|
@@ -54,35 +54,35 @@ namespace nmie {
|
|
|
}
|
|
|
|
|
|
|
|
|
-//**********************************************************************************//
|
|
|
-// This function emulates a C call to calculate the actual scattering parameters //
|
|
|
-// and amplitudes. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// L: Number of layers //
|
|
|
-// pl: Index of PEC layer. If there is none just send -1 //
|
|
|
-// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
-// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
-// nTheta: Number of scattering angles //
|
|
|
-// Theta: Array containing all the scattering angles where the scattering //
|
|
|
-// amplitudes will be calculated //
|
|
|
-// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
-// calculations. Only use it if you know what you are doing, otherwise //
|
|
|
-// set this parameter to -1 and the function will calculate it //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// Qext: Efficiency factor for extinction //
|
|
|
-// Qsca: Efficiency factor for scattering //
|
|
|
-// Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
-// Qbk: Efficiency factor for backscattering //
|
|
|
-// Qpr: Efficiency factor for the radiation pressure //
|
|
|
-// g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
-// Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
-// S1, S2: Complex scattering amplitudes //
|
|
|
-// //
|
|
|
-// Return value: //
|
|
|
-// Number of multipolar expansion terms used for the calculations //
|
|
|
-//**********************************************************************************//
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function emulates a C call to calculate the actual scattering parameters //
|
|
|
+ // and amplitudes. //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // L: Number of layers //
|
|
|
+ // pl: Index of PEC layer. If there is none just send -1 //
|
|
|
+ // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+ // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+ // nTheta: Number of scattering angles //
|
|
|
+ // Theta: Array containing all the scattering angles where the scattering //
|
|
|
+ // amplitudes will be calculated //
|
|
|
+ // nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+ // calculations. Only use it if you know what you are doing, otherwise //
|
|
|
+ // set this parameter to -1 and the function will calculate it //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // Qext: Efficiency factor for extinction //
|
|
|
+ // Qsca: Efficiency factor for scattering //
|
|
|
+ // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
+ // Qbk: Efficiency factor for backscattering //
|
|
|
+ // Qpr: Efficiency factor for the radiation pressure //
|
|
|
+ // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
+ // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
+ // S1, S2: Complex scattering amplitudes //
|
|
|
+ // //
|
|
|
+ // Return value: //
|
|
|
+ // Number of multipolar expansion terms used for the calculations //
|
|
|
+ //**********************************************************************************//
|
|
|
int nMie(const int L, const int pl, std::vector<double>& x, std::vector<std::complex<double> >& m, const int nTheta, std::vector<double>& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
|
|
|
if (x.size() != L || m.size() != L)
|
|
@@ -91,11 +91,11 @@ namespace nmie {
|
|
|
throw std::invalid_argument("Declared number of sample for Theta is not correct!");
|
|
|
try {
|
|
|
MultiLayerMie multi_layer_mie;
|
|
|
- multi_layer_mie.SetLayersWidth(x);
|
|
|
+ multi_layer_mie.SetLayersSize(x);
|
|
|
multi_layer_mie.SetLayersIndex(m);
|
|
|
multi_layer_mie.SetAngles(Theta);
|
|
|
|
|
|
- multi_layer_mie.RunMieCalculations();
|
|
|
+ multi_layer_mie.RunMieCalculation();
|
|
|
|
|
|
*Qext = multi_layer_mie.GetQext();
|
|
|
*Qsca = multi_layer_mie.GetQsca();
|
|
@@ -116,125 +116,125 @@ namespace nmie {
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
-//**********************************************************************************//
|
|
|
-// This function is just a wrapper to call the full 'nMie' function with fewer //
|
|
|
-// parameters, it is here mainly for compatibility with older versions of the //
|
|
|
-// program. Also, you can use it if you neither have a PEC layer nor want to define //
|
|
|
-// any limit for the maximum number of terms. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// L: Number of layers //
|
|
|
-// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
-// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
-// nTheta: Number of scattering angles //
|
|
|
-// Theta: Array containing all the scattering angles where the scattering //
|
|
|
-// amplitudes will be calculated //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// Qext: Efficiency factor for extinction //
|
|
|
-// Qsca: Efficiency factor for scattering //
|
|
|
-// Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
-// Qbk: Efficiency factor for backscattering //
|
|
|
-// Qpr: Efficiency factor for the radiation pressure //
|
|
|
-// g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
-// Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
-// S1, S2: Complex scattering amplitudes //
|
|
|
-// //
|
|
|
-// Return value: //
|
|
|
-// Number of multipolar expansion terms used for the calculations //
|
|
|
-//**********************************************************************************//
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function is just a wrapper to call the full 'nMie' function with fewer //
|
|
|
+ // parameters, it is here mainly for compatibility with older versions of the //
|
|
|
+ // program. Also, you can use it if you neither have a PEC layer nor want to define //
|
|
|
+ // any limit for the maximum number of terms. //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // L: Number of layers //
|
|
|
+ // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+ // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+ // nTheta: Number of scattering angles //
|
|
|
+ // Theta: Array containing all the scattering angles where the scattering //
|
|
|
+ // amplitudes will be calculated //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // Qext: Efficiency factor for extinction //
|
|
|
+ // Qsca: Efficiency factor for scattering //
|
|
|
+ // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
+ // Qbk: Efficiency factor for backscattering //
|
|
|
+ // Qpr: Efficiency factor for the radiation pressure //
|
|
|
+ // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
+ // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
+ // S1, S2: Complex scattering amplitudes //
|
|
|
+ // //
|
|
|
+ // Return value: //
|
|
|
+ // Number of multipolar expansion terms used for the calculations //
|
|
|
+ //**********************************************************************************//
|
|
|
int nMie(const int L, std::vector<double>& x, std::vector<std::complex<double> >& m, const int nTheta, std::vector<double>& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
return nMie(L, -1, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
}
|
|
|
|
|
|
|
|
|
-//**********************************************************************************//
|
|
|
-// This function is just a wrapper to call the full 'nMie' function with fewer //
|
|
|
-// parameters, it is useful if you want to include a PEC layer but not a limit //
|
|
|
