Nav apraksta

Ravi e9a845a293 README created online with Bitbucket 6 gadi atpakaļ
.ipynb_checkpoints 25d68667cb commit with assisted DE 6 gadi atpakaļ
__pycache__ 5c2211c4cd ready for global opt 6 gadi atpakaļ
datasets 9af47cfec1 conv layer nets added and working 6 gadi atpakaļ
materials 1d7b8580a1 again 6 gadi atpakaļ
models 25d68667cb commit with assisted DE 6 gadi atpakaļ
results 25d68667cb commit with assisted DE 6 gadi atpakaļ
README e9a845a293 README created online with Bitbucket 6 gadi atpakaļ
barplotting.ipynb 5c2211c4cd ready for global opt 6 gadi atpakaļ
de_conv.ipynb 25d68667cb commit with assisted DE 6 gadi atpakaļ
hypoptim.ipynb 25d68667cb commit with assisted DE 6 gadi atpakaļ
hyptune.py 1e493c3bd5 further develp in conv scatter nets 6 gadi atpakaļ
make_dataset.py 1d7b8580a1 again 6 gadi atpakaļ
mxmodel.ipynb 25d68667cb commit with assisted DE 6 gadi atpakaļ
pygmoimp.ipynb 25d68667cb commit with assisted DE 6 gadi atpakaļ
pymietest.ipynb 25d68667cb commit with assisted DE 6 gadi atpakaļ
scatternet.ipynb 25d68667cb commit with assisted DE 6 gadi atpakaļ
scipydiffe.ipynb 25d68667cb commit with assisted DE 6 gadi atpakaļ
scnets.py 85e716f303 Almost ready for global optimization 6 gadi atpakaļ
snlay.py 85e716f303 Almost ready for global optimization 6 gadi atpakaļ

README

https://bitbucket.org/rshegde/deepmie-deep-learning-electromagnetic-scattering

Abstract
===============================================================
We propose the use of Deep Convolutional Neural Networks (DCNN)
in concert with Differential Evolution for solving inverse problems in
electromagnetics. We show that networks built using innovations like
convolutional layers, batch normalization, parametric REctified Linear Unit
(ReLU) and residual blocks achieve comparable performance to previously
reported dense fully-connected networks but achieve drastic reduction in
parameter weights and training epoch lengths. The proposed lightweight CNNs
are used in concert with Differential Evolution global optimization to achieve
8x speedup in convergence time. Systematic hyperparameter grid searches are
reported to permit faster model discovery for application to other problems.

See the following arxiv paper for details


Requirements
================================================================
1) CUDA capable GPU
2) Python 3.5
3) Numpy, Matplotlib, Pandas, Scipy, Scikitlearn
4) Cudatooklit 9.0, CuDNN 7.1
5) Mxnet-GPU, Mxnet-cumkl
6) Keras, Keras-mxnet
7) Scattnlay -- needed if you want to generate other datasets
8) Jupyter notebook
9) ipyparallel for calling multiple runs at the same time

Getting started
==================================
Most of the code is placed in Jupyter notebooks for interactivity.
PyMIEtest.ipynb -- familiarizes you with generating datasets
Scatternets.ipynb -- allows building and visualizing models
hypoptim.ipynb -- hyperparameter grid search using scikit CV grid search
scipydiffe -- differential evolution using compiled models.