|
@@ -45,13 +45,13 @@
|
|
|
#include <stdexcept>
|
|
|
#include <vector>
|
|
|
|
|
|
-namespace nmie {
|
|
|
+namespace nmie {
|
|
|
//helpers
|
|
|
template<class T> inline T pow2(const T value) {return value*value;}
|
|
|
|
|
|
int round(double x) {
|
|
|
return x >= 0 ? (int)(x + 0.5):(int)(x - 0.5);
|
|
|
- }
|
|
|
+ }
|
|
|
|
|
|
|
|
|
//**********************************************************************************//
|
|
@@ -84,19 +84,19 @@ namespace nmie {
|
|
|
// Number of multipolar expansion terms used for the calculations //
|
|
|
//**********************************************************************************//
|
|
|
int nMie(const int L, const int pl, std::vector<double>& x, std::vector<std::complex<double> >& m, const int nTheta, std::vector<double>& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
-
|
|
|
+
|
|
|
if (x.size() != L || m.size() != L)
|
|
|
throw std::invalid_argument("Declared number of layers do not fit x and m!");
|
|
|
if (Theta.size() != nTheta)
|
|
|
throw std::invalid_argument("Declared number of sample for Theta is not correct!");
|
|
|
try {
|
|
|
- MultiLayerMie multi_layer_mie;
|
|
|
+ MultiLayerMie multi_layer_mie;
|
|
|
multi_layer_mie.SetLayersSize(x);
|
|
|
multi_layer_mie.SetLayersIndex(m);
|
|
|
multi_layer_mie.SetAngles(Theta);
|
|
|
-
|
|
|
+
|
|
|
multi_layer_mie.RunMieCalculation();
|
|
|
-
|
|
|
+
|
|
|
*Qext = multi_layer_mie.GetQext();
|
|
|
*Qsca = multi_layer_mie.GetQsca();
|
|
|
*Qabs = multi_layer_mie.GetQabs();
|
|
@@ -111,7 +111,7 @@ namespace nmie {
|
|
|
std::cerr << "Invalid argument: " << ia.what() << std::endl;
|
|
|
throw std::invalid_argument(ia);
|
|
|
return -1;
|
|
|
- }
|
|
|
+ }
|
|
|
|
|
|
return 0;
|
|
|
}
|
|
@@ -144,7 +144,7 @@ namespace nmie {
|
|
|
// Number of multipolar expansion terms used for the calculations //
|
|
|
//**********************************************************************************//
|
|
|
int nMie(const int L, std::vector<double>& x, std::vector<std::complex<double> >& m, const int nTheta, std::vector<double>& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
- return nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
+ return nmie::nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
}
|
|
|
|
|
|
|
|
@@ -176,7 +176,7 @@ namespace nmie {
|
|
|
// Number of multipolar expansion terms used for the calculations //
|
|
|
//**********************************************************************************//
|
|
|
int nMie(const int L, const int pl, std::vector<double>& x, std::vector<std::complex<double> >& m, const int nTheta, std::vector<double>& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
- return nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
+ return nmie::nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
}
|
|
|
|
|
|
//**********************************************************************************//
|
|
@@ -209,7 +209,7 @@ namespace nmie {
|
|
|
// Number of multipolar expansion terms used for the calculations //
|
|
|
//**********************************************************************************//
|
|
|
int nMie(const int L, std::vector<double>& x, std::vector<std::complex<double> >& m, const int nTheta, std::vector<double>& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
- return nMie(L, -1, x, m, nTheta, Theta, nmax, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
+ return nmie::nMie(L, -1, x, m, nTheta, Theta, nmax, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
}
|
|
|
|
|
|
|
|
@@ -248,10 +248,10 @@ namespace nmie {
|
|
|
if (f.size() != 3)
|
|
|
throw std::invalid_argument("Field H is not 3D!");
|
|
|
try {
|
|
|
- MultiLayerMie multi_layer_mie;
|
|
|
+ MultiLayerMie multi_layer_mie;
|
|
|
//multi_layer_mie.SetPECLayer(pl);
|
|
|
multi_layer_mie.SetLayersSize(x);
|
|
|
- multi_layer_mie.SetLayersIndex(m);
|
|
|
+ multi_layer_mie.SetLayersIndex(m);
|
|
|
multi_layer_mie.SetFieldCoords({Xp_vec, Yp_vec, Zp_vec});
|
|
|
multi_layer_mie.RunFieldCalculation();
|
|
|
E = multi_layer_mie.GetFieldE();
|
|
@@ -262,7 +262,7 @@ namespace nmie {
|
|
|
std::cerr << "Invalid argument: " << ia.what() << std::endl;
|
|
|
throw std::invalid_argument(ia);
|
|
|
return - 1;
|
|
|
- }
|
|
|
+ }
|
|
|
|
|
|
return 0;
|
|
|
}
|
|
@@ -376,16 +376,16 @@ namespace nmie {
|
|
|
areIntCoeffsCalc_ = false;
|
|
|
areExtCoeffsCalc_ = false;
|
|
|
isMieCalculated_ = false;
|
|
|
- layer_size_.clear();
|
|
|
+ size_param_.clear();
|
|
|
double prev_layer_size = 0.0;
|
|
|
for (auto curr_layer_size : layer_size) {
|
|
|
if (curr_layer_size <= 0.0)
|
|
|
throw std::invalid_argument("Size parameter should be positive!");
|
|
|
- if (prev_layer_size > curr_layer_size)
|
|
|
+ if (prev_layer_size > curr_layer_size)
|
|
|
throw std::invalid_argument
|
|
|
("Size parameter for next layer should be larger than the previous one!");
|
|
|
prev_layer_size = curr_layer_size;
|
|
|
- layer_size_.push_back(curr_layer_size);
|
|
|
+ size_param_.push_back(curr_layer_size);
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -397,7 +397,7 @@ namespace nmie {
|
|
|
areIntCoeffsCalc_ = false;
|
|
|
areExtCoeffsCalc_ = false;
|
|
|
isMieCalculated_ = false;
|
|
|
- layer_index_ = index;
|
|
|
+ refr_index_ = index;
|
|
|
}
|
|
|
|
|
|
|
|
@@ -429,13 +429,11 @@ namespace nmie {
|
|
|
// ********************************************************************** //
|
|
|
// Set maximun number of terms to be used //
|
|
|
// ********************************************************************** //
|
|
|
- void MultiLayerMie::SetMaxTerms(int nmax) {
|
|
|
+ void MultiLayerMie::SetMaxTerms(int nmax) {
|
|
|
areIntCoeffsCalc_ = false;
|
|
|
areExtCoeffsCalc_ = false;
|
|
|
isMieCalculated_ = false;
|
|
|
nmax_preset_ = nmax;
|
|
|
- //debug
|
|
|
- printf("Setting max terms: %d\n", nmax_preset_);
|
|
|
}
|
|
|
|
|
|
|
|
@@ -443,10 +441,10 @@ namespace nmie {
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
|
double MultiLayerMie::GetSizeParameter() {
|
|
|
-// if (!isMieCalculated_)
|
|
|
-// throw std::invalid_argument("You should run calculations before result request!");
|
|
|
- if (size_parameter_ == 0) CalcSizeParameter();
|
|
|
- return size_parameter_;
|
|
|
+ if (size_param_.size() > 0)
|
|
|
+ return size_param_.back();
|
|
|
+ else
|
|
|
+ return 0;
|
|
|
}
|
|
|
|
|
|
|
|
@@ -457,8 +455,8 @@ namespace nmie {