-// for the maximum number of terms. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// L: Number of layers //
|
|
|
-// pl: Index of PEC layer. If there is none just send -1 //
|
|
|
-// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
-// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
-// nTheta: Number of scattering angles //
|
|
|
-// Theta: Array containing all the scattering angles where the scattering //
|
|
|
-// amplitudes will be calculated //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// Qext: Efficiency factor for extinction //
|
|
|
-// Qsca: Efficiency factor for scattering //
|
|
|
-// Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
-// Qbk: Efficiency factor for backscattering //
|
|
|
-// Qpr: Efficiency factor for the radiation pressure //
|
|
|
-// g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
-// Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
-// S1, S2: Complex scattering amplitudes //
|
|
|
-// //
|
|
|
-// Return value: //
|
|
|
-// Number of multipolar expansion terms used for the calculations //
|
|
|
-//**********************************************************************************//
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function is just a wrapper to call the full 'nMie' function with fewer //
|
|
|
+ // parameters, it is useful if you want to include a PEC layer but not a limit //
|
|
|
+ // for the maximum number of terms. //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // L: Number of layers //
|
|
|
+ // pl: Index of PEC layer. If there is none just send -1 //
|
|
|
+ // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+ // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+ // nTheta: Number of scattering angles //
|
|
|
+ // Theta: Array containing all the scattering angles where the scattering //
|
|
|
+ // amplitudes will be calculated //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // Qext: Efficiency factor for extinction //
|
|
|
+ // Qsca: Efficiency factor for scattering //
|
|
|
+ // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
+ // Qbk: Efficiency factor for backscattering //
|
|
|
+ // Qpr: Efficiency factor for the radiation pressure //
|
|
|
+ // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
+ // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
+ // S1, S2: Complex scattering amplitudes //
|
|
|
+ // //
|
|
|
+ // Return value: //
|
|
|
+ // Number of multipolar expansion terms used for the calculations //
|
|
|
+ //**********************************************************************************//
|
|
|
int nMie(const int L, const int pl, std::vector<double>& x, std::vector<std::complex<double> >& m, const int nTheta, std::vector<double>& Theta, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
return nMie(L, pl, x, m, nTheta, Theta, -1, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
}
|
|
|
|
|
|
-//**********************************************************************************//
|
|
|
-// This function is just a wrapper to call the full 'nMie' function with fewer //
|
|
|
-// parameters, it is useful if you want to include a limit for the maximum number //
|
|
|
-// of terms but not a PEC layer. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// L: Number of layers //
|
|
|
-// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
-// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
-// nTheta: Number of scattering angles //
|
|
|
-// Theta: Array containing all the scattering angles where the scattering //
|
|
|
-// amplitudes will be calculated //
|
|
|
-// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
-// calculations. Only use it if you know what you are doing, otherwise //
|
|
|
-// set this parameter to -1 and the function will calculate it //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// Qext: Efficiency factor for extinction //
|
|
|
-// Qsca: Efficiency factor for scattering //
|
|
|
-// Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
-// Qbk: Efficiency factor for backscattering //
|
|
|
-// Qpr: Efficiency factor for the radiation pressure //
|
|
|
-// g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
-// Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
-// S1, S2: Complex scattering amplitudes //
|
|
|
-// //
|
|
|
-// Return value: //
|
|
|
-// Number of multipolar expansion terms used for the calculations //
|
|
|
-//**********************************************************************************//
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function is just a wrapper to call the full 'nMie' function with fewer //
|
|
|
+ // parameters, it is useful if you want to include a limit for the maximum number //
|
|
|
+ // of terms but not a PEC layer. //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // L: Number of layers //
|
|
|
+ // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+ // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+ // nTheta: Number of scattering angles //
|
|
|
+ // Theta: Array containing all the scattering angles where the scattering //
|
|
|
+ // amplitudes will be calculated //
|
|
|
+ // nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+ // calculations. Only use it if you know what you are doing, otherwise //
|
|
|
+ // set this parameter to -1 and the function will calculate it //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // Qext: Efficiency factor for extinction //
|
|
|
+ // Qsca: Efficiency factor for scattering //
|
|
|
+ // Qabs: Efficiency factor for absorption (Qabs = Qext - Qsca) //
|
|
|
+ // Qbk: Efficiency factor for backscattering //
|
|
|
+ // Qpr: Efficiency factor for the radiation pressure //
|
|
|
+ // g: Asymmetry factor (g = (Qext-Qpr)/Qsca) //
|
|
|
+ // Albedo: Single scattering albedo (Albedo = Qsca/Qext) //
|
|
|
+ // S1, S2: Complex scattering amplitudes //
|
|
|
+ // //
|
|
|
+ // Return value: //
|
|
|
+ // Number of multipolar expansion terms used for the calculations //
|
|
|
+ //**********************************************************************************//
|
|
|
int nMie(const int L, std::vector<double>& x, std::vector<std::complex<double> >& m, const int nTheta, std::vector<double>& Theta, const int nmax, double *Qext, double *Qsca, double *Qabs, double *Qbk, double *Qpr, double *g, double *Albedo, std::vector<std::complex<double> >& S1, std::vector<std::complex<double> >& S2) {
|
|
|
return nMie(L, -1, x, m, nTheta, Theta, nmax, Qext, Qsca, Qabs, Qbk, Qpr, g, Albedo, S1, S2);
|
|
|
}
|
|
|
|
|
|
|
|
|
-//**********************************************************************************//
|
|
|
-// This function emulates a C call to calculate complex electric and magnetic field //
|
|
|
-// in the surroundings and inside (TODO) the particle. //
|
|
|
-// //
|
|
|
-// Input parameters: //
|
|
|
-// L: Number of layers //
|
|
|
-// pl: Index of PEC layer. If there is none just send 0 (zero) //
|
|
|
-// x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
-// m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
-// nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
-// calculations. Only use it if you know what you are doing, otherwise //
|
|
|
-// set this parameter to 0 (zero) and the function will calculate it. //
|
|
|
-// ncoord: Number of coordinate points //
|
|
|
-// Coords: Array containing all coordinates where the complex electric and //
|
|
|
-// magnetic fields will be calculated //
|
|
|
-// //
|
|
|
-// Output parameters: //
|
|
|
