Преглед изворни кода

Plotting powerflow lines problem

Konstantin Ladutenko пре 10 година
родитељ
комит
4d038f47f0
2 измењених фајлова са 471 додато и 0 уклоњено
  1. 243 0
      tests/python/field-Ag-flow.py
  2. 228 0
      tests/python/field-SiAgSi-flow.py

+ 243 - 0
tests/python/field-Ag-flow.py

@@ -0,0 +1,243 @@
+#!/usr/bin/env python
+# -*- coding: UTF-8 -*-
+#
+#    Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
+#
+#    This file is part of python-scattnlay
+#
+#    This program is free software: you can redistribute it and/or modify
+#    it under the terms of the GNU General Public License as published by
+#    the Free Software Foundation, either version 3 of the License, or
+#    (at your option) any later version.
+#
+#    This program is distributed in the hope that it will be useful,
+#    but WITHOUT ANY WARRANTY; without even the implied warranty of
+#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+#    GNU General Public License for more details.
+#
+#    The only additional remark is that we expect that all publications
+#    describing work using this software, or all commercial products
+#    using it, cite the following reference:
+#    [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
+#        a multilayered sphere," Computer Physics Communications,
+#        vol. 180, Nov. 2009, pp. 2348-2354.
+#
+#    You should have received a copy of the GNU General Public License
+#    along with this program.  If not, see <http://www.gnu.org/licenses/>.
+
+# This test case calculates the electric field in the 
+# E-k plane, for an spherical Si-Ag-Si nanoparticle. Core radius is 17.74 nm,
+# inner layer 23.31nm, outer layer 22.95nm. Working wavelength is 800nm, we use
+# silicon epsilon=13.64+i0.047, silver epsilon= -28.05+i1.525
+
+import scattnlay
+from scattnlay import fieldnlay
+from scattnlay import scattnlay
+import numpy as np
+import cmath
+
+
+def get_index(array,value):
+    idx = (np.abs(array-value)).argmin()
+    return idx
+
+#Ec = np.resize(Ec, (npts, npts)).T
+
+
+def GetFlow(scale_x, scale_z, Ec, Hc, a, b, nmax):
+    # Initial position
+    flow_x = [a]
+    flow_z = [b]
+    x_pos = flow_x[-1]
+    z_pos = flow_z[-1]
+    x_idx = get_index(scale_x, x_pos)
+    z_idx = get_index(scale_z, z_pos)
+    S=np.cross(Ec[npts*z_idx+x_idx], np.conjugate(Hc[npts*z_idx+x_idx]) ).real
+    #if (np.linalg.norm(S)> 1e-4):
+    Snorm_prev=S/np.linalg.norm(S)
+    for n in range(0, nmax):
+        #Get the next position
+        #1. Find Poynting vector and normalize it
+        x_pos = flow_x[-1]
+        z_pos = flow_z[-1]
+        x_idx = get_index(scale_x, x_pos)
+        z_idx = get_index(scale_z, z_pos)
+        S=np.cross(Ec[npts*z_idx+x_idx], np.conjugate(Hc[npts*z_idx+x_idx]) ).real
+        #if (np.linalg.norm(S)> 1e-4):
+        Snorm=S/np.linalg.norm(S)
+        #2. Evaluate displacement = half of the discrete and new position
+        dpos = abs(scale_z[0]-scale_z[1])/2.0
+        dx = dpos*Snorm[0]
+        dz = dpos*Snorm[2]
+        x_pos = x_pos+dx
+        z_pos = z_pos+dz
+        #3. Save result
+        flow_x.append(x_pos)
+        flow_z.append(z_pos)
+    return flow_x, flow_z
+
+# # a)
+# WL=400 #nm
+# core_r = WL/20.0
+# epsilon_Ag = -2.0 + 10.0j
+
+# # b)
+# WL=400 #nm
+# core_r = WL/20.0
+# epsilon_Ag = -2.0 + 1.0j
+
+# c)
+WL=354 #nm
+core_r = WL/20.0
+epsilon_Ag = -2.0 + 0.28j
+
+# # d)
+# WL=367 #nm
+# core_r = WL/20.0
+# epsilon_Ag = -2.71 + 0.25j
+
+
+index_Ag = np.sqrt(epsilon_Ag)
+
+
+# n1 = 1.53413
+# n2 = 0.565838 + 7.23262j
+nm = 1.0
+
+x = np.ones((1, 1), dtype = np.float64)
+x[0, 0] = 2.0*np.pi*core_r/WL
+
+m = np.ones((1, 1), dtype = np.complex128)
+m[0, 0] = index_Ag/nm
+
+print "x =", x
+print "m =", m
+
+npts = 281
+
+factor=5
+scan = np.linspace(-factor*x[0, 0], factor*x[0, 0], npts)
+
+coordX, coordZ = np.meshgrid(scan, scan)
+coordX.resize(npts*npts)
+coordZ.resize(npts*npts)
+coordY = np.zeros(npts*npts, dtype = np.float64)
+
+coord = np.vstack((coordX, coordY, coordZ)).transpose()
+#coord = np.vstack((coordY, coordX, coordZ)).transpose()
+
+terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m)
+terms, E, H = fieldnlay(x, m, coord)
+Er = np.absolute(E)
+Hr = np.absolute(H)
+P=[]
+for n in range(0, len(E[0])):
+    P.append(np.linalg.norm( np.cross(E[0][n], np.conjugate(H[0][n]) ).real/2 ))
+