|
|
|
areIntCoeffsCalc_ = false;
|
|
|
areExtCoeffsCalc_ = false;
|
|
|
isMieCalculated_ = false;
|
|
|
- layer_size_.clear();
|
|
|
- layer_index_.clear();
|
|
|
+ size_param_.clear();
|
|
|
+ refr_index_.clear();
|
|
|
}
|
|
|
|
|
|
|
|
@@ -472,39 +470,39 @@ namespace nmie {
|
|
|
|
|
|
|
|
|
// ********************************************************************** //
|
|
|
- // Calculate Nstop - equation (17) //
|
|
|
+ // Calculate calcNstop - equation (17) //
|
|
|
// ********************************************************************** //
|
|
|
- void MultiLayerMie::Nstop() {
|
|
|
- const double& xL = layer_size_.back();
|
|
|
+ void MultiLayerMie::calcNstop() {
|
|
|
+ const double& xL = size_param_.back();
|
|
|
if (xL <= 8) {
|
|
|
nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 1);
|
|
|
} else if (xL <= 4200) {
|
|
|
nmax_ = round(xL + 4.05*pow(xL, 1.0/3.0) + 2);
|
|
|
} else {
|
|
|
nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 2);
|
|
|
- }
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
|
|
|
// ********************************************************************** //
|
|
|
// Maximum number of terms required for the calculation //
|
|
|
// ********************************************************************** //
|
|
|
- void MultiLayerMie::Nmax(int first_layer) {
|
|
|
+ void MultiLayerMie::calcNmax(int first_layer) {
|
|
|
int ri, riM1;
|
|
|
- const std::vector<double>& x = layer_size_;
|
|
|
- const std::vector<std::complex<double> >& m = layer_index_;
|
|
|
- Nstop(); // Set initial nmax_ value
|
|
|
+ const std::vector<double>& x = size_param_;
|
|
|
+ const std::vector<std::complex<double> >& m = refr_index_;
|
|
|
+ calcNstop(); // Set initial nmax_ value
|
|
|
for (int i = first_layer; i < x.size(); i++) {
|
|
|
- if (i > PEC_layer_position_)
|
|
|
+ if (i > PEC_layer_position_)
|
|
|
ri = round(std::abs(x[i]*m[i]));
|
|
|
- else
|
|
|
- ri = 0;
|
|
|
+ else
|
|
|
+ ri = 0;
|
|
|
nmax_ = std::max(nmax_, ri);
|
|
|
// first layer is pec, if pec is present
|
|
|
- if ((i > first_layer) && ((i - 1) > PEC_layer_position_))
|
|
|
+ if ((i > first_layer) && ((i - 1) > PEC_layer_position_))
|
|
|
riM1 = round(std::abs(x[i - 1]* m[i]));
|
|
|
- else
|
|
|
- riM1 = 0;
|
|
|
+ else
|
|
|
+ riM1 = 0;
|
|
|
nmax_ = std::max(nmax_, riM1);
|
|
|
}
|
|
|
nmax_ += 15; // Final nmax_ value
|
|
@@ -779,7 +777,7 @@ namespace nmie {
|
|
|
|
|
|
|
|
|
//**********************************************************************************//
|
|
|
- // This function calculates Pi and Tau for all values of Theta. //
|
|
|
+ // This function calculates Pi and Tau for a given value of cos(Theta). //
|
|
|
// Equations (26a) - (26c) //
|
|
|
// //
|
|
|
// Input parameters: //
|
|
@@ -791,43 +789,26 @@ namespace nmie {
|
|
|
// Output parameters: //
|
|
|
// Pi, Tau: Angular functions Pi and Tau, as defined in equations (26a) - (26c) //
|
|
|
//**********************************************************************************//
|
|
|
- void MultiLayerMie::calcSinglePiTau(const double& costheta, std::vector<double>& Pi,
|
|
|
- std::vector<double>& Tau) {
|
|
|
+ void MultiLayerMie::calcPiTau(const double& costheta,
|
|
|
+ std::vector<double>& Pi, std::vector<double>& Tau) {
|
|
|
|
|
|
+ int n;
|
|
|
//****************************************************//
|
|
|
// Equations (26a) - (26c) //
|
|
|
//****************************************************//
|
|
|
- for (int n = 0; n < nmax_; n++) {
|
|
|
- if (n == 0) {
|
|
|
- // Initialize Pi and Tau
|
|
|
- Pi[n] = 1.0;
|
|
|
- Tau[n] = (n + 1)*costheta;
|
|
|
- } else {
|
|
|
- // Calculate the actual values
|
|
|
- Pi[n] = ((n == 1) ? ((n + n + 1)*costheta*Pi[n - 1]/n)
|
|
|
- : (((n + n + 1)*costheta*Pi[n - 1]
|
|
|
- - (n + 1)*Pi[n - 2])/n));
|
|
|
+ // Initialize Pi and Tau
|
|
|
+ Pi[0] = 1.0;
|
|
|
+ Tau[0] = costheta;
|
|
|
+ // Calculate the actual values
|
|
|
+ if (nmax_ > 1) {
|
|
|
+ Pi[1] = 3*costheta*Pi[0];
|
|
|
+ Tau[1] = 2*costheta*Pi[1] - 3*Pi[0];
|
|
|
+ for (n = 2; n < nmax_; n++) {
|
|
|
+ Pi[n] = ((n + n + 1)*costheta*Pi[n - 1] - (n + 1)*Pi[n - 2])/n;
|
|
|
Tau[n] = (n + 1)*costheta*Pi[n] - (n + 2)*Pi[n - 1];
|
|
|
}
|
|
|
}
|
|
|
- } // end of void MultiLayerMie::calcPiTau(...)
|
|
|
-
|
|
|
-
|
|
|
- void MultiLayerMie::calcAllPiTau(std::vector< std::vector<double> >& Pi,
|
|
|
- std::vector< std::vector<double> >& Tau) {
|
|
|
- std::vector<double> costheta(theta_.size(), 0.0);
|
|
|
- for (int t = 0; t < theta_.size(); t++) {
|
|
|
- costheta[t] = std::cos(theta_[t]);
|
|
|
- }
|
|
|
- // Do not join upper and lower 'for' to a single one! It will slow
|
|
|
- // down the code!!! (For about 0.5-2.0% of runtime, it is probably
|
|
|
- // due to increased cache missing rate originated from the
|
|
|
- // recurrence in calcPiTau...)
|
|
|
- for (int t = 0; t < theta_.size(); t++) {
|
|
|
- calcSinglePiTau(costheta[t], Pi[t], Tau[t]);
|
|
|
- //calcSinglePiTau(std::cos(theta_[t]), Pi[t], Tau[t]); // It is slow!!
|
|
|
- }
|
|
|
- } // end of void MultiLayerMie::calcAllPiTau(...)
|
|
|
+ } // end of MultiLayerMie::calcPiTau(...)
|
|
|
|
|
|
|
|
|
//**********************************************************************************//
|
|
@@ -850,11 +831,14 @@ namespace nmie {
|
|
|
// Number of multipolar expansion terms used for the calculations //
|
|
|
//**********************************************************************************//
|
|
|
void MultiLayerMie::ExtScattCoeffs() {
|
|
|
+
|
|
|
areExtCoeffsCalc_ = false;
|
|
|
- const std::vector<double>& x = layer_size_;
|
|
|
- const std::vector<std::complex<double> >& m = layer_index_;
|
|
|
+
|
|
|
+ const std::vector<double>& x = size_param_;
|
|
|
+ const std::vector<std::complex<double> >& m = refr_index_;
|
|
|
const int& pl = PEC_layer_position_;
|
|
|
- const int L = layer_index_.size();
|
|
|
+ const int L = refr_index_.size();
|
|
|
+
|
|
|
//************************************************************************//
|
|
|
// Calculate the index of the first layer. It can be either 0 (default) //
|
|
|
// or the index of the outermost PEC layer. In the latter case all layers //
|
|
@@ -865,10 +849,11 @@ namespace nmie {
|
|
|
// int fl = (pl > - 1) ? pl : 0;
|
|
|
// This will give the same result, however, it corresponds the
|
|
|
// logic - if there is PEC, than first layer is PEC.
