npts)).T
 | 
	
		
			
				|  |  |              label = r'$|E|$'
 | 
	
		
			
				|  |  |          elif field_to_plot == 'Habs':
 | 
	
		
			
				|  |  | -            Habs= np.sqrt(Hr[ :, 0]**2 + Hr[ :, 1]**2 + Hr[ :, 2]**2)
 | 
	
		
			
				|  |  | -            Eabs_data = np.resize(Habs, (npts, npts)).T 
 | 
	
		
			
				|  |  | +            Habs = np.sqrt(Hr[:, 0]**2 + Hr[:, 1]**2 + Hr[:, 2]**2)
 | 
	
		
			
				|  |  | +            Eabs_data = np.resize(Habs, (npts, npts)).T
 | 
	
		
			
				|  |  |              label = r'$|H|$'
 | 
	
		
			
				|  |  |          elif field_to_plot == 'angleEx':
 | 
	
		
			
				|  |  | -            Eangle = np.angle(Ec[ :, 0])/np.pi*180
 | 
	
		
			
				|  |  | -            Eabs_data = np.resize(Eangle, (npts, npts)).T 
 | 
	
		
			
				|  |  | +            Eangle = np.angle(Ec[:, 0]) / np.pi * 180
 | 
	
		
			
				|  |  | +            Eabs_data = np.resize(Eangle, (npts, npts)).T
 | 
	
		
			
				|  |  |              label = r'$arg(E_x)$'
 | 
	
		
			
				|  |  |          elif field_to_plot == 'angleHy':
 | 
	
		
			
				|  |  | -            Hangle = np.angle(Hc[ :, 1])/np.pi*180
 | 
	
		
			
				|  |  | -            Eabs_data = np.resize(Hangle, (npts, npts)).T 
 | 
	
		
			
				|  |  | +            Hangle = np.angle(Hc[:, 1]) / np.pi * 180
 | 
	
		
			
				|  |  | +            Eabs_data = np.resize(Hangle, (npts, npts)).T
 | 
	
		
			
				|  |  |              label = r'$arg(H_y)$'
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -        fig, ax = plt.subplots(1,1)
 | 
	
		
			
				|  |  |          # Rescale to better show the axes
 | 
	
		
			
				|  |  | -        # scale_x = np.linspace(min(coordX1)*WL/2.0/np.pi, max(coordX1)*WL/2.0/np.pi, npts)
 | 
	
		
			
				|  |  | -        # scale_z = np.linspace(min(coordZ1)*WL/2.0/np.pi, max(coordZ1)*WL/2.0/np.pi, npts)
 | 
	
		
			
				|  |  | -        scale_x = np.linspace(-factor*x[-1]*WL/2.0/np.pi, factor*x[-1]*WL/2.0/np.pi, npts)
 | 
	
		
			
				|  |  | -        scale_z = np.linspace(-factor*x[-1]*WL/2.0/np.pi, factor*x[-1]*WL/2.0/np.pi, npts)
 | 
	
		
			
				|  |  | +        scale_x = np.linspace(
 | 
	
		
			
				|  |  | +            min(coordX) * WL / 2.0 / np.pi, max(coordX) * WL / 2.0 / np.pi, npts)
 | 
	
		
			
				|  |  | +        scale_z = np.linspace(
 | 
	
		
			
				|  |  | +            min(coordZ) * WL / 2.0 / np.pi, max(coordZ) * WL / 2.0 / np.pi, npts)
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |          # Define scale ticks
 | 
	
		
			
				|  |  |          min_tick = np.amin(Eabs_data[~np.isnan(Eabs_data)])
 | 
	
		
			
				|  |  | +        #min_tick = 0.1
 | 
	
		
			
				|  |  |          max_tick = np.amax(Eabs_data[~np.isnan(Eabs_data)])
 | 
	
		
			
				|  |  | -        scale_ticks = np.linspace(min_tick, max_tick, 6)
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | +        #max_tick = 60
 | 
	
		
			
				|  |  | +        scale_ticks = np.linspace(min_tick, max_tick, 5)
 | 
	
		
			
				|  |  | +        #scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6))
 | 
	
		
			
				|  |  | +        #scale_ticks = [0.1,0.3,1,3,10, max_tick]
 | 
	
		
			
				|  |  |          # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
 | 
	
		
			
				|  |  |          ax.set_title(label)
 | 
	
		
			
				|  |  | -        my_cmap = cm.jet
 | 
	
		
			
				|  |  | -        if not (field_to_plot == 'angleEx' or field_to_plot == 'angleHy'):
 | 
	
