field-Ag-flow.py 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243
  1. #!/usr/bin/env python
  2. # -*- coding: UTF-8 -*-
  3. #
  4. # Copyright (C) 2009-2015 Ovidio Peña Rodríguez <ovidio@bytesfall.com>
  5. #
  6. # This file is part of python-scattnlay
  7. #
  8. # This program is free software: you can redistribute it and/or modify
  9. # it under the terms of the GNU General Public License as published by
  10. # the Free Software Foundation, either version 3 of the License, or
  11. # (at your option) any later version.
  12. #
  13. # This program is distributed in the hope that it will be useful,
  14. # but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. # GNU General Public License for more details.
  17. #
  18. # The only additional remark is that we expect that all publications
  19. # describing work using this software, or all commercial products
  20. # using it, cite the following reference:
  21. # [1] O. Pena and U. Pal, "Scattering of electromagnetic radiation by
  22. # a multilayered sphere," Computer Physics Communications,
  23. # vol. 180, Nov. 2009, pp. 2348-2354.
  24. #
  25. # You should have received a copy of the GNU General Public License
  26. # along with this program. If not, see <http://www.gnu.org/licenses/>.
  27. # This test case calculates the electric field in the
  28. # E-k plane, for an spherical Si-Ag-Si nanoparticle. Core radius is 17.74 nm,
  29. # inner layer 23.31nm, outer layer 22.95nm. Working wavelength is 800nm, we use
  30. # silicon epsilon=13.64+i0.047, silver epsilon= -28.05+i1.525
  31. import scattnlay
  32. from scattnlay import fieldnlay
  33. from scattnlay import scattnlay
  34. import numpy as np
  35. import cmath
  36. def get_index(array,value):
  37. idx = (np.abs(array-value)).argmin()
  38. return idx
  39. #Ec = np.resize(Ec, (npts, npts)).T
  40. def GetFlow(scale_x, scale_z, Ec, Hc, a, b, nmax):
  41. # Initial position
  42. flow_x = [a]
  43. flow_z = [b]
  44. x_pos = flow_x[-1]
  45. z_pos = flow_z[-1]
  46. x_idx = get_index(scale_x, x_pos)
  47. z_idx = get_index(scale_z, z_pos)
  48. S=np.cross(Ec[npts*z_idx+x_idx], np.conjugate(Hc[npts*z_idx+x_idx]) ).real
  49. #if (np.linalg.norm(S)> 1e-4):
  50. Snorm_prev=S/np.linalg.norm(S)
  51. for n in range(0, nmax):
  52. #Get the next position
  53. #1. Find Poynting vector and normalize it
  54. x_pos = flow_x[-1]
  55. z_pos = flow_z[-1]
  56. x_idx = get_index(scale_x, x_pos)
  57. z_idx = get_index(scale_z, z_pos)
  58. S=np.cross(Ec[npts*z_idx+x_idx], np.conjugate(Hc[npts*z_idx+x_idx]) ).real
  59. #if (np.linalg.norm(S)> 1e-4):
  60. Snorm=S/np.linalg.norm(S)
  61. #2. Evaluate displacement = half of the discrete and new position
  62. dpos = abs(scale_z[0]-scale_z[1])/2.0
  63. dx = dpos*Snorm[0]
  64. dz = dpos*Snorm[2]
  65. x_pos = x_pos+dx
  66. z_pos = z_pos+dz
  67. #3. Save result
  68. flow_x.append(x_pos)
  69. flow_z.append(z_pos)
  70. return flow_x, flow_z
  71. # # a)
  72. # WL=400 #nm
  73. # core_r = WL/20.0
  74. # epsilon_Ag = -2.0 + 10.0j
  75. # # b)
  76. # WL=400 #nm
  77. # core_r = WL/20.0
  78. # epsilon_Ag = -2.0 + 1.0j
  79. # c)
  80. WL=354 #nm
  81. core_r = WL/20.0
  82. epsilon_Ag = -2.0 + 0.28j
  83. # # d)
  84. # WL=367 #nm
  85. # core_r = WL/20.0
  86. # epsilon_Ag = -2.71 + 0.25j
  87. index_Ag = np.sqrt(epsilon_Ag)
  88. # n1 = 1.53413
  89. # n2 = 0.565838 + 7.23262j
  90. nm = 1.0
  91. x = np.ones((1, 1), dtype = np.float64)
  92. x[0, 0] = 2.0*np.pi*core_r/WL
  93. m = np.ones((1, 1), dtype = np.complex128)
  94. m[0, 0] = index_Ag/nm
  95. print "x =", x
  96. print "m =", m
  97. npts = 281
  98. factor=5
  99. scan = np.linspace(-factor*x[0, 0], factor*x[0, 0], npts)
  100. coordX, coordZ = np.meshgrid(scan, scan)
  101. coordX.resize(npts*npts)
  102. coordZ.resize(npts*npts)
  103. coordY = np.zeros(npts*npts, dtype = np.float64)
  104. coord = np.vstack((coordX, coordY, coordZ)).transpose()
  105. #coord = np.vstack((coordY, coordX, coordZ)).transpose()