+print(min(P))
+
+# |E|/|Eo|
+Eabs = np.sqrt(Er[0, :, 0]**2 + Er[0, :, 1]**2 + Er[0, :, 2]**2)
+Ec = E[0, :, :]
+Hc = H[0, :, :]
+Eangle = np.angle(E[0, :, 0])/np.pi*180
+
+Habs= np.sqrt(Hr[0, :, 0]**2 + Hr[0, :, 1]**2 + Hr[0, :, 2]**2)
+Hangle = np.angle(H[0, :, 1])/np.pi*180
+
+
+
+try:
+    import matplotlib.pyplot as plt
+    from matplotlib import cm
+    from matplotlib.colors import LogNorm
+
+    # min_tick = 0.0
+    # max_tick = 1.0
+
+    Eabs_data = np.resize(P, (npts, npts)).T
+
+    #Eabs_data = np.resize(Eabs, (npts, npts)).T
+    #Eabs_data = np.resize(Eangle, (npts, npts)).T
+    #Eabs_data = np.resize(Habs, (npts, npts)).T
+    #Eabs_data = np.resize(Hangle, (npts, npts)).T
+
+    fig, ax = plt.subplots(1,1)#, sharey=True, sharex=True)
+    #fig.tight_layout()
+    # Rescale to better show the axes
+    scale_x = np.linspace(min(coordX)*WL/2.0/np.pi/nm, max(coordX)*WL/2.0/np.pi/nm, npts)
+    scale_z = np.linspace(min(coordZ)*WL/2.0/np.pi/nm, max(coordZ)*WL/2.0/np.pi/nm, npts)
+
+    # Define scale ticks
+    # min_tick = min(min_tick, np.amin(Eabs_data))
+    # max_tick = max(max_tick, np.amax(Eabs_data))
+    # scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6))
+    #scale_ticks = np.linspace(min_tick, max_tick, 11)
+
+    # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
+    #ax.set_title('Eabs')
+    cax = ax.imshow(Eabs_data, interpolation = 'nearest', cmap = cm.jet,
+                    origin = 'lower'
+                    #, vmin = min_tick, vmax = max_tick
+                    , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z))
+                    #,norm = LogNorm()
+                    )
+    ax.axis("image")
+
+    # # Add colorbar
+    # cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
+    # cbar.ax.set_yticklabels(['%5.3g' % (a) for a in scale_ticks]) # vertically oriented colorbar
+    # pos = list(cbar.ax.get_position().bounds)
+    # fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
+
+    plt.xlabel('Z, nm')
+    plt.ylabel('X, nm')
+
+    # This part draws the nanoshell
+    from matplotlib import patches
+    s1 = patches.Arc((0, 0), 2.0*core_r, 2.0*core_r,  angle=0.0, zorder=2,
+                     theta1=0.0, theta2=360.0, linewidth=1, color='black')
+    ax.add_patch(s1)
+
+    from matplotlib.path import Path
+    #import matplotlib.patches as patches
+    flow_total = 31
+    for flow in range(0,flow_total):
+        flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
+                                 min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),
+                                 min(scale_z),
+                                 npts*6)
+        verts = np.vstack((flow_z, flow_x)).transpose().tolist()
+        #codes = [Path.CURVE4]*len(verts)
+        codes = [Path.LINETO]*len(verts)
+        codes[0] = Path.MOVETO
+        path = Path(verts, codes)
+        patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='white')
+        ax.add_patch(patch)
+    # # Start powerflow lines in the middle of the image
+    # flow_total = 131
+    # for flow in range(0,flow_total):
+    #     flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
+    #                              min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),
+    #                              15.0, #min(scale_z),
+    #                              npts*6)
+    #     verts = np.vstack((flow_z, flow_x)).transpose().tolist()
+    #     #codes = [Path.CURVE4]*len(verts)
+    #     codes = [Path.LINETO]*len(verts)
+    #     codes[0] = Path.MOVETO
+    #     path = Path(verts, codes)
+    #     patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='white')
+    #     ax.add_patch(patch)
+ 
+    # plt.savefig("SiAgSi.png")
+    plt.draw()
+
+    plt.show()
+
+    plt.clf()
+    plt.close()
+finally:
+    print("Qabs = "+str(Qabs));
+#
+
+

+ 228 - 0
tests/python/field-SiAgSi-flow.py

@@ -0,0 +1,228 @@
+#!/usr/bin/env python
+# -*- coding: UTF-8 -*-
+#
+#    Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
+#
+#    This file is part of python-scattnlay
+#
+#    This program is free software: you can redistribute it and/or modify
+#    it under the terms of the GNU General Public License as published by
+#    the Free Software Foundation, either version 3 of the License, or
+#    (at your option) any later version.