		
			
				|  |  | -            my_cmap.set_under('w')
 | 
	
		
			
				|  |  | -        cax = ax.imshow(Eabs_data, interpolation = 'nearest', cmap = my_cmap,
 | 
	
		
			
				|  |  | -                        origin = 'lower'
 | 
	
		
			
				|  |  | -                        , vmin = min_tick+max_tick*1e-15, vmax = max_tick
 | 
	
		
			
				|  |  | -                        , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z))
 | 
	
		
			
				|  |  | -                        #,norm = LogNorm()
 | 
	
		
			
				|  |  | +        # build a rectangle in axes coords
 | 
	
		
			
				|  |  | +        ax.annotate(subplot_label, xy=(0.0, 1.1), xycoords='axes fraction',  # fontsize=10,
 | 
	
		
			
				|  |  | +                    horizontalalignment='left', verticalalignment='top')
 | 
	
		
			
				|  |  | +        # ax.text(right, top, subplot_label,
 | 
	
		
			
				|  |  | +        #         horizontalalignment='right',
 | 
	
		
			
				|  |  | +        #         verticalalignment='bottom',
 | 
	
		
			
				|  |  | +        #         transform=ax.transAxes)
 | 
	
		
			
				|  |  | +        cax = ax.imshow(Eabs_data, interpolation='nearest', cmap=cm.jet,
 | 
	
		
			
				|  |  | +                        origin='lower', vmin=min_tick, vmax=max_tick, extent=(min(scale_x), max(scale_x), min(scale_z), max(scale_z))
 | 
	
		
			
				|  |  | +                        # ,norm = LogNorm()
 | 
	
		
			
				|  |  |                          )
 | 
	
		
			
				|  |  |          ax.axis("image")
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |          # Add colorbar
 | 
	
		
			
				|  |  | -        cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
 | 
	
		
			
				|  |  | -        cbar.ax.set_yticklabels(['%5.3g' % (a) for a in scale_ticks]) # vertically oriented colorbar
 | 
	
		
			
				|  |  | -        pos = list(cbar.ax.get_position().bounds)
 | 
	
		
			
				|  |  | +        cbar = fig.colorbar(cax, ticks=[a for a in scale_ticks], ax=ax)
 | 
	
		
			
				|  |  | +        # vertically oriented colorbar
 | 
	
		
			
				|  |  | +        cbar.ax.set_yticklabels(['%3.2f' % (a) for a in scale_ticks])
 | 
	
		
			
				|  |  | +        # pos = list(cbar.ax.get_position().bounds)
 | 
	
		
			
				|  |  |          #fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
 | 
	
		
			
				|  |  | -        if crossplane=='XZ':
 | 
	
		
			
				|  |  | -            plt.xlabel('Z, '+WL_units)
 | 
	
		
			
				|  |  | -            plt.ylabel('X, '+WL_units)
 | 
	
		
			
				|  |  | -        elif crossplane=='YZ':
 | 
	
		
			
				|  |  | -            plt.xlabel('Z, '+WL_units)
 | 
	
		
			
				|  |  | -            plt.ylabel('Y, '+WL_units)
 | 
	
		
			
				|  |  | -        elif crossplane=='XYZ':
 | 
	
		
			
				|  |  | -            plt.xlabel('Z, '+WL_units)
 | 
	
		
			
				|  |  | -            plt.ylabel('Y:X, '+WL_units)
 | 
	
		
			
				|  |  | -        elif crossplane=='XY':
 | 
	
		
			
				|  |  | -            plt.xlabel('Y, '+WL_units)
 | 
	
		
			
				|  |  | -            plt.ylabel('X, '+WL_units)
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | +        lp2 = -10.0
 | 
	