|
|
|
- // Well, I followed the logic: First layer is always zero unless it has
|
|
|
+ // Well, I followed the logic: First layer is always zero unless it has
|
|
|
// an upper PEC layer.
|
|
|
int fl = (pl > 0) ? pl : 0;
|
|
|
- if (nmax_ <= 0) Nmax(fl);
|
|
|
+ if (nmax_preset_ <= 0) calcNmax(fl);
|
|
|
+ else nmax_ = nmax_preset_;
|
|
|
|
|
|
std::complex<double> z1, z2;
|
|
|
//**************************************************************************//
|
|
@@ -894,7 +879,7 @@ namespace nmie {
|
|
|
bn_.resize(nmax_);
|
|
|
PsiZeta_.resize(nmax_ + 1);
|
|
|
|
|
|
- std::vector<std::complex<double> > D1XL(nmax_ + 1), D3XL(nmax_ + 1),
|
|
|
+ std::vector<std::complex<double> > D1XL(nmax_ + 1), D3XL(nmax_ + 1),
|
|
|
PsiXL(nmax_ + 1), ZetaXL(nmax_ + 1);
|
|
|
|
|
|
//*************************************************//
|
|
@@ -1007,56 +992,6 @@ namespace nmie {
|
|
|
areExtCoeffsCalc_ = true;
|
|
|
} // end of void MultiLayerMie::ExtScattCoeffs(...)
|
|
|
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::CalcSizeParameter() {
|
|
|
- double radius = 0.0;
|
|
|
- for (auto width : layer_size_) {
|
|
|
- radius += width;
|
|
|
- }
|
|
|
- size_parameter_ = radius;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::InitMieCalculations() {
|
|
|
- areIntCoeffsCalc_ = false;
|
|
|
- areExtCoeffsCalc_ = false;
|
|
|
- isMieCalculated_ = false;
|
|
|
- // Initialize the scattering parameters
|
|
|
- Qext_ = 0;
|
|
|
- Qsca_ = 0;
|
|
|
- Qabs_ = 0;
|
|
|
- Qbk_ = 0;
|
|
|
- Qpr_ = 0;
|
|
|
- asymmetry_factor_ = 0;
|
|
|
- albedo_ = 0;
|
|
|
- Qsca_ch_.clear();
|
|
|
- Qext_ch_.clear();
|
|
|
- Qabs_ch_.clear();
|
|
|
- Qbk_ch_.clear();
|
|
|
- Qpr_ch_.clear();
|
|
|
- Qsca_ch_.resize(nmax_ - 1);
|
|
|
- Qext_ch_.resize(nmax_ - 1);
|
|
|
- Qabs_ch_.resize(nmax_ - 1);
|
|
|
- Qbk_ch_.resize(nmax_ - 1);
|
|
|
- Qpr_ch_.resize(nmax_ - 1);
|
|
|
- Qsca_ch_norm_.resize(nmax_ - 1);
|
|
|
- Qext_ch_norm_.resize(nmax_ - 1);
|
|
|
- Qabs_ch_norm_.resize(nmax_ - 1);
|
|
|
- Qbk_ch_norm_.resize(nmax_ - 1);
|
|
|
- Qpr_ch_norm_.resize(nmax_ - 1);
|
|
|
- // Initialize the scattering amplitudes
|
|
|
- std::vector<std::complex<double> > tmp1(theta_.size(),std::complex<double>(0.0, 0.0));
|
|
|
- S1_.swap(tmp1);
|
|
|
- S2_ = S1_;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
//**********************************************************************************//
|
|
|
// This function calculates the actual scattering parameters and amplitudes //
|
|
|
// //
|
|
@@ -1086,26 +1021,58 @@ namespace nmie {
|
|
|
// Number of multipolar expansion terms used for the calculations //
|
|
|
//**********************************************************************************//
|
|
|
void MultiLayerMie::RunMieCalculation() {
|
|
|
- isMieCalculated_ = false;
|
|
|
- nmax_ = nmax_preset_;
|
|
|
- if (layer_size_.size() != layer_index_.size())
|
|
|
+ if (size_param_.size() != refr_index_.size())
|
|
|
throw std::invalid_argument("Each size parameter should have only one index!");
|
|
|
- if (layer_size_.size() == 0)
|
|
|
+ if (size_param_.size() == 0)
|
|
|
throw std::invalid_argument("Initialize model first!");
|
|
|
- const std::vector<double>& x = layer_size_;
|
|
|
+
|
|
|
+ const std::vector<double>& x = size_param_;
|
|
|
+
|
|
|
+ areIntCoeffsCalc_ = false;
|
|
|
+ areExtCoeffsCalc_ = false;
|
|
|
+ isMieCalculated_ = false;
|
|
|
+
|
|
|
// Calculate scattering coefficients
|
|
|
ExtScattCoeffs();
|
|
|
|
|
|
- // std::vector< std::vector<double> > Pi(nmax_), Tau(nmax_);
|
|
|
- std::vector< std::vector<double> > Pi, Tau;
|
|
|
- Pi.resize(theta_.size());
|
|
|
- Tau.resize(theta_.size());
|
|
|
- for (int i =0; i< theta_.size(); ++i) {
|
|
|
- Pi[i].resize(nmax_);
|
|
|
- Tau[i].resize(nmax_);
|
|
|
- }
|
|
|
- calcAllPiTau(Pi, Tau);
|
|
|
- InitMieCalculations();
|
|
|
+// for (int i = 0; i < an_.size(); i++) {
|
|
|
+// printf("a[%i] = %g, %g; b[%i] = %g, %g\n", i, an_[i].real(), an_[i].imag(), i, bn_[i].real(), bn_[i].imag());
|
|
|
+// }
|
|
|
+
|
|
|
+ if (!areExtCoeffsCalc_)
|
|
|
+ throw std::invalid_argument("Calculation of scattering coefficients failed!");
|
|
|
+
|
|
|
+ // Initialize the scattering parameters
|
|
|
+ Qext_ = 0;
|
|
|
+ Qsca_ = 0;
|
|
|
+ Qabs_ = 0;
|
|
|
+ Qbk_ = 0;
|
|
|
+ Qpr_ = 0;
|
|
|
+ asymmetry_factor_ = 0;
|
|
|
+ albedo_ = 0;
|
|
|
+ Qsca_ch_.clear();
|
|
|
+ Qext_ch_.clear();
|
|
|
+ Qabs_ch_.clear();
|
|
|
+ Qbk_ch_.clear();
|
|
|
+ Qpr_ch_.clear();
|
|
|
+ Qsca_ch_.resize(nmax_ - 1);
|
|
|
+ Qext_ch_.resize(nmax_ - 1);
|
|
|
+ Qabs_ch_.resize(nmax_ - 1);
|
|
|
+ Qbk_ch_.resize(nmax_ - 1);
|
|
|
+ Qpr_ch_.resize(nmax_ - 1);
|
|
|
+ Qsca_ch_norm_.resize(nmax_ - 1);
|
|
|
+ Qext_ch_norm_.resize(nmax_ - 1);
|
|
|
+ Qabs_ch_norm_.resize(nmax_ - 1);
|
|
|
+ Qbk_ch_norm_.resize(nmax_ - 1);
|
|
|
+ Qpr_ch_norm_.resize(nmax_ - 1);
|
|
|
+
|
|
|
+ // Initialize the scattering amplitudes