-// E, H: Complex electric and magnetic field at the provided coordinates //
|
|
|
-// //
|
|
|
-// Return value: //
|
|
|
-// Number of multipolar expansion terms used for the calculations //
|
|
|
-//**********************************************************************************//
|
|
|
+ //**********************************************************************************//
|
|
|
+ // This function emulates a C call to calculate complex electric and magnetic field //
|
|
|
+ // in the surroundings and inside (TODO) the particle. //
|
|
|
+ // //
|
|
|
+ // Input parameters: //
|
|
|
+ // L: Number of layers //
|
|
|
+ // pl: Index of PEC layer. If there is none just send 0 (zero) //
|
|
|
+ // x: Array containing the size parameters of the layers [0..L-1] //
|
|
|
+ // m: Array containing the relative refractive indexes of the layers [0..L-1] //
|
|
|
+ // nmax: Maximum number of multipolar expansion terms to be used for the //
|
|
|
+ // calculations. Only use it if you know what you are doing, otherwise //
|
|
|
+ // set this parameter to 0 (zero) and the function will calculate it. //
|
|
|
+ // ncoord: Number of coordinate points //
|
|
|
+ // Coords: Array containing all coordinates where the complex electric and //
|
|
|
+ // magnetic fields will be calculated //
|
|
|
+ // //
|
|
|
+ // Output parameters: //
|
|
|
+ // E, H: Complex electric and magnetic field at the provided coordinates //
|
|
|
+ // //
|
|
|
+ // Return value: //
|
|
|
+ // Number of multipolar expansion terms used for the calculations //
|
|
|
+ //**********************************************************************************//
|
|
|
int nField(const int L, const int pl, const std::vector<double>& x, const std::vector<std::complex<double> >& m, const int nmax, const int ncoord, const std::vector<double>& Xp_vec, const std::vector<double>& Yp_vec, const std::vector<double>& Zp_vec, std::vector<std::vector<std::complex<double> > >& E, std::vector<std::vector<std::complex<double> > >& H) {
|
|
|
if (x.size() != L || m.size() != L)
|
|
|
throw std::invalid_argument("Declared number of layers do not fit x and m!");
|
|
@@ -250,10 +250,10 @@ namespace nmie {
|
|
|
try {
|
|
|
MultiLayerMie multi_layer_mie;
|
|
|
//multi_layer_mie.SetPECLayer(pl);
|
|
|
- multi_layer_mie.SetLayersWidth(x);
|
|
|
+ multi_layer_mie.SetLayersSize(x);
|
|
|
multi_layer_mie.SetLayersIndex(m);
|
|
|
multi_layer_mie.SetFieldCoords({Xp_vec, Yp_vec, Zp_vec});
|
|
|
- multi_layer_mie.RunFieldCalculations();
|
|
|
+ multi_layer_mie.RunFieldCalculation();
|
|
|
E = multi_layer_mie.GetFieldE();
|
|
|
H = multi_layer_mie.GetFieldH();
|
|
|
//multi_layer_mie.GetFailed();
|
|
@@ -362,26 +362,30 @@ namespace nmie {
|
|
|
// Modify scattering (theta) angles //
|
|
|
// ********************************************************************** //
|
|
|
void MultiLayerMie::SetAngles(const std::vector<double>& angles) {
|
|
|
+ areIntCoeffsCalc_ = false;
|
|
|
+ areExtCoeffsCalc_ = false;
|
|
|
isMieCalculated_ = false;
|
|
|
theta_ = angles;
|
|
|
}
|
|
|
|
|
|
|
|
|
// ********************************************************************** //
|
|
|
- // Modify width of all layers //
|
|
|
+ // Modify size of all layers //
|
|
|
// ********************************************************************** //
|
|
|
- void MultiLayerMie::SetLayersWidth(const std::vector<double>& layer_width) {
|
|
|
+ void MultiLayerMie::SetLayersSize(const std::vector<double>& layer_size) {
|
|
|
+ areIntCoeffsCalc_ = false;
|
|
|
+ areExtCoeffsCalc_ = false;
|
|
|
isMieCalculated_ = false;
|
|
|
- layer_width_.clear();
|
|
|
- double prev_layer_width = 0.0;
|
|
|
- for (auto curr_layer_width : layer_width) {
|
|
|
- if (curr_layer_width <= 0.0)
|
|
|
+ layer_size_.clear();
|
|
|
+ double prev_layer_size = 0.0;
|
|
|
+ for (auto curr_layer_size : layer_size) {
|
|
|
+ if (curr_layer_size <= 0.0)
|
|
|
throw std::invalid_argument("Size parameter should be positive!");
|
|
|
- if (prev_layer_width > curr_layer_width)
|
|
|
+ if (prev_layer_size > curr_layer_size)
|
|
|
throw std::invalid_argument
|
|
|
("Size parameter for next layer should be larger than the previous one!");
|
|
|
- prev_layer_width = curr_layer_width;
|
|
|
- layer_width_.push_back(curr_layer_width);
|
|
|
+ prev_layer_size = curr_layer_size;
|
|
|
+ layer_size_.push_back(curr_layer_size);
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -390,6 +394,8 @@ namespace nmie {
|
|
|
// Modify refractive index of all layers //
|
|
|
// ********************************************************************** //
|
|
|
void MultiLayerMie::SetLayersIndex(const std::vector< std::complex<double> >& index) {
|
|
|
+ areIntCoeffsCalc_ = false;
|
|
|
+ areExtCoeffsCalc_ = false;
|
|
|
isMieCalculated_ = false;
|
|
|
layer_index_ = index;
|
|
|
}
|
|
@@ -411,6 +417,8 @@ namespace nmie {
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
|
void MultiLayerMie::SetPECLayer(int layer_position) {
|
|
|
+ areIntCoeffsCalc_ = false;
|
|
|
+ areExtCoeffsCalc_ = false;
|
|
|
isMieCalculated_ = false;
|
|
|
if (layer_position < 0)
|
|
|
throw std::invalid_argument("Error! Layers are numbered from 0!");
|
|
@@ -422,6 +430,8 @@ namespace nmie {
|
|
|
// Set maximun number of terms to be used //
|
|
|
// ********************************************************************** //
|
|
|
void MultiLayerMie::SetMaxTerms(int nmax) {
|
|
|
+ areIntCoeffsCalc_ = false;
|
|
|
+ areExtCoeffsCalc_ = false;
|
|
|
isMieCalculated_ = false;
|
|
|
nmax_preset_ = nmax;
|
|
|
//debug
|
|
@@ -432,11 +442,11 @@ namespace nmie {
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
|
- double MultiLayerMie::GetTotalRadius() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("You should run calculations before result request!");
|
|
|
- if (total_radius_ == 0) CalcRadius();
|
|
|
- return total_radius_;
|
|
|
+ double MultiLayerMie::GetSizeParameter() {
|
|
|
+// if (!isMieCalculated_)
|
|
|
+// throw std::invalid_argument("You should run calculations before result request!");
|
|
|
+ if (size_parameter_ == 0) CalcSizeParameter();
|
|
|
+ return size_parameter_;
|
|
|
}
|
|
|
|
|
|
|
|
@@ -444,8 +454,10 @@ namespace nmie {
|
|
|
// Clear layer information //
|
|
|
// ********************************************************************** //
|
|
|
void MultiLayerMie::ClearLayers() {
|
|
|
+ areIntCoeffsCalc_ = false;
|
|
|
+ areExtCoeffsCalc_ = false;
|
|
|
isMieCalculated_ = false;
|
|
|
- layer_width_.clear();
|
|
|
+ layer_size_.clear();
|
|
|
layer_index_.clear();
|
|
|
}
|
|
|
|
|
@@ -463,7 +475,7 @@ namespace nmie {
|
|
|
// Calculate Nstop - equation (17) //
|
|
|
// ********************************************************************** //
|
|
|
void MultiLayerMie::Nstop() {
|
|
|
- const double& xL = layer_width_.back();
|
|
|
+ const double& xL = layer_size_.back();
|
|
|
if (xL <= 8) {
|
|
|
nmax_ = round(xL + 4.0*pow(xL, 1.0/3.0) + 1);
|
|
|
} else if (xL <= 4200) {
|
|
@@ -479,7 +491,7 @@ namespace nmie {
|
|
|
// ********************************************************************** //
|
|
|
void MultiLayerMie::Nmax(int first_layer) {
|
|
|
int ri, riM1;
|
|
|
- const std::vector<double>& x = layer_width_;
|
|
|
+ const std::vector<double>& x = layer_size_;
|
|
|
const std::vector<std::complex<double> >& m = layer_index_;
|
|
|
Nstop(); // Set initial nmax_ value
|
|
|
for (int i = first_layer; i < x.size(); i++) {
|
|
@@ -817,6 +829,7 @@ namespace nmie {
|
|
|
}
|
|
|
} // end of void MultiLayerMie::calcAllPiTau(...)