		
			
				|  |  | +        lp1 = -1.0
 | 
	
		
			
				|  |  | +        if crossplane == 'XZ':
 | 
	
		
			
				|  |  | +            ax.set_xlabel('Z, ' + WL_units, labelpad=lp1)
 | 
	
		
			
				|  |  | +            ax.set_ylabel('X, ' + WL_units, labelpad=lp2)
 | 
	
		
			
				|  |  | +        elif crossplane == 'YZ':
 | 
	
		
			
				|  |  | +            ax.set_xlabel('Z, ' + WL_units, labelpad=lp1)
 | 
	
		
			
				|  |  | +            ax.set_ylabel('Y, ' + WL_units, labelpad=lp2)
 | 
	
		
			
				|  |  | +        elif crossplane == 'XY':
 | 
	
		
			
				|  |  | +            ax.set_xlabel('Y, ' + WL_units, labelpad=lp1)
 | 
	
		
			
				|  |  | +            ax.set_ylabel('X, ' + WL_units, labelpad=lp2)
 | 
	
		
			
				|  |  |          # # This part draws the nanoshell
 | 
	
		
			
				|  |  |          from matplotlib import patches
 | 
	
		
			
				|  |  |          from matplotlib.path import Path
 | 
	
		
			
				|  |  | -        x_edge = (x[-1], x[0])
 | 
	
		
			
				|  |  | -        for xx in x_edge:
 | 
	
		
			
				|  |  | -            r= xx*WL/2.0/np.pi
 | 
	
		
			
				|  |  | -            s1 = patches.Arc((0, 0), 2.0*r, 2.0*r,  angle=0.0, zorder=1.8,
 | 
	
		
			
				|  |  | +        for xx in x:
 | 
	
		
			
				|  |  | +            r = xx * WL / 2.0 / np.pi
 | 
	
		
			
				|  |  | +            s1 = patches.Arc((0, 0), 2.0 * r, 2.0 * r,  angle=0.0, zorder=1.8,
 | 
	
		
			
				|  |  |                               theta1=0.0, theta2=360.0, linewidth=outline_width, color='black')
 | 
	
		
			
				|  |  |              ax.add_patch(s1)
 | 
	
		
			
				|  |  | -        if (not crossplane=='XY') and flow_total>0:
 | 
	
		
			
				|  |  | +        #
 | 
	
		
			
				|  |  | +        # for flow in range(0,flow_total):
 | 
	
		
			
				|  |  | +        #     flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
 | 
	
		
			
				|  |  | +        #                              min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),
 | 
	
		
			
				|  |  | +        #                              min(scale_z),
 | 
	
		
			
				|  |  | +        #                              #0.0,
 | 
	
		
			
				|  |  | +        #                              npts*16)
 | 
	
		
			
				|  |  | +        #     verts = np.vstack((flow_z, flow_x)).transpose().tolist()
 | 
	
		
			
				|  |  | +        #     #codes = [Path.CURVE4]*len(verts)
 | 
	
		
			
				|  |  | +        #     codes = [Path.LINETO]*len(verts)
 | 
	
		
			
				|  |  | +        #     codes[0] = Path.MOVETO
 | 
	
		
			
				|  |  | +        #     path = Path(verts, codes)
 | 
	
		
			
				|  |  | +        #     patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='yellow')
 | 
	
		
			
				|  |  | +        #     ax.add_patch(patch)
 | 
	
		
			
				|  |  | +        if (crossplane == 'XZ' or crossplane == 'YZ') and flow_total > 0:
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  |              from matplotlib.path import Path
 | 
	
		
			
				|  |  | -            scanSP = np.linspace(-factor*x[-1], factor*x[-1], npts)
 | 
	
		
			
				|  |  | -            min_SP = -factor*x[-1]
 | 
	
		
			
				|  |  | -            step_SP = 2.0*factor*x[-1]/(flow_total-1)
 | 
	
		
			
				|  |  | -            x0, y0, z0, f = 0, 0, 0, 0
 | 
	
		
			
				|  |  | -            max_length=factor*x[-1]*8
 | 
	
		
			
				|  |  | -            #max_length=factor*x[-1]*4
 | 
	
		
			
				|  |  | -            max_angle = np.pi/160
 | 
	
		
			
				|  |  | +            scanSP = np.linspace(-factor * x[-1], factor * x[-1], npts)
 | 
	