|
|
|
+ std::vector<std::complex<double> > tmp1(theta_.size(),std::complex<double>(0.0, 0.0));
|
|
|
+ S1_.swap(tmp1);
|
|
|
+ S2_ = S1_;
|
|
|
+
|
|
|
+ std::vector<double> Pi(nmax_), Tau(nmax_);
|
|
|
+
|
|
|
std::complex<double> Qbktmp(0.0, 0.0);
|
|
|
std::vector< std::complex<double> > Qbktmp_ch(nmax_ - 1, Qbktmp);
|
|
|
// By using downward recurrence we avoid loss of precision due to float rounding errors
|
|
@@ -1134,14 +1101,16 @@ namespace nmie {
|
|
|
Qpr_ch_[i]=((n*(n + 2)/(n + 1))*((an_[i]*std::conj(an_[n]) + bn_[i]*std::conj(bn_[n])).real())
|
|
|
+ ((double)(n + n + 1)/(n*(n + 1)))*(an_[i]*std::conj(bn_[i])).real());
|
|
|
Qpr_ += Qpr_ch_[i];
|
|
|
- // Equation (33)
|
|
|
+ // Equation (33)
|
|
|
Qbktmp_ch[i] = (double)(n + n + 1)*(1 - 2*(n % 2))*(an_[i]- bn_[i]);
|
|
|
Qbktmp += Qbktmp_ch[i];
|
|
|
// Calculate the scattering amplitudes (S1 and S2) //
|
|
|
// Equations (25a) - (25b) //
|
|
|
for (int t = 0; t < theta_.size(); t++) {
|
|
|
- S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[t][i], Tau[t][i]);
|
|
|
- S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[t][i], Tau[t][i]);
|
|
|
+ calcPiTau(std::cos(theta_[t]), Pi, Tau);
|
|
|
+
|
|
|
+ S1_[t] += calc_S1(n, an_[i], bn_[i], Pi[i], Tau[i]);
|
|
|
+ S2_[t] += calc_S2(n, an_[i], bn_[i], Pi[i], Tau[i]);
|
|
|
}
|
|
|
}
|
|
|
double x2 = pow2(x.back());
|
|
@@ -1158,23 +1127,27 @@ namespace nmie {
|
|
|
Qabs_ch_[i] = Qext_ch_[i] - Qsca_ch_[i];
|
|
|
Qabs_ch_norm_[i] = Qext_ch_norm_[i] - Qsca_ch_norm_[i];
|
|
|
}
|
|
|
-
|
|
|
+
|
|
|
albedo_ = Qsca_/Qext_; // Equation (31)
|
|
|
asymmetry_factor_ = (Qext_ - Qpr_)/Qsca_; // Equation (32)
|
|
|
|
|
|
Qbk_ = (Qbktmp.real()*Qbktmp.real() + Qbktmp.imag()*Qbktmp.imag())/x2; // Equation (33)
|
|
|
|
|
|
isMieCalculated_ = true;
|
|
|
- nmax_used_ = nmax_;
|
|
|
}
|
|
|
-
|
|
|
+
|
|
|
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
|
- void MultiLayerMie::InitIntScattCoeffs() {
|
|
|
+ void MultiLayerMie::IntScattCoeffs() {
|
|
|
+ if (!areExtCoeffsCalc_)
|
|
|
+ throw std::invalid_argument("(IntScattCoeffs) You should calculate external coefficients first!");
|
|
|
+
|
|
|
areIntCoeffsCalc_ = false;
|
|
|
- const int L = layer_index_.size();
|
|
|
+
|
|
|
+ const int L = refr_index_.size();
|
|
|
+
|
|
|
// we need to fill
|
|
|
// std::vector< std::vector<std::complex<double> > > anl_, bnl_, cnl_, dnl_;
|
|
|
// for n = [0..nmax_) and for l=[L..0)
|
|
@@ -1197,25 +1170,15 @@ namespace nmie {
|
|
|
bnl_[L][i] = bn_[i];
|
|
|
cnl_[L][i] = c_one;
|
|
|
dnl_[L][i] = c_one;
|
|
|
- //if (i < 3) printf(" (%g) ", std::abs(an_[i]));
|
|
|
}
|
|
|
|
|
|
- }
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- // ********************************************************************** //
|
|
|
- void MultiLayerMie::IntScattCoeffs() {
|
|
|
- if (!areExtCoeffsCalc_)
|
|
|
- throw std::invalid_argument("(IntScattCoeffs) You should calculate external coefficients first!");
|
|
|
- InitIntScattCoeffs();
|
|
|
- const int L = layer_index_.size();
|
|
|
std::vector<std::complex<double> > z(L), z1(L);
|
|
|
for (int i = 0; i < L - 1; ++i) {
|
|
|
- z[i] =layer_size_[i]*layer_index_[i];
|
|
|
- z1[i]=layer_size_[i]*layer_index_[i + 1];
|
|
|
+ z[i] =size_param_[i]*refr_index_[i];
|
|
|
+ z1[i]=size_param_[i]*refr_index_[i + 1];
|
|
|
}
|
|
|
- z[L - 1] = layer_size_[L - 1]*layer_index_[L - 1];
|
|
|
- z1[L - 1] = layer_size_[L - 1];
|
|
|
+ z[L - 1] = size_param_[L - 1]*refr_index_[L - 1];
|
|
|
+ z1[L - 1] = size_param_[L - 1];
|
|
|
std::vector< std::vector<std::complex<double> > > D1z(L), D1z1(L), D3z(L), D3z1(L);
|
|
|
std::vector< std::vector<std::complex<double> > > Psiz(L), Psiz1(L), Zetaz(L), Zetaz1(L);
|
|
|
for (int l = 0; l < L; ++l) {
|
|
@@ -1234,7 +1197,7 @@ namespace nmie {
|
|
|
calcPsiZeta(z[l],D1z[l],D3z[l], Psiz[l],Zetaz[l]);
|
|
|
calcPsiZeta(z1[l],D1z1[l],D3z1[l], Psiz1[l],Zetaz1[l]);
|
|
|
}
|
|
|
- auto& m = layer_index_;
|
|
|
+ auto& m = refr_index_;
|
|
|
std::vector< std::complex<double> > m1(L);
|
|
|
for (int l = 0; l < L - 1; ++l) m1[l] = m[l + 1];
|
|
|
m1[L - 1] = std::complex<double> (1.0, 0.0);
|
|
@@ -1263,7 +1226,7 @@ namespace nmie {
|
|
|
denom = m1[l]*Psiz[l][n + 1]*(D1z[l][n + 1] - D3z[l][n + 1]);
|
|
|
cnl_[l][n] = D3z[l][n + 1]*m[l]*(bnl_[l + 1][n]*Zetaz1[l][n + 1] - cnl_[l + 1][n]*Psiz1[l][n + 1])
|
|
|
- m1[l]*(-D1z1[l][n + 1]*cnl_[l + 1][n]*Psiz1[l][n + 1] + D3z1[l][n + 1]*bnl_[l + 1][n]*Zetaz1[l][n + 1]);
|
|
|
- cnl_[l][n] /= denom;
|
|
|
+ cnl_[l][n] /= denom;
|
|
|
} // end of all n
|
|
|
} // end of for all l
|
|
|
|
|
@@ -1319,48 +1282,47 @@ namespace nmie {
|
|
|
// assume: medium is non-absorbing; refim = 0; Uabs = 0
|
|
|
|
|
|
void MultiLayerMie::fieldExt(const double Rho, const double Phi, const double Theta, const std::vector<double>& Pi, const std::vector<double>& Tau, std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