|
|
|
|
|
|
+
|
|
|
//**********************************************************************************//
|
|
|
// This function calculates the scattering coefficients required to calculate //
|
|
|
// both the near- and far-field parameters. //
|
|
@@ -836,9 +849,9 @@ namespace nmie {
|
|
|
// Return value: //
|
|
|
// Number of multipolar expansion terms used for the calculations //
|
|
|
//**********************************************************************************//
|
|
|
- void MultiLayerMie::ExtScattCoeffs(std::vector<std::complex<double> >& an,
|
|
|
- std::vector<std::complex<double> >& bn) {
|
|
|
- const std::vector<double>& x = layer_width_;
|
|
|
+ void MultiLayerMie::ExtScattCoeffs() {
|
|
|
+ areExtCoeffsCalc_ = false;
|
|
|
+ const std::vector<double>& x = layer_size_;
|
|
|
const std::vector<std::complex<double> >& m = layer_index_;
|
|
|
const int& pl = PEC_layer_position_;
|
|
|
const int L = layer_index_.size();
|
|
@@ -877,8 +890,8 @@ namespace nmie {
|
|
|
Hb[l].resize(nmax_);
|
|
|
}
|
|
|
|
|
|
- an.resize(nmax_);
|
|
|
- bn.resize(nmax_);
|
|
|
+ an_.resize(nmax_);
|
|
|
+ bn_.resize(nmax_);
|
|
|
PsiZeta_.resize(nmax_ + 1);
|
|
|
|
|
|
std::vector<std::complex<double> > D1XL(nmax_ + 1), D3XL(nmax_ + 1),
|
|
@@ -897,10 +910,7 @@ namespace nmie {
|
|
|
// Calculate D1 and D3
|
|
|
calcD1D3(z1, D1_mlxl, D3_mlxl);
|
|
|
}
|
|
|
- // do { \
|
|
|
- // ++iformat;\
|
|
|
- // if (iformat%5 == 0) printf("%24.16e",z1.real());
|
|
|
- // } while (false);
|
|
|
+
|
|
|
//******************************************************************//
|
|
|
// Calculate Ha and Hb in the first layer - equations (7a) and (8a) //
|
|
|
//******************************************************************//
|
|
@@ -923,17 +933,13 @@ namespace nmie {
|
|
|
calcD1D3(z1, D1_mlxl, D3_mlxl);
|
|
|
//Calculate D1 and D3 for z2
|
|
|
calcD1D3(z2, D1_mlxlM1, D3_mlxlM1);
|
|
|
- // prn(z1.real());
|
|
|
- // for (auto i : D1_mlxl) { prn(i.real());
|
|
|
- // // prn(i.imag());
|
|
|
- // } printf("\n");
|
|
|
|
|
|
//*********************************************//
|
|
|
//Calculate Q, Ha and Hb in the layers fl + 1..L //
|
|
|
//*********************************************//
|
|
|
// Upward recurrence for Q - equations (19a) and (19b)
|
|
|
Num = std::exp(-2.0*(z1.imag() - z2.imag()))
|
|
|
- *std::complex<double>(std::cos(-2.0*z2.real()) - std::exp(-2.0*z2.imag()), std::sin(-2.0*z2.real()));
|
|
|
+ *std::complex<double>(std::cos(-2.0*z2.real()) - std::exp(-2.0*z2.imag()), std::sin(-2.0*z2.real()));
|
|
|
Denom = std::complex<double>(std::cos(-2.0*z1.real()) - std::exp(-2.0*z1.imag()), std::sin(-2.0*z1.real()));
|
|
|
Q[l][0] = Num/Denom;
|
|
|
for (int n = 1; n <= nmax_; n++) {
|
|
@@ -970,12 +976,13 @@ namespace nmie {
|
|
|
Hb[l][n - 1] = (Num/ Denom);
|
|
|
} // end of for Ha and Hb terms
|
|
|
} // end of for layers iteration
|
|
|
+
|
|
|
//**************************************//
|
|
|
//Calculate D1, D3, Psi and Zeta for XL //
|
|
|
//**************************************//
|
|
|
// Calculate D1XL and D3XL
|
|
|
calcD1D3(x[L - 1], D1XL, D3XL);
|
|
|
- //printf("%5.20f\n",Ha[L - 1][0].real());
|
|
|
+
|
|
|
// Calculate PsiXL and ZetaXL
|
|
|
calcPsiZeta(x[L - 1], D1XL, D3XL, PsiXL, ZetaXL);
|
|
|
//*********************************************************************//
|
|
@@ -990,26 +997,26 @@ namespace nmie {
|
|
|
//there is only one PEC layer (ie, for a simple PEC sphere). //
|
|
|
//********************************************************************//
|
|
|
if (pl < (L - 1)) {
|
|
|
- an[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
- bn[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
+ an_[n] = calc_an(n + 1, x[L - 1], Ha[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
+ bn_[n] = calc_bn(n + 1, x[L - 1], Hb[L - 1][n], m[L - 1], PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
} else {
|
|
|
- an[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
- bn[n] = PsiXL[n + 1]/ZetaXL[n + 1];
|
|
|
+ an_[n] = calc_an(n + 1, x[L - 1], std::complex<double>(0.0, 0.0), std::complex<double>(1.0, 0.0), PsiXL[n + 1], ZetaXL[n + 1], PsiXL[n], ZetaXL[n]);
|
|
|
+ bn_[n] = PsiXL[n + 1]/ZetaXL[n + 1];
|
|
|
}
|
|
|
} // end of for an and bn terms
|
|
|
+ areExtCoeffsCalc_ = true;
|
|
|
} // end of void MultiLayerMie::ExtScattCoeffs(...)
|
|
|
|
|
|
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
|
- void MultiLayerMie::CalcRadius() {
|
|
|
- isMieCalculated_ = false;
|
|
|
+ void MultiLayerMie::CalcSizeParameter() {
|
|
|
double radius = 0.0;
|
|
|
- for (auto width : layer_width_) {
|
|
|
+ for (auto width : layer_size_) {
|
|
|
radius += width;
|
|
|
}
|
|
|
- total_radius_ = radius;
|
|
|
+ size_parameter_ = radius;
|
|
|
}
|
|
|
|
|
|
|
|
@@ -1017,6 +1024,8 @@ namespace nmie {
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
|
void MultiLayerMie::InitMieCalculations() {
|
|
|
+ areIntCoeffsCalc_ = false;
|
|
|
+ areExtCoeffsCalc_ = false;
|
|
|
isMieCalculated_ = false;
|
|
|
// Initialize the scattering parameters
|
|
|
Qext_ = 0;
|
|