		
			
				|  |  | +            min_SP = -factor * x[-1]
 | 
	
		
			
				|  |  | +            step_SP = 2.0 * factor * x[-1] / (flow_total - 1)
 | 
	
		
			
				|  |  | +            x0, y0, z0 = 0, 0, 0
 | 
	
		
			
				|  |  | +            max_length = factor * x[-1] * 10
 | 
	
		
			
				|  |  | +            # max_length=factor*x[-1]*5
 | 
	
		
			
				|  |  | +            max_angle = np.pi / 160
 | 
	
		
			
				|  |  |              if is_flow_extend:
 | 
	
		
			
				|  |  | -                rg = range(0,flow_total*2+1)
 | 
	
		
			
				|  |  | +                rg = range(0, flow_total * 5 + 1)
 | 
	
		
			
				|  |  |              else:
 | 
	
		
			
				|  |  | -                rg = range(0,flow_total)
 | 
	
		
			
				|  |  | +                rg = range(0, flow_total)
 | 
	
		
			
				|  |  |              for flow in rg:
 | 
	
		
			
				|  |  | -                if is_flow_extend:
 | 
	
		
			
				|  |  | -                    f = min_SP*2 + flow*step_SP
 | 
	
		
			
				|  |  | -                else:
 | 
	
		
			
				|  |  | -                    f = min_SP + flow*step_SP
 | 
	
		
			
				|  |  | -                if crossplane=='XZ':
 | 
	
		
			
				|  |  | -                    x0 = f
 | 
	
		
			
				|  |  | -                elif crossplane=='YZ':
 | 
	
		
			
				|  |  | -                    y0 = f
 | 
	
		
			
				|  |  | -                elif crossplane=='XYZ':
 | 
	
		
			
				|  |  | -                    x0 = 0
 | 
	
		
			
				|  |  | -                    y0 = 0
 | 
	
		
			
				|  |  | -                    if f > 0:
 | 
	
		
			
				|  |  | -                        x0 = f
 | 
	
		
			
				|  |  | +                if crossplane == 'XZ':
 | 
	
		
			
				|  |  | +                    if is_flow_extend:
 | 
	
		
			
				|  |  | +                        x0 = min_SP * 2 + flow * step_SP
 | 
	
		
			
				|  |  |                      else:
 | 
	
		
			
				|  |  | -                        y0 = f
 | 
	
		
			
				|  |  | -                z0 = min_SP
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -                flow_xSP, flow_ySP, flow_zSP = GetFlow3D(x0, y0, z0, max_length, max_angle, x, m,pl)
 | 
	
		
			
				|  |  | -                if crossplane=='XZ':
 | 
	
		
			
				|  |  | -                    flow_z_plot = flow_zSP*WL/2.0/np.pi
 | 
	
		
			
				|  |  | -                    flow_f_plot = flow_xSP*WL/2.0/np.pi
 | 
	
		
			
				|  |  | -                elif crossplane=='YZ':
 | 
	
		
			
				|  |  | -                    flow_z_plot = flow_zSP*WL/2.0/np.pi
 | 
	
		
			
				|  |  | -                    flow_f_plot = flow_ySP*WL/2.0/np.pi
 | 
	
		
			
				|  |  | -                elif crossplane=='XYZ':
 | 
	
		
			
				|  |  | -                    if f > 0:
 | 
	
		
			
				|  |  | -                        flow_z_plot = flow_zSP*WL/2.0/np.pi
 | 
	
		
			
				|  |  | -                        flow_f_plot = flow_xSP*WL/2.0/np.pi
 | 
	
		
			
				|  |  | +                        x0 = min_SP + flow * step_SP
 | 
	
		
			
				|  |  | +                    z0 = min_SP
 | 
	
		
			
				|  |  | +                    # y0 = x[-1]/20
 | 
	
		
			
				|  |  | +                elif crossplane == 'YZ':
 | 
	
		
			
				|  |  | +                    if is_flow_extend:
 | 
	
		
			
				|  |  | +                        y0 = min_SP * 2 + flow * step_SP
 | 
	
		
			
				|  |  |                      else:
 | 
	
		
			
				|  |  | -                        flow_z_plot = flow_zSP*WL/2.0/np.pi
 | 
	
		
			
				|  |  | -                        flow_f_plot = flow_ySP*WL/2.0/np.pi
 | 
	
		
			
				|  |  | +                        y0 = min_SP + flow * step_SP
 | 
	
		
			
				|  |  | +                    z0 = min_SP
 | 
	
		
			
				|  |  | +                    # x0 = x[-1]/20
 | 
	
		
			
				|  |  | +                flow_xSP, flow_ySP, flow_zSP = GetFlow3D(
 | 
	
		
			
				|  |  | +                    x0, y0, z0, max_length, max_angle, x, m, pl)
 | 
	
		
			
				|  |  | +                if crossplane == 'XZ':
 | 
	
		
			
				|  |  | +                    flow_z_plot = flow_zSP * WL / 2.0 / np.pi
 | 
	
		
			
				|  |  | +                    flow_f_plot = flow_xSP * WL / 2.0 / np.pi
 | 
	
		
			
				|  |  | +                elif crossplane == 'YZ':
 | 
	
		
			
				|  |  | +                    flow_z_plot = flow_zSP * WL / 2.0 / np.pi
 | 
	
		
			
				|  |  | +                    flow_f_plot = flow_ySP * WL / 2.0 / np.pi
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -                verts = np.vstack((flow_z_plot, flow_f_plot)).transpose().tolist()
 | 
	
