Ei kuvausta

Ravi e9a845a293 README created online with Bitbucket 6 vuotta sitten
.ipynb_checkpoints 25d68667cb commit with assisted DE 6 vuotta sitten
__pycache__ 5c2211c4cd ready for global opt 6 vuotta sitten
datasets 9af47cfec1 conv layer nets added and working 6 vuotta sitten
materials 1d7b8580a1 again 6 vuotta sitten
models 25d68667cb commit with assisted DE 6 vuotta sitten
results 25d68667cb commit with assisted DE 6 vuotta sitten
README e9a845a293 README created online with Bitbucket 6 vuotta sitten
barplotting.ipynb 5c2211c4cd ready for global opt 6 vuotta sitten
de_conv.ipynb 25d68667cb commit with assisted DE 6 vuotta sitten
hypoptim.ipynb 25d68667cb commit with assisted DE 6 vuotta sitten
hyptune.py 1e493c3bd5 further develp in conv scatter nets 6 vuotta sitten
make_dataset.py 1d7b8580a1 again 6 vuotta sitten
mxmodel.ipynb 25d68667cb commit with assisted DE 6 vuotta sitten
pygmoimp.ipynb 25d68667cb commit with assisted DE 6 vuotta sitten
pymietest.ipynb 25d68667cb commit with assisted DE 6 vuotta sitten
scatternet.ipynb 25d68667cb commit with assisted DE 6 vuotta sitten
scipydiffe.ipynb 25d68667cb commit with assisted DE 6 vuotta sitten
scnets.py 85e716f303 Almost ready for global optimization 6 vuotta sitten
snlay.py 85e716f303 Almost ready for global optimization 6 vuotta sitten

README

https://bitbucket.org/rshegde/deepmie-deep-learning-electromagnetic-scattering

Abstract
===============================================================
We propose the use of Deep Convolutional Neural Networks (DCNN)
in concert with Differential Evolution for solving inverse problems in
electromagnetics. We show that networks built using innovations like
convolutional layers, batch normalization, parametric REctified Linear Unit
(ReLU) and residual blocks achieve comparable performance to previously
reported dense fully-connected networks but achieve drastic reduction in
parameter weights and training epoch lengths. The proposed lightweight CNNs
are used in concert with Differential Evolution global optimization to achieve
8x speedup in convergence time. Systematic hyperparameter grid searches are
reported to permit faster model discovery for application to other problems.

See the following arxiv paper for details


Requirements
================================================================
1) CUDA capable GPU
2) Python 3.5
3) Numpy, Matplotlib, Pandas, Scipy, Scikitlearn
4) Cudatooklit 9.0, CuDNN 7.1
5) Mxnet-GPU, Mxnet-cumkl
6) Keras, Keras-mxnet
7) Scattnlay -- needed if you want to generate other datasets
8) Jupyter notebook
9) ipyparallel for calling multiple runs at the same time

Getting started
==================================
Most of the code is placed in Jupyter notebooks for interactivity.
PyMIEtest.ipynb -- familiarizes you with generating datasets
Scatternets.ipynb -- allows building and visualizing models
hypoptim.ipynb -- hyperparameter grid search using scikit CV grid search
scipydiffe -- differential evolution using compiled models.