|
|
|
-
|
|
|
+
|
|
|
std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0);
|
|
|
- std::vector<std::complex<double> > vm3o1n(3), vm3e1n(3), vn3o1n(3), vn3e1n(3);
|
|
|
+ std::vector<std::complex<double> > M3o1n(3), M3e1n(3), N3o1n(3), N3e1n(3);
|
|
|
std::vector<std::complex<double> > Ei(3, c_zero), Hi(3, c_zero), Es(3, c_zero), Hs(3, c_zero);
|
|
|
std::vector<std::complex<double> > bj(nmax_ + 1), by(nmax_ + 1), bd(nmax_ + 1);
|
|
|
|
|
|
// Calculate spherical Bessel and Hankel functions
|
|
|
- sphericalBessel(Rho,bj, by, bd);
|
|
|
+ sphericalBessel(Rho, bj, by, bd);
|
|
|
|
|
|
//printf("########## layer OUT ############\n");
|
|
|
for (int n = 0; n < nmax_; n++) {
|
|
|
- double rn = static_cast<double>(n + 1);
|
|
|
+ int n1 = n + 1;
|
|
|
+ double rn = static_cast<double>(n1);
|
|
|
|
|
|
- std::complex<double> zn = bj[n + 1] + c_i*by[n + 1];
|
|
|
+ std::complex<double> zn = bj[n1] + c_i*by[n1];
|
|
|
// using BH 4.12 and 4.50
|
|
|
- std::complex<double> xxip = Rho*(bj[n] + c_i*by[n]) - rn*zn;
|
|
|
-
|
|
|
+ std::complex<double> deriv = Rho*(bj[n] + c_i*by[n]) - rn*zn;
|
|
|
+
|
|
|
using std::sin;
|
|
|
using std::cos;
|
|
|
- vm3o1n[0] = c_zero;
|
|
|
- vm3o1n[1] = cos(Phi)*Pi[n]*zn;
|
|
|
- vm3o1n[2] = -sin(Phi)*Tau[n]*zn;
|
|
|
- vm3e1n[0] = c_zero;
|
|
|
- vm3e1n[1] = -sin(Phi)*Pi[n]*zn;
|
|
|
- vm3e1n[2] = -cos(Phi)*Tau[n]*zn;
|
|
|
- vn3o1n[0] = sin(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
|
|
|
- vn3o1n[1] = sin(Phi)*Tau[n]*xxip/Rho;
|
|
|
- vn3o1n[2] = cos(Phi)*Pi[n]*xxip/Rho;
|
|
|
- vn3e1n[0] = cos(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
|
|
|
- vn3e1n[1] = cos(Phi)*Tau[n]*xxip/Rho;
|
|
|
- vn3e1n[2] = -sin(Phi)*Pi[n]*xxip/Rho;
|
|
|
-
|
|
|
+ M3o1n[0] = c_zero;
|
|
|
+ M3o1n[1] = cos(Phi)*Pi[n]*zn;
|
|
|
+ M3o1n[2] = -sin(Phi)*Tau[n]*zn;
|
|
|
+ M3e1n[0] = c_zero;
|
|
|
+ M3e1n[1] = -sin(Phi)*Pi[n]*zn;
|
|
|
+ M3e1n[2] = -cos(Phi)*Tau[n]*zn;
|
|
|
+ N3o1n[0] = sin(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
|
|
|
+ N3o1n[1] = sin(Phi)*Tau[n]*deriv/Rho;
|
|
|
+ N3o1n[2] = cos(Phi)*Pi[n]*deriv/Rho;
|
|
|
+ N3e1n[0] = cos(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
|
|
|
+ N3e1n[1] = cos(Phi)*Tau[n]*deriv/Rho;
|
|
|
+ N3e1n[2] = -sin(Phi)*Pi[n]*deriv/Rho;
|
|
|
+
|
|
|
// scattered field: BH p.94 (4.45)
|
|
|
- std::complex<double> encap = std::pow(c_i, rn)*(2.0*rn + 1.0)/(rn*rn + rn);
|
|
|
+ std::complex<double> En = std::pow(c_i, rn)*(2.0*rn + 1.0)/(rn*rn + rn);
|
|
|
for (int i = 0; i < 3; i++) {
|
|
|
- Es[i] = Es[i] + encap*(c_i*an_[n]*vn3e1n[i] - bn_[n]*vm3o1n[i]);
|
|
|
- Hs[i] = Hs[i] + encap*(c_i*bn_[n]*vn3o1n[i] + an_[n]*vm3e1n[i]);
|
|
|
- //if (n < 3) printf(" E[%d]=%g ", i,std::abs(Es[i]));
|
|
|
- //if (n < 3) printf(" !!=%d=== %g ", i,std::abs(Es[i]));
|
|
|
+ Es[i] = Es[i] + En*(c_i*an_[n]*N3e1n[i] - bn_[n]*M3o1n[i]);
|
|
|
+ Hs[i] = Hs[i] + En*(c_i*bn_[n]*N3o1n[i] + an_[n]*M3e1n[i]);
|
|
|
}
|
|
|
}
|
|
|
-
|
|
|
+
|
|
|
// incident E field: BH p.89 (4.21); cf. p.92 (4.37), p.93 (4.38)
|
|
|
// basis unit vectors = er, etheta, ephi
|
|
|
std::complex<double> eifac = std::exp(std::complex<double>(0.0, Rho*std::cos(Theta)));
|
|
@@ -1377,7 +1339,7 @@ namespace nmie {
|
|
|
for (int i = 0; i < 3; i++) {
|
|
|
Hs[i] = hffact*Hs[i];
|
|
|
}
|
|
|
-
|
|
|
+
|
|
|
// incident H field: BH p.26 (2.43), p.89 (4.21)
|
|
|
std::complex<double> hffacta = hffact;
|
|
|
std::complex<double> hifac = eifac*hffacta;
|
|
@@ -1388,7 +1350,7 @@ namespace nmie {
|
|
|
Hi[1] = hifac*cos(Theta)*sin(Phi);
|
|
|
Hi[2] = hifac*cos(Phi);
|
|
|
}
|
|
|
-
|
|
|
+
|
|
|
for (int i = 0; i < 3; i++) {
|
|
|
// electric field E [V m - 1] = EF*E0
|
|
|
E[i] = Ei[i] + Es[i];
|
|
@@ -1404,123 +1366,128 @@ namespace nmie {
|
|
|
void MultiLayerMie::fieldInt(const double Rho, const double Phi, const double Theta, const std::vector<double>& Pi, const std::vector<double>& Tau, std::vector<std::complex<double> >& E, std::vector<std::complex<double> >& H) {
|
|
|
// printf("field int Qext = %g, Qsca = %g, Qabs = %g, Qbk = %g, \n",
|
|
|
// GetQext(), GetQsca(), GetQabs(), GetQbk());
|
|
|
-
|
|
|
+
|
|
|
std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0), c_one(1.0, 0.0);
|
|
|
- std::vector<std::complex<double> > vm3o1n(3), vm3e1n(3), vn3o1n(3), vn3e1n(3);
|
|
|
- std::vector<std::complex<double> > vm1o1n(3), vm1e1n(3), vn1o1n(3), vn1e1n(3);
|
|
|
- std::vector<std::complex<double> > El(3,c_zero),Ei(3,c_zero), Hl(3,c_zero);
|
|
|
+ std::vector<std::complex<double> > M3o1n(3), M3e1n(3), N3o1n(3), N3e1n(3);
|
|
|
+ std::vector<std::complex<double> > M1o1n(3), M1e1n(3), N1o1n(3), N1e1n(3);
|
|
|
+ std::vector<std::complex<double> > El(3, c_zero),Ei(3, c_zero), Hl(3, c_zero);
|
|
|
std::vector<std::complex<double> > bj(nmax_ + 1), by(nmax_ + 1), bd(nmax_ + 1);
|
|
|
- int layer=0; // layer number
|
|
|
- std::complex<double> layer_index_l;