		
			
				|  |  | -                codes = [Path.LINETO]*len(verts)
 | 
	
		
			
				|  |  | +                verts = np.vstack(
 | 
	
		
			
				|  |  | +                    (flow_z_plot, flow_f_plot)).transpose().tolist()
 | 
	
		
			
				|  |  | +                codes = [Path.LINETO] * len(verts)
 | 
	
		
			
				|  |  |                  codes[0] = Path.MOVETO
 | 
	
		
			
				|  |  |                  path = Path(verts, codes)
 | 
	
		
			
				|  |  |                  #patch = patches.PathPatch(path, facecolor='none', lw=0.2, edgecolor='white',zorder = 2.7)
 | 
	
		
			
				|  |  | -                patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='white',zorder = 1.9)
 | 
	
		
			
				|  |  | +                patch = patches.PathPatch(
 | 
	
		
			
				|  |  | +                    path, facecolor='none', lw=outline_width, edgecolor='white', zorder=1.9, alpha=0.7)
 | 
	
		
			
				|  |  | +                # patch = patches.PathPatch(
 | 
	
		
			
				|  |  | +                #     path, facecolor='none', lw=0.7, edgecolor='white', zorder=1.9, alpha=0.7)
 | 
	
		
			
				|  |  |                  ax.add_patch(patch)
 | 
	
		
			
				|  |  | -                #ax.plot(flow_z_plot, flow_f_plot, 'x',ms=2, mew=0.1, linewidth=0.5, color='k', fillstyle='none')
 | 
	
		
			
				|  |  | -        bbox_props = dict(boxstyle="round,pad=0.3", fc="w", ec="w", lw=2)
 | 
	
		
			
				|  |  | -        if crossplane=='XYZ':
 | 
	
		
			
				|  |  | -            ax.annotate('E-k', xy=(0.96, 0.96), xycoords='axes fraction', fontsize=16,
 | 
	
		
			
				|  |  | -                horizontalalignment='right', verticalalignment='top',
 | 
	
		
			
				|  |  | -                bbox=bbox_props)
 | 
	
		
			
				|  |  | -            ax.annotate('H-k', xy=(0.96, 0.04), xycoords='axes fraction', fontsize=16,
 | 
	
		
			
				|  |  | -                horizontalalignment='right', verticalalignment='bottom',
 | 
	
		
			
				|  |  | -                bbox=bbox_props)
 | 
	
		
			
				|  |  | -            ax.axhline(y=0.0, ls='--', dashes=[5,3], color='gray', lw=1.5)
 | 
	
		
			
				|  |  | +#                ax.plot(flow_z_plot, flow_f_plot, 'x', ms=2, mew=0.1,
 | 
	
		
			
				|  |  | +#                        linewidth=0.5, color='k', fillstyle='none')
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -        plt.savefig(comment+"-R"+str(int(round(x[-1]*WL/2.0/np.pi)))+"-"+crossplane+"-"
 | 
	
		
			
				|  |  | -#                    +field_to_plot+".png")
 | 
	
		
			
				|  |  | -                    +field_to_plot+".pdf")
 | 
	
		
			
				|  |  | -        plt.draw()
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    #    plt.show()
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -        plt.clf()
 | 
	
		
			
				|  |  | -        plt.close()
 | 
	
		
			
				|  |  |      finally:
 | 
	
		
			
				|  |  | -        terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(np.array([x]),
 | 
	
		
			
				|  |  | -                                                                         np.array([m]))
 | 
	
		
			
				|  |  | -        print("Qabs = "+str(Qabs));
 | 
	
		
			
				|  |  | +        terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(
 | 
	
		
			
				|  |  | +            np.array([x]), np.array([m]))
 | 
	
		
			
				|  |  | +        print("Qabs = " + str(Qabs))
 | 
	
		
			
				|  |  |      #
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 |