  106. terms, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2 = scattnlay(x, m)
  107. terms, E, H = fieldnlay(x, m, coord)
  108. Er = np.absolute(E)
  109. Hr = np.absolute(H)
  110. P=[]
  111. for n in range(0, len(E[0])):
  112. P.append(np.linalg.norm( np.cross(E[0][n], np.conjugate(H[0][n]) ).real/2 ))
  113. print(min(P))
  114. # |E|/|Eo|
  115. Eabs = np.sqrt(Er[0, :, 0]**2 + Er[0, :, 1]**2 + Er[0, :, 2]**2)
  116. Ec = E[0, :, :]
  117. Hc = H[0, :, :]
  118. Eangle = np.angle(E[0, :, 0])/np.pi*180
  119. Habs= np.sqrt(Hr[0, :, 0]**2 + Hr[0, :, 1]**2 + Hr[0, :, 2]**2)
  120. Hangle = np.angle(H[0, :, 1])/np.pi*180
  121. try:
  122. import matplotlib.pyplot as plt
  123. from matplotlib import cm
  124. from matplotlib.colors import LogNorm
  125. # min_tick = 0.0
  126. # max_tick = 1.0
  127. Eabs_data = np.resize(P, (npts, npts)).T
  128. #Eabs_data = np.resize(Eabs, (npts, npts)).T
  129. #Eabs_data = np.resize(Eangle, (npts, npts)).T
  130. #Eabs_data = np.resize(Habs, (npts, npts)).T
  131. #Eabs_data = np.resize(Hangle, (npts, npts)).T
  132. fig, ax = plt.subplots(1,1)#, sharey=True, sharex=True)
  133. #fig.tight_layout()
  134. # Rescale to better show the axes
  135. scale_x = np.linspace(min(coordX)*WL/2.0/np.pi/nm, max(coordX)*WL/2.0/np.pi/nm, npts)
  136. scale_z = np.linspace(min(coordZ)*WL/2.0/np.pi/nm, max(coordZ)*WL/2.0/np.pi/nm, npts)
  137. # Define scale ticks
  138. # min_tick = min(min_tick, np.amin(Eabs_data))
  139. # max_tick = max(max_tick, np.amax(Eabs_data))
  140. # scale_ticks = np.power(10.0, np.linspace(np.log10(min_tick), np.log10(max_tick), 6))
  141. #scale_ticks = np.linspace(min_tick, max_tick, 11)
  142. # Interpolation can be 'nearest', 'bilinear' or 'bicubic'
  143. #ax.set_title('Eabs')
  144. cax = ax.imshow(Eabs_data, interpolation = 'nearest', cmap = cm.jet,
  145. origin = 'lower'
  146. #, vmin = min_tick, vmax = max_tick
  147. , extent = (min(scale_x), max(scale_x), min(scale_z), max(scale_z))
  148. #,norm = LogNorm()
  149. )
  150. ax.axis("image")
  151. # # Add colorbar
  152. # cbar = fig.colorbar(cax, ticks = [a for a in scale_ticks])
  153. # cbar.ax.set_yticklabels(['%5.3g' % (a) for a in scale_ticks]) # vertically oriented colorbar
  154. # pos = list(cbar.ax.get_position().bounds)
  155. # fig.text(pos[0] - 0.02, 0.925, '|E|/|E$_0$|', fontsize = 14)
  156. plt.xlabel('Z, nm')
  157. plt.ylabel('X, nm')
  158. # This part draws the nanoshell
  159. from matplotlib import patches
  160. s1 = patches.Arc((0, 0), 2.0*core_r, 2.0*core_r, angle=0.0, zorder=2,
  161. theta1=0.0, theta2=360.0, linewidth=1, color='black')
  162. ax.add_patch(s1)
  163. from matplotlib.path import Path
  164. #import matplotlib.patches as patches
  165. flow_total = 31
  166. for flow in range(0,flow_total):
  167. flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
  168. min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),
  169. min(scale_z),
  170. npts*6)
  171. verts = np.vstack((flow_z, flow_x)).transpose().tolist()
  172. #codes = [Path.CURVE4]*len(verts)
  173. codes = [Path.LINETO]*len(verts)
  174. codes[0] = Path.MOVETO
  175. path = Path(verts, codes)
  176. patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='white')
  177. ax.add_patch(patch)
  178. # # Start powerflow lines in the middle of the image
  179. # flow_total = 131
  180. # for flow in range(0,flow_total):
  181. # flow_x, flow_z = GetFlow(scale_x, scale_z, Ec, Hc,
  182. # min(scale_x)+flow*(scale_x[-1]-scale_x[0])/(flow_total-1),
  183. # 15.0, #min(scale_z),
  184. # npts*6)
  185. # verts = np.vstack((flow_z, flow_x)).transpose().tolist()
  186. # #codes = [Path.CURVE4]*len(verts)
  187. # codes = [Path.LINETO]*len(verts)
  188. # codes[0] = Path.MOVETO
  189. # path = Path(verts, codes)
  190. # patch = patches.PathPatch(path, facecolor='none', lw=1, edgecolor='white')
  191. # ax.add_patch(patch)
  192. # plt.savefig("SiAgSi.png")
  193. plt.draw()
  194. plt.show()
  195. plt.clf()
  196. plt.close()
  197. finally:
  198. print("Qabs = "+str(Qabs));
  199. #