|
|
|
- for (int i = 0; i < layer_size_.size() - 1; ++i) {
|
|
|
- if (layer_size_[i] < Rho && Rho <= layer_size_[i + 1]) {
|
|
|
- layer=i;
|
|
|
+
|
|
|
+ int layer = 0; // layer number
|
|
|
+ std::complex<double> m_l;
|
|
|
+
|
|
|
+ for (int i = 0; i < size_param_.size() - 1; ++i) {
|
|
|
+ if (size_param_[i] < Rho && Rho <= size_param_[i + 1]) {
|
|
|
+ layer = i;
|
|
|
}
|
|
|
}
|
|
|
- if (Rho > layer_size_.back()) {
|
|
|
- layer = layer_size_.size();
|
|
|
- layer_index_l = c_one;
|
|
|
+
|
|
|
+ if (Rho > size_param_.back()) {
|
|
|
+ layer = size_param_.size();
|
|
|
+ m_l = c_one;
|
|
|
} else {
|
|
|
- layer_index_l = layer_index_[layer];
|
|
|
+ m_l = refr_index_[layer];
|
|
|
}
|
|
|
-
|
|
|
- std::complex<double> bessel_arg = Rho*layer_index_l;
|
|
|
+
|
|
|
+ std::complex<double> bessel_arg = Rho*m_l;
|
|
|
std::complex<double>& rh = bessel_arg;
|
|
|
std::complex<double> besselj_1 = std::sin(rh)/pow2(rh)-std::cos(rh)/rh;
|
|
|
- //printf("bessel arg = %g,%g index=%g,%g besselj[1]=%g,%g\n", bessel_arg.real(), bessel_arg.imag(), layer_index_l.real(), layer_index_l.imag(), besselj_1.real(), besselj_1.imag());
|
|
|
+ //printf("bessel arg = %g,%g index=%g,%g besselj[1]=%g,%g\n", bessel_arg.real(), bessel_arg.imag(), m_l.real(), m_l.imag(), besselj_1.real(), besselj_1.imag());
|
|
|
const int& l = layer;
|
|
|
//printf("########## layer %d ############\n",l);
|
|
|
// Calculate spherical Bessel and Hankel functions
|
|
|
- sphericalBessel(bessel_arg,bj, by, bd);
|
|
|
+ sphericalBessel(bessel_arg, bj, by, bd);
|
|
|
//printf("besselj[1]=%g,%g\n", bj[1].real(), bj[1].imag());
|
|
|
//printf("bessely[1]=%g,%g\n", by[1].real(), by[1].imag());
|
|
|
for (int n = 0; n < nmax_; n++) {
|
|
|
- double rn = static_cast<double>(n + 1);
|
|
|
+ int n1 = n + 1;
|
|
|
+ double rn = static_cast<double>(n1);
|
|
|
+
|
|
|
std::complex<double> znm1 = bj[n] + c_i*by[n];
|
|
|
- std::complex<double> zn = bj[n + 1] + c_i*by[n + 1];
|
|
|
- //if (n < 3) printf("\nbesselh = %g,%g", zn.real(), zn.imag()); //!
|
|
|
+ std::complex<double> zn = bj[n1] + c_i*by[n1];
|
|
|
+
|
|
|
// using BH 4.12 and 4.50
|
|
|
- std::complex<double> xxip = Rho*(bj[n] + c_i*by[n]) - rn*zn;
|
|
|
- //if (n < 3) printf("\nxxip = %g,%g", xxip.real(), xxip.imag()); //!
|
|
|
-
|
|
|
+ std::complex<double> deriv = Rho*(bj[n] + c_i*by[n]) - rn*zn;
|
|
|
+ //if (n < 3) printf("\nxxip = %g,%g", deriv.real(), deriv.imag()); //!
|
|
|
+
|
|
|
using std::sin;
|
|
|
using std::cos;
|
|
|
- vm3o1n[0] = c_zero;
|
|
|
- vm3o1n[1] = cos(Phi)*Pi[n]*zn;
|
|
|
- vm3o1n[2] = -sin(Phi)*Tau[n]*zn;
|
|
|
- // if (n < 3) printf("\nRE vm3o1n[0]%g vm3o1n[1]%g vm3o1n[2]%g \nIM vm3o1n[0]%g vm3o1n[1]%g vm3o1n[2]%g",
|
|
|
- // vm3o1n[0].real(), vm3o1n[1].real(), vm3o1n[2].real(),
|
|
|
- // vm3o1n[0].imag(), vm3o1n[1].imag(), vm3o1n[2].imag());
|
|
|
- vm3e1n[0] = c_zero;
|
|
|
- vm3e1n[1] = -sin(Phi)*Pi[n]*zn;
|
|
|
- vm3e1n[2] = -cos(Phi)*Tau[n]*zn;
|
|
|
- vn3o1n[0] = sin(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
|
|
|
- vn3o1n[1] = sin(Phi)*Tau[n]*xxip/Rho;
|
|
|
- vn3o1n[2] = cos(Phi)*Pi[n]*xxip/Rho;
|
|
|
- vn3e1n[0] = cos(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
|
|
|
- vn3e1n[1] = cos(Phi)*Tau[n]*xxip/Rho;
|
|
|
- vn3e1n[2] = -sin(Phi)*Pi[n]*xxip/Rho;
|
|
|
- // if (n < 3) printf("\nRE vn3e1n[0]%g vn3e1n[1]%g vn3e1n[2]%g \nIM vn3e1n[0]%g vn3e1n[1]%g vn3e1n[2]%g",
|
|
|
- // vn3e1n[0].real(), vn3e1n[1].real(), vn3e1n[2].real(),
|
|
|
- // vn3e1n[0].imag(), vn3e1n[1].imag(), vn3e1n[2].imag());
|
|
|
-
|
|
|
+ M3o1n[0] = c_zero;
|
|
|
+ M3o1n[1] = cos(Phi)*Pi[n]*zn;
|
|
|
+ M3o1n[2] = -sin(Phi)*Tau[n]*zn;
|
|
|
+ // if (n < 3) printf("\nRE M3o1n[0]%g M3o1n[1]%g M3o1n[2]%g \nIM M3o1n[0]%g M3o1n[1]%g M3o1n[2]%g",
|
|
|
+ // M3o1n[0].real(), M3o1n[1].real(), M3o1n[2].real(),
|
|
|
+ // M3o1n[0].imag(), M3o1n[1].imag(), M3o1n[2].imag());
|
|
|
+ M3e1n[0] = c_zero;
|
|
|
+ M3e1n[1] = -sin(Phi)*Pi[n]*zn;
|
|
|
+ M3e1n[2] = -cos(Phi)*Tau[n]*zn;
|
|
|
+ N3o1n[0] = sin(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
|
|
|
+ N3o1n[1] = sin(Phi)*Tau[n]*deriv/Rho;
|
|
|
+ N3o1n[2] = cos(Phi)*Pi[n]*deriv/Rho;
|
|
|
+ N3e1n[0] = cos(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
|
|
|
+ N3e1n[1] = cos(Phi)*Tau[n]*deriv/Rho;
|
|
|
+ N3e1n[2] = -sin(Phi)*Pi[n]*deriv/Rho;
|
|
|
+ // if (n < 3) printf("\nRE N3e1n[0]%g N3e1n[1]%g N3e1n[2]%g \nIM N3e1n[0]%g N3e1n[1]%g N3e1n[2]%g",
|
|
|
+ // N3e1n[0].real(), N3e1n[1].real(), N3e1n[2].real(),
|
|
|
+ // N3e1n[0].imag(), N3e1n[1].imag(), N3e1n[2].imag());
|
|
|
+
|
|
|
znm1 = bj[n];
|
|
|
- zn = bj[n + 1];
|
|
|
+ zn = bj[n1];
|
|
|
// znm1 = (bj[n] + c_i*by[n]).real();
|
|
|
// zn = (bj[n + 1] + c_i*by[n + 1]).real();
|
|
|
- xxip = Rho*(bj[n]) - rn*zn;
|
|
|
+ deriv = Rho*(bj[n]) - rn*zn;
|
|
|
//if (n < 3)printf("\nbesselj = %g,%g", zn.real(), zn.imag()); //!