+#
+#    This program is distributed in the hope that it will be useful,
+#    but WITHOUT ANY WARRANTY; without even the implied warranty of
+#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+#    GNU General Public License for more details.
+#
+#    The only additional remark is that we expect that all publications
+#    describing work using this software, or all commercial products
+#    using it, cite the following reference:
+#    [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
+#        a multilayered sphere," Computer Physics Communications,
+#        vol. 180, Nov. 2009, pp. 2348-2354.
+#
+#    You should have received a copy of the GNU General Public License
+#    along with this program.  If not, see <http://www.gnu.org/licenses/>.
+
+# This test case calculates the electric field in the 
+# E-k plane, for an spherical Si-Ag-Si nanoparticle. Core radius is 17.74 nm,
+# inner layer 23.31nm, outer layer 22.95nm. Working wavelength is 800nm, we use
+# silicon epsilon=13.64+i0.047, silver epsilon= -28.05+i1.525
+
+import scattnlay
+from scattnlay import fieldnlay
+from scattnlay import scattnlay
+import numpy as np
+import cmath
+
+
+def get_index(array,value):
+    idx = (np.abs(array-value)).argmin()
+    return idx
+
+#Ec = np.resize(Ec, (npts, npts)).T
+
+
+def GetFlow(scale_x, scale_z, Ec, Hc, a, b, nmax):
+    # Initial position
+    flow_x = [a]
+    flow_z = [b]
+    for n in range(0, nmax):
+        #Get the next position
+        #1. Find Poynting vector and normalize it
+        x_pos = flow_x[-1]
+        z_pos = flow_z[-1]
+        x_idx = get_index(scale_x, x_pos)
+        z_idx = get_index(scale_z, z_pos)
+        S=np.cross(Ec[npts*z_idx+x_idx], np.conjugate(Hc[npts*z_idx+x_idx]) ).real
+        Snorm=S/np.linalg.norm(S)
+        #2. Evaluate displacement = half of the discrete and new position
+        dpos = abs(scale_z[0]-scale_z[1])/4.0
+        dx = dpos*Snorm[0]
+        dz = dpos*Snorm[2]
+        x_pos = x_pos+dx
+        z_pos = z_pos+dz
+        #3. Save result
+        flow_x.append(x_pos)
+        flow_z.append(z_pos)
+    return flow_x, flow_z
+
+
+
+epsilon_Si = 13.64 + 0.047j
+epsilon_Ag = -28.05 + 1.525j
+
+# epsilon_Si = 2.0 + 0.047j
+# epsilon_Ag = -2.0 + 1.525j
+
+# air = 1
+# epsilon_Si = air*2
+# epsilon_Ag = air*2
+
+
+index_Si = np.sqrt(epsilon_Si)
+index_Ag = np.sqrt(epsilon_Ag)
+
+# # Values for 800 nm, taken from http://refractiveindex.info/
+# index_Si = 3.69410 + 0.0065435j
+# index_Ag = 0.18599 + 4.9886j
+
+WL=800 #nm
+core_width = 17.74 #nm Si
+inner_width = 23.31 #nm Ag
+outer_width = 22.95 #nm  Si
+
+core_r = core_width
+inner_r = core_r+inner_width
+outer_r = inner_r+outer_width
+
+# n1 = 1.53413
+# n2 = 0.565838 + 7.23262j
+nm = 1.0
+
+x = np.ones((1, 3), dtype = np.float64)
+x[0, 0] = 2.0*np.pi*core_r/WL
+x[0, 1] = 2.0*np.pi*inner_r/WL
+x[0, 2] = 2.0*np.pi*outer_r/WL
+
+m = np.ones((1, 3), dtype = np.complex128)
+m[0, 0] = index_Si/nm
+m[0, 1] = index_Ag/nm
+m[0, 2] = index_Si/nm
+
+print "x =", x
+print "m =", m
+
+npts = 1281
+
+factor=2.5
+scan = np.linspace(-factor*x[0, 2], factor*x[0, 2], npts)
+
+coordX, coordZ = np.meshgrid(scan, scan)
+coordX.resize(npts*npts)
+coordZ.resize(npts*npts)
+coordY = np.zeros(npts*npts, dtype = np.float64)
+
+coord = np.vstack((coordX, coordX, coordZ)).transpose()
+
+terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m)
+terms, E, H = fieldnlay(x, m, coord)
+Er = np.absolute(E)