@@ -1076,16 +1085,16 @@ namespace nmie {
|
|
|
// Return value: //
|
|
|
// Number of multipolar expansion terms used for the calculations //
|
|
|
//**********************************************************************************//
|
|
|
- void MultiLayerMie::RunMieCalculations() {
|
|
|
+ void MultiLayerMie::RunMieCalculation() {
|
|
|
isMieCalculated_ = false;
|
|
|
nmax_ = nmax_preset_;
|
|
|
- if (layer_width_.size() != layer_index_.size())
|
|
|
+ if (layer_size_.size() != layer_index_.size())
|
|
|
throw std::invalid_argument("Each size parameter should have only one index!");
|
|
|
- if (layer_width_.size() == 0)
|
|
|
+ if (layer_size_.size() == 0)
|
|
|
throw std::invalid_argument("Initialize model first!");
|
|
|
- const std::vector<double>& x = layer_width_;
|
|
|
+ const std::vector<double>& x = layer_size_;
|
|
|
// Calculate scattering coefficients
|
|
|
- ExtScattCoeffs(an_, bn_);
|
|
|
+ ExtScattCoeffs();
|
|
|
|
|
|
// std::vector< std::vector<double> > Pi(nmax_), Tau(nmax_);
|
|
|
std::vector< std::vector<double> > Pi, Tau;
|
|
@@ -1096,7 +1105,7 @@ namespace nmie {
|
|
|
Tau[i].resize(nmax_);
|
|
|
}
|
|
|
calcAllPiTau(Pi, Tau);
|
|
|
- InitMieCalculations(); //
|
|
|
+ InitMieCalculations();
|
|
|
std::complex<double> Qbktmp(0.0, 0.0);
|
|
|
std::vector< std::complex<double> > Qbktmp_ch(nmax_ - 1, Qbktmp);
|
|
|
// By using downward recurrence we avoid loss of precision due to float rounding errors
|
|
@@ -1163,31 +1172,32 @@ namespace nmie {
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
|
- void MultiLayerMie::IntScattCoeffsInit() {
|
|
|
+ void MultiLayerMie::InitIntScattCoeffs() {
|
|
|
+ areIntCoeffsCalc_ = false;
|
|
|
const int L = layer_index_.size();
|
|
|
// we need to fill
|
|
|
- // std::vector< std::vector<std::complex<double> > > al_n_, bl_n_, cl_n_, dl_n_;
|
|
|
+ // std::vector< std::vector<std::complex<double> > > anl_, bnl_, cnl_, dnl_;
|
|
|
// for n = [0..nmax_) and for l=[L..0)
|
|
|
// TODO: to decrease cache miss outer loop is with n and inner with reversed l
|
|
|
// at the moment outer is forward l and inner in n
|
|
|
- al_n_.resize(L + 1);
|
|
|
- bl_n_.resize(L + 1);
|
|
|
- cl_n_.resize(L + 1);
|
|
|
- dl_n_.resize(L + 1);
|
|
|
- for (auto& element:al_n_) element.resize(nmax_);
|
|
|
- for (auto& element:bl_n_) element.resize(nmax_);
|
|
|
- for (auto& element:cl_n_) element.resize(nmax_);
|
|
|
- for (auto& element:dl_n_) element.resize(nmax_);
|
|
|
+ anl_.resize(L + 1);
|
|
|
+ bnl_.resize(L + 1);
|
|
|
+ cnl_.resize(L + 1);
|
|
|
+ dnl_.resize(L + 1);
|
|
|
+ for (auto& element:anl_) element.resize(nmax_);
|
|
|
+ for (auto& element:bnl_) element.resize(nmax_);
|
|
|
+ for (auto& element:cnl_) element.resize(nmax_);
|
|
|
+ for (auto& element:dnl_) element.resize(nmax_);
|
|
|
std::complex<double> c_one(1.0, 0.0);
|
|
|
std::complex<double> c_zero(0.0, 0.0);
|
|
|
// Yang, paragraph under eq. A3
|
|
|
// a^(L + 1)_n = a_n, d^(L + 1) = 1 ...
|
|
|
for (int i = 0; i < nmax_; ++i) {
|
|
|
- al_n_[L][i] = an_[i];
|
|
|
- bl_n_[L][i] = bn_[i];
|
|
|
- cl_n_[L][i] = c_one;
|
|
|
- dl_n_[L][i] = c_one;
|
|
|
- if (i < 3) printf(" (%g) ", std::abs(an_[i]));
|
|
|
+ anl_[L][i] = an_[i];
|
|
|
+ bnl_[L][i] = bn_[i];
|
|
|
+ cnl_[L][i] = c_one;
|
|
|
+ dnl_[L][i] = c_one;
|
|
|
+ //if (i < 3) printf(" (%g) ", std::abs(an_[i]));
|
|
|
}
|
|
|
|
|
|
}
|
|
@@ -1195,17 +1205,17 @@ namespace nmie {
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
|
void MultiLayerMie::IntScattCoeffs() {
|
|
|
- if (!isMieCalculated_)
|
|
|
- throw std::invalid_argument("(IntScattCoeffs) You should run calculations first!");
|
|
|
- IntScattCoeffsInit();
|
|
|
+ if (!areExtCoeffsCalc_)
|
|
|
+ throw std::invalid_argument("(IntScattCoeffs) You should calculate external coefficients first!");
|
|
|
+ InitIntScattCoeffs();
|
|
|
const int L = layer_index_.size();
|
|
|
std::vector<std::complex<double> > z(L), z1(L);
|
|
|
for (int i = 0; i < L - 1; ++i) {
|
|
|
- z[i] =layer_width_[i]*layer_index_[i];
|
|
|
- z1[i]=layer_width_[i]*layer_index_[i + 1];
|
|
|
+ z[i] =layer_size_[i]*layer_index_[i];
|
|
|
+ z1[i]=layer_size_[i]*layer_index_[i + 1];
|
|
|
}
|
|
|
- z[L - 1] = layer_width_[L - 1]*layer_index_[L - 1];
|
|
|
- z1[L - 1] = layer_width_[L - 1];
|
|
|
+ z[L - 1] = layer_size_[L - 1]*layer_index_[L - 1];
|
|
|
+ z1[L - 1] = layer_size_[L - 1];
|
|
|
std::vector< std::vector<std::complex<double> > > D1z(L), D1z1(L), D3z(L), D3z1(L);
|
|
|
std::vector< std::vector<std::complex<double> > > Psiz(L), Psiz1(L), Zetaz(L), Zetaz1(L);
|
|
|
for (int l = 0; l < L; ++l) {
|
|
@@ -1233,35 +1243,35 @@ namespace nmie {
|
|
|
for (int n = 0; n < nmax_; ++n) {
|
|
|
// al_n
|
|
|
auto denom = m1[l]*Zetaz[l][n + 1]*(D1z[l][n + 1] - D3z[l][n + 1]);
|
|
|
- al_n_[l][n] = D1z[l][n + 1]*m1[l]*(al_n_[l + 1][n]*Zetaz1[l][n + 1] - dl_n_[l + 1][n]*Psiz1[l][n + 1])
|
|
|
- - m[l]*(-D1z1[l][n + 1]*dl_n_[l + 1][n]*Psiz1[l][n + 1] + D3z1[l][n + 1]*al_n_[l + 1][n]*Zetaz1[l][n + 1]);
|
|
|
- al_n_[l][n] /= denom;
|
|
|
+ anl_[l][n] = D1z[l][n + 1]*m1[l]*(anl_[l + 1][n]*Zetaz1[l][n + 1] - dnl_[l + 1][n]*Psiz1[l][n + 1])