|
|
|
- vm1o1n[0] = c_zero;
|
|
|
- vm1o1n[1] = cos(Phi)*Pi[n]*zn;
|
|
|
- vm1o1n[2] = -sin(Phi)*Tau[n]*zn;
|
|
|
- vm1e1n[0] = c_zero;
|
|
|
- vm1e1n[1] = -sin(Phi)*Pi[n]*zn;
|
|
|
- vm1e1n[2] = -cos(Phi)*Tau[n]*zn;
|
|
|
- vn1o1n[0] = sin(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
|
|
|
- vn1o1n[1] = sin(Phi)*Tau[n]*xxip/Rho;
|
|
|
- vn1o1n[2] = cos(Phi)*Pi[n]*xxip/Rho;
|
|
|
- // if (n < 3) printf("\nvn1o1n[2](%g) = cos(Phi)(%g)*Pi[n](%g)*xxip(%g)/Rho(%g)",
|
|
|
- // std::abs(vn1o1n[2]), cos(Phi),Pi[n],std::abs(xxip),Rho);
|
|
|
- vn1e1n[0] = cos(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
|
|
|
- vn1e1n[1] = cos(Phi)*Tau[n]*xxip/Rho;
|
|
|
- vn1e1n[2] = -sin(Phi)*Pi[n]*xxip/Rho;
|
|
|
- // if (n < 3) printf("\nRE vm3o1n[0]%g vm3o1n[1]%g vm3o1n[2]%g \nIM vm3o1n[0]%g vm3o1n[1]%g vm3o1n[2]%g",
|
|
|
- // vm3o1n[0].real(), vm3o1n[1].real(), vm3o1n[2].real(),
|
|
|
- // vm3o1n[0].imag(), vm3o1n[1].imag(), vm3o1n[2].imag());
|
|
|
-
|
|
|
+ M1o1n[0] = c_zero;
|
|
|
+ M1o1n[1] = cos(Phi)*Pi[n]*zn;
|
|
|
+ M1o1n[2] = -sin(Phi)*Tau[n]*zn;
|
|
|
+ M1e1n[0] = c_zero;
|
|
|
+ M1e1n[1] = -sin(Phi)*Pi[n]*zn;
|
|
|
+ M1e1n[2] = -cos(Phi)*Tau[n]*zn;
|
|
|
+ N1o1n[0] = sin(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
|
|
|
+ N1o1n[1] = sin(Phi)*Tau[n]*deriv/Rho;
|
|
|
+ N1o1n[2] = cos(Phi)*Pi[n]*deriv/Rho;
|
|
|
+ // if (n < 3) printf("\nN1o1n[2](%g) = cos(Phi)(%g)*Pi[n](%g)*deriv(%g)/Rho(%g)",
|
|
|
+ // std::abs(N1o1n[2]), cos(Phi),Pi[n],std::abs(deriv),Rho);
|
|
|
+ N1e1n[0] = cos(Phi)*rn*(rn + 1.0)*sin(Theta)*Pi[n]*zn/Rho;
|
|
|
+ N1e1n[1] = cos(Phi)*Tau[n]*deriv/Rho;
|
|
|
+ N1e1n[2] = -sin(Phi)*Pi[n]*deriv/Rho;
|
|
|
+ // if (n < 3) printf("\nRE M3o1n[0]%g M3o1n[1]%g M3o1n[2]%g \nIM M3o1n[0]%g M3o1n[1]%g M3o1n[2]%g",
|
|
|
+ // M3o1n[0].real(), M3o1n[1].real(), M3o1n[2].real(),
|
|
|
+ // M3o1n[0].imag(), M3o1n[1].imag(), M3o1n[2].imag());
|
|
|
+
|
|
|
// scattered field: BH p.94 (4.45)
|
|
|
- std::complex<double> encap = std::pow(c_i, rn)*(2.0*rn + 1.0)/(rn*rn + rn);
|
|
|
+ std::complex<double> En = std::pow(c_i, rn)*(2.0*rn + 1.0)/(rn*rn + rn);
|
|
|
// if (n < 3) printf("\n===== n=%d ======\n",n);
|
|
|
for (int i = 0; i < 3; i++) {
|
|
|
// if (n < 3 && i==0) printf("\nn=%d",n);
|
|
|
// if (n < 3) printf("\nbefore !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
|
|
|
- Ei[i] = encap*(cnl_[l][n]*vm1o1n[i] - c_i*dnl_[l][n]*vn1e1n[i]
|
|
|
- + c_i*anl_[l][n]*vn3e1n[i] - bnl_[l][n]*vm3o1n[i]);
|
|
|
- El[i] = El[i] + encap*(cnl_[l][n]*vm1o1n[i] - c_i*dnl_[l][n]*vn1e1n[i]
|
|
|
- + c_i*anl_[l][n]*vn3e1n[i] - bnl_[l][n]*vm3o1n[i]);
|
|
|
- Hl[i] = Hl[i] + encap*(-dnl_[l][n]*vm1e1n[i] - c_i*cnl_[l][n]*vn1o1n[i]
|
|
|
- + c_i*bnl_[l][n]*vn3o1n[i] + anl_[l][n]*vm3e1n[i]);
|
|
|
+ Ei[i] = En*(cnl_[l][n]*M1o1n[i] - c_i*dnl_[l][n]*N1e1n[i]
|
|
|
+ + c_i*anl_[l][n]*N3e1n[i] - bnl_[l][n]*M3o1n[i]);
|
|
|
+ El[i] = El[i] + En*(cnl_[l][n]*M1o1n[i] - c_i*dnl_[l][n]*N1e1n[i]
|
|
|
+ + c_i*anl_[l][n]*N3e1n[i] - bnl_[l][n]*M3o1n[i]);
|
|
|
+ Hl[i] = Hl[i] + En*(-dnl_[l][n]*M1e1n[i] - c_i*cnl_[l][n]*N1o1n[i]
|
|
|
+ + c_i*bnl_[l][n]*N3o1n[i] + anl_[l][n]*M3e1n[i]);
|
|
|
// printf("\n !Ei[%d]=%g,%g! ", i, Ei[i].real(), Ei[i].imag());
|
|
|
// if (n < 3) printf("\n !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
|
|
|
- // //printf(" ===%d=== %g ", i,std::abs(cnl_[l][n]*vm1o1n[i] - c_i*dnl_[l][n]*vn1e1n[i]));
|
|
|
- // if (n < 3) printf(" ===%d=== %g ", i,std::abs(//-dnl_[l][n]*vm1e1n[i]
|
|
|
+ // //printf(" ===%d=== %g ", i,std::abs(cnl_[l][n]*M1o1n[i] - c_i*dnl_[l][n]*N1e1n[i]));
|
|
|
+ // if (n < 3) printf(" ===%d=== %g ", i,std::abs(//-dnl_[l][n]*M1e1n[i]
|
|
|
// //- c_i*cnl_[l][n]*
|
|
|
- // vn1o1n[i]
|
|
|
- // // + c_i*bnl_[l][n]*vn3o1n[i]
|
|
|
- // // + anl_[l][n]*vm3e1n[i]
|
|
|
+ // N1o1n[i]
|
|
|
+ // // + c_i*bnl_[l][n]*N3o1n[i]
|
|
|
+ // // + anl_[l][n]*M3e1n[i]
|
|
|
// ));
|
|
|
- // if (n < 3) printf(" --- Ei[%d]=%g! ", i,std::abs(encap*(vm1o1n[i] - c_i*vn1e1n[i])));
|
|
|
+ // if (n < 3) printf(" --- Ei[%d]=%g! ", i,std::abs(En*(M1o1n[i] - c_i*N1e1n[i])));
|
|
|
|
|
|
}
|
|
|
//if (n < 3) printf(" bj=%g \n", std::abs(bj[n]));
|
|
|
} // end of for all n
|
|
|
-
|
|
|
+
|
|
|
// magnetic field
|
|
|
double hffact = 1.0/(cc_*mu_);
|
|
|
for (int i = 0; i < 3; i++) {
|
|
|
Hl[i] = hffact*Hl[i];
|
|
|
}
|
|
|
-
|
|
|
+
|
|
|
for (int i = 0; i < 3; i++) {
|
|
|
// electric field E [V m - 1] = EF*E0
|
|
|
E[i] = El[i];
|
|
@@ -1528,7 +1495,7 @@ namespace nmie {
|
|
|
//printf("\n !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
|
|
|
//printf(" E[%d]=%g",i,std::abs(El[i]));
|
|
|
}
|
|
|
- } // end of void fieldExt(...)
|
|
|
+ } // end of fieldInt(...)