+Hr = np.absolute(H)
+
+# |E|/|Eo|
+Eabs = np.sqrt(Er[0, :, 0]**2 + Er[0, :, 1]**2 + Er[0, :, 2]**2)
+Ec = E[0, :, :]
+Hc = H[0, :, :]
+Eangle = np.angle(E[0, :, 0])/np.pi*180
+
+Habs= np.sqrt(Hr[0, :, 0]**2 + Hr[0, :, 1]**2 + Hr[0, :, 2]**2)
+Hangle = np.angle(H[0, :, 1])/np.pi*180
+
+
+
+try:
+    import matplotlib.pyplot as plt
+    from matplotlib import cm
+    from matplotlib.colors import LogNorm
+
+    min_tick = 0.0
+    max_tick = 1.0
+
+    Eabs_data = np.resize(Eabs, (npts, npts)).T
+    # Eangle_data = np.resize(Eangle, (npts, npts)).T
+    # Habs_data = np.resize(Habs, (npts, npts)).T
+    # Hangle_data = np.resize(Hangle, (npts, npts)).T
+
+    fig, ax = plt.subplots(1,1)#, sharey=True, sharex=True)
+    #fig.tight_layout()
+    # Rescale to better show the axes
+    scale_x = np.linspace(min(coordX)*WL/2.0/np.pi/nm, max(coordX)*WL/2.0/np.pi/nm, npts)
+    scale_z = np.linspace(min(coordZ)*WL/2.0/np.pi/nm, max(coordZ)*WL/2.0/np.pi/nm, npts)
+
+    # Define scale ticks
+    min_tick = min(min_tick, np.amin(Eabs_data))
+    max_tick = max(max_tick, np.amax(Eabs_data))
+    # scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6))
+    scale_ticks = np.linspace(min_tick, max_tick, 11)
+
+    # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
+    ax.set_title('Eabs')
+    cax = ax.imshow(Eabs_data, interpolation = 'nearest', cmap = cm.jet,
+                    origin = 'lower'
+                    #, vmin = min_tick, vmax = max_tick
+                    , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z))
+                    #,norm = LogNorm()
+                    )
+    ax.axis("image")
+
+    # Add colorbar
+    cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
+    cbar.ax.set_yticklabels(['%5.3g' % (a) for a in scale_ticks]) # vertically oriented colorbar
+    pos = list(cbar.ax.get_position().bounds)
+    fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
+
+    plt.xlabel('Z, nm')
+    plt.ylabel('X, nm')
+
+    # This part draws the nanoshell
+    from matplotlib import patches
+    s1 = patches.Arc((0, 0), 2.0*core_r, 2.0*core_r,  angle=0.0, zorder=2,
+                     theta1=0.0, theta2=360.0, linewidth=1, color='black')
+    s2 = patches.Arc((0, 0), 2.0*inner_r, 2.0*inner_r, angle=0.0, zorder=2,
+                     theta1=0.0, theta2=360.0, linewidth=1, color='black')
+    s3 = patches.Arc((0, 0), 2.0*outer_r, 2.0*outer_r, angle=0.0, zorder=2,
+                     theta1=0.0, theta2=360.0, linewidth=1, color='black')
+    ax.add_patch(s1)
+    ax.add_patch(s2) 
+    ax.add_patch(s3) 
+
+    from matplotlib.path import Path
+    #import matplotlib.patches as patches
+    flow_total = 131
+    for flow in range(0,flow_total):
+        flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
+                                 min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),
+                                                    min(scale_z), npts*12)
+        verts = np.vstack((flow_z, flow_x)).transpose().tolist()
+        codes = [Path.CURVE4]*len(verts)
+        #codes = [Path.LINETO]*len(verts)
+        codes[0] = Path.MOVETO
+        path = Path(verts, codes)
+        patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='white')
+        ax.add_patch(patch)
+
+ 
+    # plt.savefig("SiAgSi.png")
+    plt.draw()
+
+    plt.show()
+
+    plt.clf()
+    plt.close()
+finally:
+    print("Qabs = "+str(Qabs));
+#
+
+