|
|
|
+ - m[l]*(-D1z1[l][n + 1]*dnl_[l + 1][n]*Psiz1[l][n + 1] + D3z1[l][n + 1]*anl_[l + 1][n]*Zetaz1[l][n + 1]);
|
|
|
+ anl_[l][n] /= denom;
|
|
|
|
|
|
// dl_n
|
|
|
denom = m1[l]*Psiz[l][n + 1]*(D1z[l][n + 1] - D3z[l][n + 1]);
|
|
|
- dl_n_[l][n] = D3z[l][n + 1]*m1[l]*(al_n_[l + 1][n]*Zetaz1[l][n + 1] - dl_n_[l + 1][n]*Psiz1[l][n + 1])
|
|
|
- - m[l]*(-D1z1[l][n + 1]*dl_n_[l + 1][n]*Psiz1[l][n + 1] + D3z1[l][n + 1]*al_n_[l + 1][n]*Zetaz1[l][n + 1]);
|
|
|
- dl_n_[l][n] /= denom;
|
|
|
+ dnl_[l][n] = D3z[l][n + 1]*m1[l]*(anl_[l + 1][n]*Zetaz1[l][n + 1] - dnl_[l + 1][n]*Psiz1[l][n + 1])
|
|
|
+ - m[l]*(-D1z1[l][n + 1]*dnl_[l + 1][n]*Psiz1[l][n + 1] + D3z1[l][n + 1]*anl_[l + 1][n]*Zetaz1[l][n + 1]);
|
|
|
+ dnl_[l][n] /= denom;
|
|
|
|
|
|
// bl_n
|
|
|
denom = m1[l]*Zetaz[l][n + 1]*(D1z[l][n + 1] - D3z[l][n + 1]);
|
|
|
- bl_n_[l][n] = D1z[l][n + 1]*m[l]*(bl_n_[l + 1][n]*Zetaz1[l][n + 1] - cl_n_[l + 1][n]*Psiz1[l][n + 1])
|
|
|
- - m1[l]*(-D1z1[l][n + 1]*cl_n_[l + 1][n]*Psiz1[l][n + 1] + D3z1[l][n + 1]*bl_n_[l + 1][n]*Zetaz1[l][n + 1]);
|
|
|
- bl_n_[l][n] /= denom;
|
|
|
+ bnl_[l][n] = D1z[l][n + 1]*m[l]*(bnl_[l + 1][n]*Zetaz1[l][n + 1] - cnl_[l + 1][n]*Psiz1[l][n + 1])
|
|
|
+ - m1[l]*(-D1z1[l][n + 1]*cnl_[l + 1][n]*Psiz1[l][n + 1] + D3z1[l][n + 1]*bnl_[l + 1][n]*Zetaz1[l][n + 1]);
|
|
|
+ bnl_[l][n] /= denom;
|
|
|
|
|
|
// cl_n
|
|
|
denom = m1[l]*Psiz[l][n + 1]*(D1z[l][n + 1] - D3z[l][n + 1]);
|
|
|
- cl_n_[l][n] = D3z[l][n + 1]*m[l]*(bl_n_[l + 1][n]*Zetaz1[l][n + 1] - cl_n_[l + 1][n]*Psiz1[l][n + 1])
|
|
|
- - m1[l]*(-D1z1[l][n + 1]*cl_n_[l + 1][n]*Psiz1[l][n + 1] + D3z1[l][n + 1]*bl_n_[l + 1][n]*Zetaz1[l][n + 1]);
|
|
|
- cl_n_[l][n] /= denom;
|
|
|
+ cnl_[l][n] = D3z[l][n + 1]*m[l]*(bnl_[l + 1][n]*Zetaz1[l][n + 1] - cnl_[l + 1][n]*Psiz1[l][n + 1])
|
|
|
+ - m1[l]*(-D1z1[l][n + 1]*cnl_[l + 1][n]*Psiz1[l][n + 1] + D3z1[l][n + 1]*bnl_[l + 1][n]*Zetaz1[l][n + 1]);
|
|
|
+ cnl_[l][n] /= denom;
|
|
|
} // end of all n
|
|
|
} // end of for all l
|
|
|
|
|
|
// Check the result and change an__0 and bn__0 for exact zero
|
|
|
for (int n = 0; n < nmax_; ++n) {
|
|
|
- if (std::abs(al_n_[0][n]) < 1e-10) al_n_[0][n] = 0.0;
|
|
|
+ if (std::abs(anl_[0][n]) < 1e-10) anl_[0][n] = 0.0;
|
|
|
else throw std::invalid_argument("Unstable calculation of a__0_n!");
|
|
|
- if (std::abs(bl_n_[0][n]) < 1e-10) bl_n_[0][n] = 0.0;
|
|
|
+ if (std::abs(bnl_[0][n]) < 1e-10) bnl_[0][n] = 0.0;
|
|
|
else throw std::invalid_argument("Unstable calculation of b__0_n!");
|
|
|
}
|
|
|
|
|
@@ -1287,18 +1297,19 @@ namespace nmie {
|
|
|
// printf("\n\n");
|
|
|
// }
|
|
|
for (int i = 0; i < L + 1; ++i) {
|
|
|
- printf("Layer =%d ---> ", i);
|
|
|
+ //printf("Layer =%d ---> ", i);
|
|
|
for (int n = 0; n < nmax_; ++n) {
|
|
|
// if (n < 20) continue;
|
|
|
- printf(" || n=%d --> a=%g,%g b=%g,%g c=%g,%g d=%g,%g",
|
|
|
- n,
|
|
|
- al_n_[i][n].real(), al_n_[i][n].imag(),
|
|
|
- bl_n_[i][n].real(), bl_n_[i][n].imag(),
|
|
|
- cl_n_[i][n].real(), cl_n_[i][n].imag(),
|
|
|
- dl_n_[i][n].real(), dl_n_[i][n].imag());
|
|
|
+ //printf(" || n=%d --> a=%g,%g b=%g,%g c=%g,%g d=%g,%g",
|
|
|
+ // n,
|
|
|
+ // anl_[i][n].real(), anl_[i][n].imag(),
|
|
|
+ // bnl_[i][n].real(), bnl_[i][n].imag(),
|
|
|
+ // cnl_[i][n].real(), cnl_[i][n].imag(),
|
|
|
+ // dnl_[i][n].real(), dnl_[i][n].imag());
|
|
|
}
|
|
|
- printf("\n\n");
|
|
|
+ //printf("\n\n");
|
|
|
}
|
|
|
+ areIntCoeffsCalc_ = true;
|
|
|
}
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
@@ -1311,13 +1322,16 @@ namespace nmie {
|
|
|
|
|
|
std::complex<double> c_zero(0.0, 0.0), c_i(0.0, 1.0);
|
|
|
std::vector<std::complex<double> > vm3o1n(3), vm3e1n(3), vn3o1n(3), vn3e1n(3);
|
|
|
- std::vector<std::complex<double> > Ei(3,c_zero), Hi(3,c_zero), Es(3,c_zero), Hs(3,c_zero);
|
|
|
+ std::vector<std::complex<double> > Ei(3, c_zero), Hi(3, c_zero), Es(3, c_zero), Hs(3, c_zero);
|
|
|
std::vector<std::complex<double> > bj(nmax_ + 1), by(nmax_ + 1), bd(nmax_ + 1);
|
|
|
+
|
|
|
// Calculate spherical Bessel and Hankel functions
|
|
|
- printf("########## layer OUT ############\n");
|
|
|
sphericalBessel(Rho,bj, by, bd);
|
|
|
+
|
|
|
+ //printf("########## layer OUT ############\n");
|
|
|
for (int n = 0; n < nmax_; n++) {
|
|
|
double rn = static_cast<double>(n + 1);
|
|
|
+
|
|
|
std::complex<double> zn = bj[n + 1] + c_i*by[n + 1];
|
|
|
// using BH 4.12 and 4.50
|
|
|
std::complex<double> xxip = Rho*(bj[n] + c_i*by[n]) - rn*zn;
|
|
@@ -1343,7 +1357,7 @@ namespace nmie {
|
|
|
Es[i] = Es[i] + encap*(c_i*an_[n]*vn3e1n[i] - bn_[n]*vm3o1n[i]);
|
|
|
Hs[i] = Hs[i] + encap*(c_i*bn_[n]*vn3o1n[i] + an_[n]*vm3e1n[i]);
|
|
|
//if (n < 3) printf(" E[%d]=%g ", i,std::abs(Es[i]));
|
|
|
- if (n < 3) printf(" !!=%d=== %g ", i,std::abs(Es[i]));
|
|
|
+ //if (n < 3) printf(" !!=%d=== %g ", i,std::abs(Es[i]));
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -1381,7 +1395,9 @@ namespace nmie {
|
|
|
H[i] = Hi[i] + Hs[i];
|
|
|
// printf("ext E[%d]=%g",i,std::abs(E[i]));
|
|
|
}
|
|
|
- } // end of void fieldExt(...)