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
@@ -1540,8 +1507,8 @@ namespace nmie {
|
|
|
// Input parameters: //
|
|
|
// L: Number of layers //
|
|
|
// pl: Index of PEC layer. If there is none just send 0 (zero) //
|
|
|
- // x: Array containing the size parameters of the layers [0..L - 1] //
|
|
|
- // m: Array containing the relative refractive indexes of the layers [0..L - 1] //
|
|
|
+ // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+ // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
// calculations. Only use it if you know what you are doing, otherwise //
|
|
|
// set this parameter to 0 (zero) and the function will calculate it. //
|
|
@@ -1561,39 +1528,35 @@ namespace nmie {
|
|
|
// Calculate internal scattering coefficients anl_ and bnl_
|
|
|
IntScattCoeffs();
|
|
|
|
|
|
- for (int i = 0; i < an_.size(); i++) {
|
|
|
- printf("a[%i] = %g, %g; b[%i] = %g, %g\n", i, an_[i].real(), an_[i].imag(), i, bn_[i].real(), bn_[i].imag());
|
|
|
- }
|
|
|
+// for (int i = 0; i < an_.size(); i++) {
|
|
|
+// printf("a[%i] = %g, %g; b[%i] = %g, %g\n", i, an_[i].real(), an_[i].imag(), i, bn_[i].real(), bn_[i].imag());
|
|
|
+// }
|
|
|
|
|
|
std::vector<double> Pi(nmax_), Tau(nmax_);
|
|
|
long total_points = coords_[0].size();
|
|
|
- E_field_.resize(total_points);
|
|
|
- H_field_.resize(total_points);
|
|
|
- for (auto& f:E_field_) f.resize(3);
|
|
|
- for (auto& f:H_field_) f.resize(3);
|
|
|
+ E_.resize(total_points);
|
|
|
+ H_.resize(total_points);
|
|
|
+ for (auto& f : E_) f.resize(3);
|
|
|
+ for (auto& f : H_) f.resize(3);
|
|
|
|
|
|
for (int point = 0; point < total_points; point++) {
|
|
|
const double& Xp = coords_[0][point];
|
|
|
const double& Yp = coords_[1][point];
|
|
|
const double& Zp = coords_[2][point];
|
|
|
- //printf("X=%g, Y=%g, Z=%g\n", Xp, Yp, Zp);
|
|
|
|
|
|
// Convert to spherical coordinates
|
|
|
- double Rho, Phi, Theta;
|
|
|
- Rho = std::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp));
|
|
|
-
|
|
|
- // Avoid convergence problems due to Rho too small
|
|
|
- if (Rho < 1e-10) Rho = 1e-10;
|
|
|
+ double Rho = std::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp));
|
|
|
|
|
|
// If Rho=0 then Theta is undefined. Just set it to zero to avoid problems
|
|
|
- if (Rho == 0.0) Theta = 0.0;
|
|
|
- else Theta = std::acos(Zp/Rho);
|
|
|
+ double Theta = (Rho > 0.0) ? std::acos(Zp/Rho) : 0.0;
|
|
|
|
|
|
// If Xp=Yp=0 then Phi is undefined. Just set it to zero to avoid problems
|
|
|
- if (Xp == 0.0 && Yp == 0.0) Phi = 0.0;
|
|
|
- else Phi = std::acos(Xp/std::sqrt(pow2(Xp) + pow2(Yp)));
|
|
|
+ double Phi = (Xp != 0.0 || Yp != 0.0) ? std::atan2(Yp, Xp) : 0.0;
|
|
|
+
|
|
|
+ // Avoid convergence problems due to Rho too small
|
|
|
+ if (Rho < 1e-10) Rho = 1e-10;
|
|
|
|
|
|
- calcSinglePiTau(std::cos(Theta), Pi, Tau);
|
|
|
+ calcPiTau(std::cos(Theta), Pi, Tau);
|
|
|
|
|
|
//*******************************************************//
|
|
|
// external scattering field = incident + scattered //
|
|
@@ -1603,37 +1566,31 @@ namespace nmie {
|
|
|
|
|
|
// This array contains the fields in spherical coordinates
|
|
|
std::vector<std::complex<double> > Es(3), Hs(3);
|
|
|
- const double outer_size = layer_size_.back();
|
|
|
- //printf("rho=%g, outer=%g, Radius=%g\n", Rho, outer_size, GetSizeParameter());
|
|
|
+
|
|
|
// Firstly the easiest case: the field outside the particle
|
|
|
- if (Rho >= GetSizeParameter()) {
|
|
|
+ if (Rho > GetSizeParameter()) {
|
|
|
fieldExt(Rho, Phi, Theta, Pi, Tau, Es, Hs);
|
|
|
//printf("\nFin E ext: %g,%g,%g Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
|
|
|
} else {
|
|
|
- fieldInt(Rho, Phi, Theta, Pi, Tau, Es, Hs);
|
|
|
+ fieldInt(Rho, Phi, Theta, Pi, Tau, Es, Hs);
|
|
|
// printf("\nFin E int: %g,%g,%g Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
|
|
|
}
|
|
|
- std::complex<double>& Ex = E_field_[point][0];
|
|
|
- std::complex<double>& Ey = E_field_[point][1];
|
|
|
- std::complex<double>& Ez = E_field_[point][2];
|
|
|
- std::complex<double>& Hx = H_field_[point][0];
|
|
|
- std::complex<double>& Hy = H_field_[point][1];
|
|
|
- std::complex<double>& Hz = H_field_[point][2];
|
|
|
+
|
|
|
//Now, convert the fields back to cartesian coordinates
|
|
|
{
|
|
|
using std::sin;
|
|
|
using std::cos;
|
|
|
- Ex = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2];
|
|
|
- Ey = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2];
|
|
|
- Ez = cos(Theta)*Es[0] - sin(Theta)*Es[1];
|
|
|
-
|
|
|
- Hx = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2];
|
|
|
- Hy = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2];
|
|
|
- Hz = cos(Theta)*Hs[0] - sin(Theta)*Hs[1];
|
|
|
+ E_[point][0] = sin(Theta)*cos(Phi)*Es[0] + cos(Theta)*cos(Phi)*Es[1] - sin(Phi)*Es[2];
|
|
|
+ E_[point][1] = sin(Theta)*sin(Phi)*Es[0] + cos(Theta)*sin(Phi)*Es[1] + cos(Phi)*Es[2];
|
|
|
+ E_[point][2] = cos(Theta)*Es[0] - sin(Theta)*Es[1];
|
|
|
+
|
|
|
+ H_[point][0] = sin(Theta)*cos(Phi)*Hs[0] + cos(Theta)*cos(Phi)*Hs[1] - sin(Phi)*Hs[2];
|
|
|
+ H_[point][1] = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2];
|
|
|
+ H_[point][2] = cos(Theta)*Hs[0] - sin(Theta)*Hs[1];
|
|
|
}
|
|
|
//printf("Cart E: %g,%g,%g Rho=%g\n", std::abs(Ex), std::abs(Ey),std::abs(Ez), Rho);
|
|
|
} // end of for all field coordinates
|
|
|
-
|
|
|
+
|
|
|
} // end of MultiLayerMie::RunFieldCalculation()
|
|
|
|
|
|
} // end of namespace nmie
|