|
|
|
+ } // end of fieldExt(...)
|
|
|
+
|
|
|
+
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
|
// ********************************************************************** //
|
|
@@ -1396,13 +1412,13 @@ namespace nmie {
|
|
|
std::vector<std::complex<double> > bj(nmax_ + 1), by(nmax_ + 1), bd(nmax_ + 1);
|
|
|
int layer=0; // layer number
|
|
|
std::complex<double> layer_index_l;
|
|
|
- for (int i = 0; i < layer_width_.size() - 1; ++i) {
|
|
|
- if (layer_width_[i] < Rho && Rho <= layer_width_[i + 1]) {
|
|
|
+ for (int i = 0; i < layer_size_.size() - 1; ++i) {
|
|
|
+ if (layer_size_[i] < Rho && Rho <= layer_size_[i + 1]) {
|
|
|
layer=i;
|
|
|
}
|
|
|
}
|
|
|
- if (Rho > layer_width_.back()) {
|
|
|
- layer = layer_width_.size();
|
|
|
+ if (Rho > layer_size_.back()) {
|
|
|
+ layer = layer_size_.size();
|
|
|
layer_index_l = c_one;
|
|
|
} else {
|
|
|
layer_index_l = layer_index_[layer];
|
|
@@ -1411,13 +1427,13 @@ namespace nmie {
|
|
|
std::complex<double> bessel_arg = Rho*layer_index_l;
|
|
|
std::complex<double>& rh = bessel_arg;
|
|
|
std::complex<double> besselj_1 = std::sin(rh)/pow2(rh)-std::cos(rh)/rh;
|
|
|
- printf("bessel arg = %g,%g index=%g,%g besselj[1]=%g,%g\n", bessel_arg.real(), bessel_arg.imag(), layer_index_l.real(), layer_index_l.imag(), besselj_1.real(), besselj_1.imag());
|
|
|
+ //printf("bessel arg = %g,%g index=%g,%g besselj[1]=%g,%g\n", bessel_arg.real(), bessel_arg.imag(), layer_index_l.real(), layer_index_l.imag(), besselj_1.real(), besselj_1.imag());
|
|
|
const int& l = layer;
|
|
|
- printf("########## layer %d ############\n",l);
|
|
|
+ //printf("########## layer %d ############\n",l);
|
|
|
// Calculate spherical Bessel and Hankel functions
|
|
|
sphericalBessel(bessel_arg,bj, by, bd);
|
|
|
- printf("besselj[1]=%g,%g\n", bj[1].real(), bj[1].imag());
|
|
|
- printf("bessely[1]=%g,%g\n", by[1].real(), by[1].imag());
|
|
|
+ //printf("besselj[1]=%g,%g\n", bj[1].real(), bj[1].imag());
|
|
|
+ //printf("bessely[1]=%g,%g\n", by[1].real(), by[1].imag());
|
|
|
for (int n = 0; n < nmax_; n++) {
|
|
|
double rn = static_cast<double>(n + 1);
|
|
|
std::complex<double> znm1 = bj[n] + c_i*by[n];
|
|
@@ -1453,7 +1469,7 @@ namespace nmie {
|
|
|
// znm1 = (bj[n] + c_i*by[n]).real();
|
|
|
// zn = (bj[n + 1] + c_i*by[n + 1]).real();
|
|
|
xxip = Rho*(bj[n]) - rn*zn;
|
|
|
- if (n < 3)printf("\nbesselj = %g,%g", zn.real(), zn.imag()); //!
|
|
|
+ //if (n < 3)printf("\nbesselj = %g,%g", zn.real(), zn.imag()); //!
|
|
|
vm1o1n[0] = c_zero;
|
|
|
vm1o1n[1] = cos(Phi)*Pi[n]*zn;
|
|
|
vm1o1n[2] = -sin(Phi)*Tau[n]*zn;
|
|
@@ -1478,20 +1494,20 @@ namespace nmie {
|
|
|
for (int i = 0; i < 3; i++) {
|
|
|
// if (n < 3 && i==0) printf("\nn=%d",n);
|
|
|
// if (n < 3) printf("\nbefore !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
|
|
|
- Ei[i] = encap*(cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]
|
|
|
- + c_i*al_n_[l][n]*vn3e1n[i] - bl_n_[l][n]*vm3o1n[i]);
|
|
|
- El[i] = El[i] + encap*(cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]
|
|
|
- + c_i*al_n_[l][n]*vn3e1n[i] - bl_n_[l][n]*vm3o1n[i]);
|
|
|
- Hl[i] = Hl[i] + encap*(-dl_n_[l][n]*vm1e1n[i] - c_i*cl_n_[l][n]*vn1o1n[i]
|
|
|
- + c_i*bl_n_[l][n]*vn3o1n[i] + al_n_[l][n]*vm3e1n[i]);
|
|
|
+ Ei[i] = encap*(cnl_[l][n]*vm1o1n[i] - c_i*dnl_[l][n]*vn1e1n[i]
|
|
|
+ + c_i*anl_[l][n]*vn3e1n[i] - bnl_[l][n]*vm3o1n[i]);
|
|
|
+ El[i] = El[i] + encap*(cnl_[l][n]*vm1o1n[i] - c_i*dnl_[l][n]*vn1e1n[i]
|
|
|
+ + c_i*anl_[l][n]*vn3e1n[i] - bnl_[l][n]*vm3o1n[i]);
|
|
|
+ Hl[i] = Hl[i] + encap*(-dnl_[l][n]*vm1e1n[i] - c_i*cnl_[l][n]*vn1o1n[i]
|
|
|
+ + c_i*bnl_[l][n]*vn3o1n[i] + anl_[l][n]*vm3e1n[i]);
|
|
|
// printf("\n !Ei[%d]=%g,%g! ", i, Ei[i].real(), Ei[i].imag());
|
|
|
// if (n < 3) printf("\n !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
|
|
|
- // //printf(" ===%d=== %g ", i,std::abs(cl_n_[l][n]*vm1o1n[i] - c_i*dl_n_[l][n]*vn1e1n[i]));
|
|
|
- // if (n < 3) printf(" ===%d=== %g ", i,std::abs(//-dl_n_[l][n]*vm1e1n[i]
|
|
|
- // //- c_i*cl_n_[l][n]*
|
|
|
+ // //printf(" ===%d=== %g ", i,std::abs(cnl_[l][n]*vm1o1n[i] - c_i*dnl_[l][n]*vn1e1n[i]));
|
|
|
+ // if (n < 3) printf(" ===%d=== %g ", i,std::abs(//-dnl_[l][n]*vm1e1n[i]
|
|
|
+ // //- c_i*cnl_[l][n]*
|
|
|
// vn1o1n[i]
|
|
|
- // // + c_i*bl_n_[l][n]*vn3o1n[i]
|
|
|
- // // + al_n_[l][n]*vm3e1n[i]
|
|
|
+ // // + c_i*bnl_[l][n]*vn3o1n[i]
|
|
|
+ // // + anl_[l][n]*vm3e1n[i]
|
|
|
// ));
|
|
|
// if (n < 3) printf(" --- Ei[%d]=%g! ", i,std::abs(encap*(vm1o1n[i] - c_i*vn1e1n[i])));
|
|
|
|
|
@@ -1509,7 +1525,7 @@ namespace nmie {
|
|
|
// electric field E [V m - 1] = EF*E0
|
|
|
E[i] = El[i];
|
|
|
H[i] = Hl[i];
|
|
|
- printf("\n !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
|
|
|
+ //printf("\n !El[%d]=%g,%g! ", i, El[i].real(), El[i].imag());
|
|
|
//printf(" E[%d]=%g",i,std::abs(El[i]));
|
|
|
}
|
|
|
} // end of void fieldExt(...)
|
|
@@ -1539,12 +1555,16 @@ namespace nmie {
|
|
|
// Return value: //
|
|
|
// Number of multipolar expansion terms used for the calculations //
|
|
|
//**********************************************************************************//
|
|
|
- void MultiLayerMie::RunFieldCalculations() {
|
|
|
- // Calculate scattering coefficients an_ and bn_
|
|
|
- RunMieCalculations();
|
|
|
- //nmax_=10;
|
|
|
+ void MultiLayerMie::RunFieldCalculation() {
|
|
|
+ // Calculate external scattering coefficients an_ and bn_
|
|
|
+ ExtScattCoeffs();
|
|
|
+ // Calculate internal scattering coefficients anl_ and bnl_
|
|
|
IntScattCoeffs();
|
|
|
|
|
|
+ for (int i = 0; i < an_.size(); i++) {
|
|
|
+ printf("a[%i] = %g, %g; b[%i] = %g, %g\n", i, an_[i].real(), an_[i].imag(), i, bn_[i].real(), bn_[i].imag());
|
|
|
+ }
|
|
|
+
|
|
|
std::vector<double> Pi(nmax_), Tau(nmax_);
|
|
|
long total_points = coords_[0].size();
|
|
|
E_field_.resize(total_points);
|
|
@@ -1552,43 +1572,46 @@ namespace nmie {
|
|
|
for (auto& f:E_field_) f.resize(3);
|
|
|
for (auto& f:H_field_) f.resize(3);
|
|
|
|
|
|
- for (int point = 0; point < total_points; ++point) {
|
|
|
+ for (int point = 0; point < total_points; point++) {
|
|
|
const double& Xp = coords_[0][point];
|
|
|
const double& Yp = coords_[1][point];
|
|
|
const double& Zp = coords_[2][point];
|
|
|
- printf("X=%g, Y=%g, Z=%g\n", Xp, Yp, Zp);
|
|
|
+ //printf("X=%g, Y=%g, Z=%g\n", Xp, Yp, Zp);
|
|
|
+
|
|
|
// Convert to spherical coordinates
|
|
|
double Rho, Phi, Theta;
|
|
|
Rho = std::sqrt(pow2(Xp) + pow2(Yp) + pow2(Zp));
|
|
|
- // printf("Rho=%g\n", Rho);
|
|
|
+
|
|
|
// Avoid convergence problems due to Rho too small
|
|
|
if (Rho < 1e-10) Rho = 1e-10;
|
|
|
+
|
|
|
// If Rho=0 then Theta is undefined. Just set it to zero to avoid problems
|
|
|
if (Rho == 0.0) Theta = 0.0;
|
|
|
else Theta = std::acos(Zp/Rho);
|
|
|
- // printf("Theta=%g\n", Theta);
|
|
|
- // If Xp=Yp=0 then Phi is undefined. Just set it to zero to zero to avoid problems
|
|
|
+
|
|
|
+ // If Xp=Yp=0 then Phi is undefined. Just set it to zero to avoid problems
|
|
|
if (Xp == 0.0 && Yp == 0.0) Phi = 0.0;
|
|
|
else Phi = std::acos(Xp/std::sqrt(pow2(Xp) + pow2(Yp)));
|
|
|
- // printf("Phi=%g\n", Phi);
|
|
|
|
|
|
calcSinglePiTau(std::cos(Theta), Pi, Tau);
|
|
|
+
|
|
|
//*******************************************************//
|
|
|
// external scattering field = incident + scattered //
|
|
|
// BH p.92 (4.37), 94 (4.45), 95 (4.50) //
|
|
|
// assume: medium is non-absorbing; refim = 0; Uabs = 0 //
|
|
|
//*******************************************************//
|
|
|
+
|
|
|
// This array contains the fields in spherical coordinates
|
|
|
std::vector<std::complex<double> > Es(3), Hs(3);
|
|
|
- const double outer_size = layer_width_.back();
|
|
|
+ const double outer_size = layer_size_.back();
|
|
|
+ //printf("rho=%g, outer=%g, Radius=%g\n", Rho, outer_size, GetSizeParameter());
|
|
|
// Firstly the easiest case: the field outside the particle
|
|
|
- printf("rho=%g, outer=%g ", Rho, outer_size);
|
|
|
- if (Rho >= outer_size) {
|
|
|
+ if (Rho >= GetSizeParameter()) {
|
|
|
fieldExt(Rho, Phi, Theta, Pi, Tau, Es, Hs);
|
|
|
- printf("\nFin E ext: %g,%g,%g Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
|
|
|
+ //printf("\nFin E ext: %g,%g,%g Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
|
|
|
} else {
|
|
|
fieldInt(Rho, Phi, Theta, Pi, Tau, Es, Hs);
|
|
|
- printf("\nFin E int: %g,%g,%g Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
|
|
|
+// printf("\nFin E int: %g,%g,%g Rho=%g\n", std::abs(Es[0]), std::abs(Es[1]),std::abs(Es[2]), Rho);
|
|
|
}
|
|
|
std::complex<double>& Ex = E_field_[point][0];
|
|
|
std::complex<double>& Ey = E_field_[point][1];
|
|
@@ -1608,10 +1631,9 @@ namespace nmie {
|
|
|
Hy = sin(Theta)*sin(Phi)*Hs[0] + cos(Theta)*sin(Phi)*Hs[1] + cos(Phi)*Hs[2];
|
|
|
Hz = cos(Theta)*Hs[0] - sin(Theta)*Hs[1];
|
|
|
}
|
|
|
- printf("Cart E: %g,%g,%g Rho=%g\n", std::abs(Ex), std::abs(Ey),std::abs(Ez),
|
|
|
- Rho);
|
|
|
+ //printf("Cart E: %g,%g,%g Rho=%g\n", std::abs(Ex), std::abs(Ey),std::abs(Ez), Rho);
|
|
|
} // end of for all field coordinates
|
|
|
|
|
|
- } // end of void MultiLayerMie::RunFieldCalculations()
|
|
|
+ } // end of MultiLayerMie::RunFieldCalculation()
|
|
|
|
|
|
} // end of namespace nmie
|